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Some thoughts on the history of mathematics

Dedicated to A. Heyting on the occasion of his 702 birthday
by

Abraham Robinson

1.

The achievements of Mathematics over the centuries cannot
fail to arouse the deepest admiration. There are but few mathe-
maticians who feel impelled to reject any of the major results of
Algebra, or of Analysis, or of Geometry and it seems likely that
this will remain true also in future. Yet, paradoxically, this
iron-clad edifice is built on shifting sands. And if it is hard, and
perhaps even impossible, to present a satisfactory viewpoint on
the foundations of Mathematics today, it is equally hard to give
an accurate description of the conceptual bases on which the
mathematicians of the past constructed their theories. Some of
the suggestions that we shall offer here on this topic are frankly
speculative. Some may have been arrived at by comparing similar
situations at different times in history, a procedure which is open
to challenge and certainly should be used with great caution.
Another preliminary remark which is appropriate here concerns
the use of the word ‘“‘real” with reference to mathematical objects.
This term is ambiguous and has been stigmatised by some as
meaningless in the present context. But the fundamental contro-
versies on the significance of this word should not inhibit its use
in a historical study, whose purpose it is to describe and analyze
attitudes and not to justify them.

2.

It is commonly accepted that the beginnings of Mathematics
as a deductive science go back to the Greek world in the fifth and
fourth centuries B.C. It is even more certain that in the course of
many hundreds of years before that time people in Egypt and
Mesopotamia had accumulated an impressive body of mathe-
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matical knowledge, both in Geometry and in Arithmetic. Since
this knowledge was recorded in the form of numerical problems
and answers it is frequently asserted that pre-Greek Mathematics
was purely ‘‘empirical”’. However, unless this expression is meant
to indicate merely that pre-Greek Mathematics was not deductive
and if it is to be taken literally, we are asked to believe, e.g.,
that the Mesopotamian mathematicians arrived at Pythagoras’
theorem by measuring a large number of right triangles and by
inspecting the numbers obtained as the squares of their side
lengths. Is it not much more likely that these mathematicians,
like their Greek successors, were already familiar with one of the
arguments leading to a proof of Pythagoras’ theorem by a decom-
position of areas, but that no such proof was recorded by them
since they regarded the reasoning as intuitively clear? To put it
facetiously and anachronistically, if a Sumerian mathematician
had been asked for his opinion of Euclid he might have replied
that he was interested in real Mathematics and not in useless
generalizations and abstractions. However, some major advances
in Mathematics consisted not in the discovery of new results or in
the invention of ingenious new methods but in the codification of
elements of accepted mathematical thought, i.e. in making explicit
arguments, notions, assumptions, rules, which had been used in-
tuitively for a long time previously. It is in this light that we should
look upon the contributions of the Greek mathematicians and
philosophers to the foundations of Mathematics.

3.

For our present discussion, the question whether the major
contribution to the system of Geometry recorded in Euclid’s
Elements was due to Hippocrates or to Eudoxus or to Eueclid
himself is of no importance (except insofar as it may affect the
following problem, for chronological reasons). However, it would
be important to know to what extent the emergence of deductive
Mathematics was due to the lead given by one of the Greek
philosophers or philosophical schools of the fifth and fourth
centuries. Is it true, as has been asserted by some, that the creation
of the axiomatic method was due to the direct influence of Plato
or of Aristotle or, as has been suggested recently by A. Szabé, that
it was a response to the teachings of the Eleatic school? In our
time, the immediate influence of philosophers on the foundations
of Mathematics is confined to those who are willing to handle
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technical-mathematical details. But even now, a general philoso-
phical doctrine may, almost imperceptibly, affect the direction
taken by foundational research in Mathematics in the long run.
In classical Greece, the differentiation between Philosophy and
Mathematics was less pronounced, but nevertheless, with the
possible exception of Democritus, we do not know of any leading
philosopher of that period who originated an important contribu-
tion to Mathematics as such. When Plato singled out Theaetetus
in order to emphasize the generality of mathematical arguments
he was, after all, referring to a real person who had died only a
few years earlier, and he wished to take no credit for the achieve-
ment described by him. Nevertheless, by laying bare some
important characteristics of mathematical thought, both he and
Aristotle exerted considerable influence on later generations.
Thus Aristotle, having studied the mathematics of the day, estab-
lished standards of rigor and completeness for mathematical
reasoning which went far beyond the level actually reached at
that time. And although we may assume that Euclid and his
successors were aware of the teachings of Plato and Aristotle,
their own aims in the development of Geometry as a deductive
science were less ambitious than Aristotle’s program from a purely
logical point of view. It is in fact well known that even in the
domain of purely mathematical postulates Euclid left a number
of glaring gaps. And as far as the laws of logic are concerned,
Euclid confined himself to axioms of equality (and inequality)
and did not include the rules of deduction which had already been
made available by Aristotle. Thus Euclid, like Archimedes after
him, was content to single out those axioms which could not be
taken for granted or which deserved special mention for other
reasons and then derived his theorems from those axioms in
conjunction with other assumptions whose truth seemed obvious, by
means of rules of deduction whose legitimacy seemed equally obvious.
It would be out of place to ask whether Euclid would have been
able to include in his list of postulates this or that assumption
if he had wanted just as even today it would, in most cases, be
futile to ask a working mathematician to specify the rules of
deduction that he uses in his arguments. The chances are that the
typical working mathematician would reply that he is willing to
leave this task to the logicians and that, by contrast, his own
intuition is sound enough to get along spontaneously. For example,
when proving that any composite number has a prime divisor
(Elements, Book VII Proposition 81), Euclid appealed explicitly
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to the principle of infinite descent (which is a wvariant of the
“axiom of induction’) yet he did not include that principle
among his axioms. By contrast, the axiom of parallels was in-
cluded by Euclid (Elements, Book I, Postulate 5) because though
apparently true, it was not intuitively obvious. Similarly “Archi-
medes axiom” was included by Archimedes (On the sphere and
cylinder, Book I, Postulate 5) because although required for
developing the method of exhaustion, it was not intuitively
obvious either. In fact, Euclid did not accept this axiom at all
explicitly but instead introduced a definition (Elements, Book V,
Definition 5) which implies that he did not wish to exclude the
possibility that magnitudes which are non-archimedean relative
to one another actually exist, but that he deliberately confined
himself to archimedean systems of magnitudes in order to be able
to develop the theory of proportions and, to some extent, the
method of exhaustion.

4.

From the beginnings of the axiomatic method until the nine-
teenth century A.D. axioms were regarded as statements of fact
from which other statements of fact could be deduced (by means
of legitimate procedures and relying on other obvious facts, see
above). However, there is in Euclid an element of ‘‘construc-
tivism’ which, on one hand, seems to hark back to pre-Greek
Mathematics and, on the other hand, should strike a chord in the
hearts of those who believe that Mathematics has been pushed
too far in a formal-deductive direction and who advocate a more
constructive approach to the foundations of Mathematics. And
although the first three postulates of the Elements, Book I can be
interpreted as purely existential statements, the ‘“‘constructivist”
tenor of their actual style is unmistakable. Moreover, the cautious
formulations of the second and fifth postulates seems to show a
trace of the distaste for infinity that we find already in Aristotle.
In addition, there are, of course, scattered through the Elements
many ‘‘propositions” which are actually constructions.

5.

Euclid’s geometry was supposed to deal with real objects,
whether in the physical world or in some ideal world. The defini-
tions which preface several books in the Elements are supposed
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to communicate what object the author is talking about even
though, like the famous definition of the point and the line, they
may not be required in the sequel. The fundamental importance
of the advent of non-Euclidean geometry is that by contradicting
the axiom of parallels it denied the uniqueness of geometrical
concepts and hence, their reality. By the end of the nineteenth
century, the interpretation of the basic concepts of Geometry
had become irrelevant. This was the more important since Geo-
metry had been regarded for a long time as the ultimate founda-
tion of all Mathematics. However, it is likely that the independent
development of the foundations of the number system which
was sparked by the intricacies of Analysis would have deprived
Geometry of its predominant position anyhow.

An ironic fate decreed that only after Geometry had lost its
standing as the basis of all Mathematics its axiomatic foundations
finally reached the degree of perfection which in the public
estimation they had possessed ever since Euclid. Soon after, the
codification of the laws of deductive thinking advanced to a point
which, for the first time, permitted the satisfactory formalization
of axiomatic theories.

6.

In the twentieth century, Set Theory achieved the position,
once occupied by Geometry, of being regarded as the basic disci-
pline of Mathematics in which all other branches of Mathematics
can be embedded. And, within quite a short time, the foundations
of Set Theory went through an evolution which is remarkably
similar to the earlier evolution of the foundations of Geometry.
First the initial assumptions of Set Theory were held to be
intuitively clear being based on natural laws of thought for whose
codification Cantor, at least, saw no need. Then Set Theory was
put on a postulational basis, beginning with the explicit formula-
tion of the least intuitive among them, the axiom of choice.
However, at that point the axioms were still supposed to describe
“reality”, albeit the reality of an ideal, or Platonic, world. And
finally, the realization that it is equally consistent either to
affirm or to deny some major assertions of Set Theory such as the
continuum hypothesis led, in the mid-sixties, to a situation in
which the belief that Set Theory describes an objective reality
was dropped by many mathematicians.

The evolution of the foundations of Set Theory is closely linked
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to the development of Mathematical Logic. And here also we can
see how, in eur own time, advances have been made through the
codification of notions (such as the truth concept) which were
used intuitively for a long time previously. And again it may be
left open whether the postulates of a system deal with real
objects or with idealizations (e.g. the rules of formation and
deduction of a formal language). And there is every reason to
believe that the codification of intuitive concepts and the reinter-
pretation of accepted principles will continue also in future and
will bring new advances, into territory still uncharted.

Added March 20, 1968:

In an article published since the above lines were written
(Non-Cantorian Set Theory, Scientific American, vol. 217, De-
cember 1967, pp. 104—116) Paul J. Cohen and Reuben Hersh
compare the development of geometry and set theory and anti-
cipate some of the points made here.

(Oblatum 3-1-'68) Yale University



