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Binary generators for the m-valued
and N0-valued Lukasiewicz propositional calculi

Dedicated to A. Heyting on the occasion of his 70th birthday

by

Alan Rose

It has been shown 1 that, if m-1 is not divisible by 3, the
implication and negation functors of Lukasiewicz 2 are denoted
by C, N respectively and

then, in the m-valued propositional calculus with S as the only
primitive functor, the functors C and N are definable. The result
fails whenever m-1 is divisible by 3, though functors of more
than two arguments having properties similar to those of S and
truth-tables constructed in a similar manner have been con-
sidered 3. In order to establish the failure we have only to note
that if, in general, we denote the truth-values by the rational
numbers i/(m-1) (i = 0, ···, m-1) then, in the case considered,
1 is a truth-value and, if P, Q both take the truth-value 2 3, so does
SPQ. A non-commutative solution to the binary generator
problem was given earlier, for all m (m  0) by McKinsey 4.
We shall now, in the case where m-1 is divisible by 3, consider

the binary functor F whose truth-table is such that

1 Alan Rose, "Some generalized Sheffer functions", Proc. Cambridge Phil. Soc.,
vol. 48 (1952), pp. 369- 73, especially pp. 370-371.

2 See, for example, J. B. Rosser and A. R. Turquette, Many-valued logics,
Amsterdam 1952, pp. 15 -18.

3 See footnote 1.
4 J. C. C. MeKinsey, "On the generation of the fonctions Cpq and Np of Lukasie-

wicz and Tarski by means of a single binary operation", Bull. Amer. Math. Soc.,
vol. 42 (1936), pp. 849-851. The author was not aware of the existence of this
paper when the paper referred to in footnote 1 was published, but the functor
En-2 considered by McKinsey was not, except in the 2-valued case, any of the
functors considered by the author in either paper.
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except when P takes the truth-value i and Q takes one of the
truth-values 1 3, j. In both the latter cases we assign to FPQ the
truth-value 0. We shall then consider a commutative functor

closely related to F.

THEOREM 1. In the m-valued propositional calculus with F as
the only primitive functor we may define C and N and, in the
m-valued Lukasiewicz propositional calculus, we may define F
(m = 4, 7, ···).

Since the truth-value of FPQ is equal to 0 whenever it

differs from that of SPQ it follows at once from a theorem of
McNaughton 5 that we may define F in terms of C and N.

Let the truth-tables 6 of the functors Ji be such that Ji P takes
the truth-value 1 when P takes the truth-value i and JiP takes
the truth-value 0 in all other cases (i = 1 3, §). Let V be a functor
such that V P always takes the truth-value 1 and B, L be func-
tors 7 such that if P, Q, BPQ, LPQ take the truth-values x, y,
b(x, y), l(x, y) respectively then

Let B’, L’ be functors such that if P, Q, B’ PQ, L’ PQ take the
truth-values x, y, b’ (x, y), l’(x, y) respectively then

and, in all other cases,

We shall consider now 8 the following definitions:

5 Robert McNaughton, "A theorem about infinite-valued sentential logic",
Journal of Symbolic Logic, vol. 16 (1951), pp. 1-13, especially pp. 12-13.

6 If integer truth-values are used these functors become the functors J(m+2)/3( ),
J(2m+1)/3( ) of Rosser and Turquette. See, for example, pp. 18-22 of the book
referred to in footnote 2.

7 Cf. Alan Rose and J. Barkley Rosser, "Fragments of many-valued statement
calcula, Trans. Amer. Math. Soc., vol. 87 (1958), pp. 1- 53, especially, pp. 2-3.

8 The functor B’ will not be considered further until the proof of Theorem 2.
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Since, if P, Q, FPQ take the truth-values x, y, f(x, y ) respectively,

and, in all other cases,

it follows at once that, if x ~ 2 3,

and that

If Di P takes the truth-value di(x) when P takes the truth-value
x (i = 0, 1, ... ) it follows at once that

Since

and

we deduce that

and that, for all truth-values x, if

then

Since, when x ~ 2 3,

it follows at once that, unless d;(x) e {0, 1},

according as
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Hence, if x &#x3E; 2 3, it follows, using (A), that either

or

It follows at once that

and hence, by (A), that

If x  2 then, by a similar argument, either

or

In the first case it follows from (A) that

and, in the second case, we have again a contradiction.
Since we have already established that

it follows at once that, for all truth-values x,

Since

it then follows immediately that the truth-value of the formula

is 1 or 0 according as that of Dm-2 P is 0 or 1. Hence, since

our definition of the functor V is appropriate. Since, for all

truth-values x,

our definition of the functor N is appropriate.
We note next that, unless
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and that

Thus our definition of the functor L’ is appropriate.
Except when x = l and y e {1 3, 2 3},

and it follows at once that

Since, further,

and

our definition of the functor B’ is appropriate.
If

But

Thus our definition of the functor J2 3 is justified. Since

it follows, by definition, that

Hence NFNPP takes the truth-value 1 or the truth-value 0

according as NP does or does not take the truth-value 2 3, i.e.

according as P does or does not take the truth-value t. Thus our
definition of the functor J1 3 is justified.

In order to justify our definition of the functor L we note first
that, for all truth-values x,

Hence the formula
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takes the truth-value 1 3 when P, Q both take the truth-value 2
and, in all other cases, it takes the truth-value 1. For the same
reasons the formula

takes the truth-value 0 when P, Q take the truth-values il i
respectively and, in all other cases, it takes the truth-value 1.

Unless P takes the truth-value 2 3 and Q takes one of the truth-
values 1 3, §, the truth-values of the formulae

are equal to 1(r, y), 1, 1 respectively. Since, for all truth-values x,

it follows at once that the truth-value of the formula

is equal to l(x, y). If P, Q both take the truth-value 2 then
L’ PQ, NL’L’J2 3PJ2 3QQ, NL’jl Pji Q take the truth-values 1, 1 3,
1 respectively and, since

the formula (1) takes the truth-value 1 3. If P, Q take the truth-
values 2 3, 1 3 respectively then NL’J2 3PJ1 3Q takes the truth-value
0 and since, for all truth-values x,

the formula (1) takes the truth-value 0. Thus our definition of
the functor L is justified. Finally, since

our definition of the functor C is justified.
Thus Theorem 1 is proved. The solution to the problem provided

thereby is not a commutative functor since

although, in all other cases,

It is not difficult, however, to obtain a commutative solution as a
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corollary of Theorem 1. Let G be a binary functor such that,
if P, Q, G PQ take the truth-values x, y, g(x, y ) respectively then

and, in all other cases,

Thus

THEOREM 2. In the m-valued propositional calculus with G as the
only primitive functor we may define C and N and, in the m-valued
Lukasiewicz propositional calculus, we may define G (m = 4, 7, ... ).

Since g(x, y) = 0 in the only case where g(x, y) =1= f(x, y), it

follows at once from the theorem of McNaughton referred to
above 9 that we may define G in terms of C and N. In order to
define C and N in terms of G we note first that, by arguments
strictly analogous to those given in the proof of Theorem 1, we
make the definitions

Similarly, if we make the definitions

the formula L" PQ will take the truth-value 1 when P, Q take
the truth-values 1 3, 2 3 respectively, the formula B" PQ will take
the truth-value 0 when P, Q take the truth-values il î respec-
tively and, in all other cases,

We consider next the definitions

We note first that if P, Q, L" PQ take the truth-values x, y,
1"(x, y ) respectively then

and, for all truth-values x,

9 See footnote 5.
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If P takes the truth-value 2 then HP, MP both take the truth-
value 1, as does L" HPMP. If P takes the truth-value l then
HP takes the truth-value 0, as does L"HPMP. If P takes a
truth-value other than ! or 1 then MP takes the truth-value 0,
as does L" HPMP. Thus our definition of the functor Ji is

justified. Since NP takes the truth-value 1 if and only if P takes
the truth-value 1, our definition of the functor Ji is justified.

In order to justify our last definition we note first that if P,
Q, B" PQ take the truth-values x, y, b"(x, y) respectively then

and, for all truth-values x,

If P, Q take the truth-values l, i respectively then the formula

takes the truth-value 1, as does the formula

In all other cases the formula

takes the truth-value 0 and

Thus our definition of the functor F is justified. Since F is

definable in terms of G it follows at once from Theorem 1 that
C and N are definable in terms of G.

It has been shown 1° that, in the 0-valued case, there are no
solutions, but that, if a certain third primitive functor is adjoined
to those of Lukasiewicz 11, a quaternary generator exists. We shall
show now that another extension of the Lukasiewicz system
possesses a binary generator and, in Theorem 4, that the resulting
system is less extensive than that of the previous paper. Let us
consider the functors J, F of the 0-valued propositional calculus
such that if P, Q, JP, FPQ take the truth-values x, y, j(x), f(x, y)
respectively then

10 See the paper referred to in footnote 1, especially pp. 371- 72.
11 See, for example, the paper referred to in footnote 7, especially pp. 1- 5.
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and, in all other cases,

THEOREM 3. In the No-valued propositional calculus we may
define F in terms of C, N and J and we may define C, N and j in
terms o f F.

In the system obtained from that of Lukasiewicz by taking J
as a third primitive functor let us consider the definition

FPQ =àf LLNLLSPQJPJQBSPQLJPJQBNJPNJNQ,
where

Let us denote the truth-values of P, Q by x, y respectively.
If i  x  -1 and 1  y  1 then

and

Since

it follows also that the formula

takes the truth-value 1. Hence

Since 5 8  y  3 4 it follows at once that

and JNQ takes the truth-value 0. Hence the formula

takes the truth-value 1 and

LLNLLSPQJPJQBSPQLJPJQBNJPNJNQ =pNSPQ.
Thus the formula LLNLLSPQJPJQBSPQLJPJQBNJPNJNQ
takes the truth-value
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If 5 8  x  3 4 and 1 4  y  3 then 5 8  1-y  3 4 and the
formulae JP, JNQ both take the truth-value 1. Hence the

formula

BNJPNJNQ
takes the truth-value 0 as does the formula

LLNLLSPQJPJQBSPQLJPJQBNJPNJNQ.
In all other cases JP takes the truth-value 0 or JQ, JNQ both

take the truth-value 0. Hence the formulae

NLLSPQJPJQ, BNJPNJNQ, LJPJQ
take the truth-values 1, 1, 0 respectively and

LLNLLSPQJPJQBSPQLJPJQBNJPNJNQ
=p BSPQLJP JQ =p SPQ.

Thus the formula LLNLLSPQJPJQBSPQLJPJQBNJPNJNQ
always takes the truth-value f(x, y) and our definition of the
functor F is justified.

In the system with F as the only primitive functor let us
consider the definitions

Let us again denote the truth-values of P, Q by x, y respectively.
If x  1 then

If 1  x ~ 5 then
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If A  x  3 4 then

If x ~ 3 4 then

Thus, if DP (defined as in the previous paragraph) takes the
truth-value d(x),

Since

it follows that, for all truth-values x,

Hence our definition of N may be justified exactly as in the proof
of Theorem 1.

Since 1 4  1-x  g whenever i  x  3 4,

In all other cases

Since 1-1 = 0 and 1-0 = 1, our definition of the functor is
justified.

Let LPQ, BPQ, as defined in terms of C and N, take the truth-
values 1(x, y ), b(x, y ) respectively.

If L’ PQ, B’ PQ take the truth-values l’(x, y), b’(x, y ) respec-
tively when defined by the method now under consideration then,
if 5 8  x  3 4 and 5 8  y  3 4,
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and, in all other cases,

If 1 4  x  3 8 and 1 4  y  3 8 then 5 8  1-x  3 4 and

5 8  1-y  3 4. Hence

If 1 4  x  3 8 and 5 8  y  3 4 then 5 8  1-x  3 4 and

!  1- y  i. Hence

In all other cases

It now follows at once that, for all truth-values x,

l’(0, x) = l’(x, 0) = 0, l’(1, x) = l’(x, 1) = b’(0, x) = b’(x, 0) = x,
b’(1,x) = b’(x,1) = 1.

If 5 8  x  3 4 and 5 8  y  3 4 the formulae JP, JQ both take the
truth-value 1. Hence the formula

takes the truth-value

Since JP, JQ both take the truth-value 1 the formula

B’ L’ PQL’ JPJQ
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takes the truth-value 1 also. Since 1  1-y  3 the formula
J NQ takes the truth-value 1 as does the formula

B’ B’ L’ QPJ* PJ* NQ.
Since the formulae

NL’L’L’PQJPJQ, B’L’PQL’JPJQ, B’B’L’QPJ*PJ*NQ

take the truth-values 1(x, y), 1, 1 respectively it follows at once
that the formula 

L’L’NL’L’L’PQJPJQB’L’PQL’JPJQB’B’L’QPJ*PJ*NQ
(B)

takes the truth-value 1(x, y). If î  x  3 4 and 1 4  y  3 8 then
JP, J* P, JQ, J*NQ take the truth-values 1, 0, 0, 0 respectively.
Hence the formulae

NL’L’L’PQJPJQ, B’L’PQL’JPJQ, B’B’L’QPJ*PJ*NQ

take the truth-values 1, l’ (x, y), l’ (y, x) respectively. But, in this
case,

and

Hence the formula (B) takes the truth-value 1(x, y). In all other
cases at least one of the formulae JP, JQ takes the truth-value 0
and at least one of the formulae J* P, J* NQ takes the truth-value
1. Hence the formulae NL’L’L’PQJPJQ, B’ L’ PQL’ JPJQ,
B’B’L’QPJ*PJ*NQ take the truth-values 1, l’(x, y), 1 respec-
tively. Since, in these cases,

the formula (B) takes the truth-value l(x, y).
We have now established that, for all truth-values x, y, the

formula (B) takes the truth-value l(x, y). Thus our definition of
the functor L is justified and we may justify our definition of the
functor C as in the proof of Theorem 1.

THEOREM 4. 1 f EPQ takes the truth-value 1 when the truth-values
of P, Q are equal and it takes the truth-value 0 in all other cases then
the f unctor J is definable in terms o f C, N and E but the functor E
is not definable in terms o f C, N and J.
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Let

It follows at once from a theorem of McNaughton 12 that, in
terms of C and N, we may define a functor J’ such that, if P
takes the truth-value x, then J’P takes the truth-value ~(x).
We may then, in the system with C, N and E as primitive functors,
make the definition

In the system with C, N and J as primitive functors it follows
easily, by strong induction on the number of (not necessarily
distinct) symbols occurring in P that, if P contains no proposi-
tional variables other than p and p, P take the truth-values

x, y (= y(x» respectively, then there exist a positive number
8 (= e(P)) and an integer n (= n(P)) such that, whenever x  s,

Clearly no positive number e and integer n correspond to the
formula EpNEpp. Hence E cannot be defined in terms of C,
N and J.
By a similar argument it can be shown that the 0-valued

generalisation of En_2 (in terms of which C, N and J can obviously
be defined) cannot be defined in terms of C, N and J.

Added in proo f .

The 0-valued propositional calculus considered in Theorem 3
may be generated by another binary functor. The generalised
truth-table of this functor is constructed by a slightly more com-
plicated rule, but the new table is commutative. Let us consider
the functor G such that if P, Q, GPQ take the truth-values
x, y, g(x, y ) respectively then

and, in all other cases,

THEOREM 5. The functor G is commutative and may be defined in

12 See the paper referred to in footnote 5, es pecially pp. 1-9.
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terms of the f unctors C, N and J and the f unctors C, N and J may
be delined in terms of G.

It follows at once from the definition of the function g( , )
that

In the propositional calculus with C, N and J as primitives we
may make the definition 

the functors L, B, S being defined as in the first part of the proof
of Theorem 3. Let P, Q take the truth-values x, y respectively.

If 1 4  x  g and 5  y  34 then the formula LJNPJQ takes
the truth-value 1 as does the formula

For similar reasons the latter formula takes the truth-value 1 if

8  x  3 4 and 1  y  3 8 and also if 5  x  3 4 and 5  y  1.
Thus, in all three cases, the formula

takes the same truth-value as LPQ, i. e. its truth-value is equal to
the value of g(x, y). Since, in these three cases, the formula

takes the truth-value 0 it follows easily that the formula GPQ,
defined as above, takes the truth-value equal to the value of
g(x, y).

In all the remaining cases the formulae

all take the truth-value 0. Thus the formula

BBLJPJQLJPJNQLJNPJQ

and its negation take the truth-values 0, 1 respectively and the
formula GPQ, defined as above, takes the same truth-value as the
formula SPQ, i.e. its truth-value is equal to the value of g(x, y).

In the propositional calculus with G as the only primitive
functor let us consider the definitions
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Our definitions of the functors D, V, N may be justified exactly
as in the proof of Theorem 3, if these functors are regarded as
having the same generalised truth-tables now as then. If the
formula 13 L’ l’Q takes the truth-value l’(x, y) when P, Q take
the truth-values x, y respectively then

Thus

and, in all other cases,

If B’ PQ takes the truth-value b’(x, y ) when P, Q take the truth-
values x, y respectively then

Hence

and, in all other cases,

Hence

13 The generalised truth-tables of the functors defined above are the same as
in previous cases, except for the functors L’, B’. The functions corresponding to
the generalised truth-tables of these two functors will now be determined.
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We shall make use of these latter eight equations without
comment.

If x ~ 5 8 then DDP takes the truth-value 0 as does the formula
L’ DDPNGPNP. If t  x  3 4 then DDP takes the truth-value
1 and GPNP takes the truth-value equal to the value of

Since

Thus the formulae NG PN P, L’ DD PNG PNP take the truth-
value 1. If x ~ 3 4 then

Thus the formulae NGPNP, L’ DDPNGPNP take the truth-value
0 and our definition of the functor J is justified.

If )  x  1 and 5 8  y  3 3 then the formula L’ JNPJQ takes
the truth-value 1 as does the formula

B’ B’L’JPJQL’JPJNQL’JNPJQ.
Thus the formula LPQ, defined as above, takes the same truth-
value as the formula NL’ PQ, i.e. its truth-value is given by

1-min (1, 2-x-y) = max (0, x+y-1).

The justification of our definition in the case where 5 8  x  3 4
and 1 4  y  3 8 is similar, as is the justification when 5 8  X  3
and 5 8  y  3 4. In all the remaining cases the formula

B’ B’L’JPJQL’JPJNQL’JNPJQ
takes the truth-value 0 and the formula LPQ, defined as above,
takes the same truth-value as L’ PQ, i.e. its truth-value is equal
to the value of max (0, x+y-1). Thus our definition of L is

justified and the corresponding justification for C is trivial.

( Oblatum 3-1-’68) The University, Nottingham
England


