## Compositio Mathematica

## Alan Rose

# Binary generators for the $m$-valued and $\aleph_{0}$-valued Lukasiewicz propositional calculi 

Compositio Mathematica, tome 20 (1968), p. 153-169
[http://www.numdam.org/item?id=CM_1968__20__153_0](http://www.numdam.org/item?id=CM_1968__20__153_0)
© Foundation Compositio Mathematica, 1968, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numbam

# Binary generators for the m-valued and $\aleph_{0}$-valued Łukasiewicz propositional calculi 

Dedicated to A. Heyting on the occasion of his 70 ${ }^{\text {th }}$ birthday

by

Alan Rose

It has been shown ${ }^{1}$ that, if $m-1$ is not divisible by 3 , the implication and negation functors of Łukasiewicz ${ }^{2}$ are denoted by $C, N$ respectively and

$$
S P Q={ }_{T} C P N Q\left(=_{T} S Q P\right)
$$

then, in the $m$-valued propositional calculus with $S$ as the only primitive functor, the functors $C$ and $N$ are definable. The result fails whenever $m-1$ is divisible by 3 , though functors of more than two arguments having properties similar to those of $S$ and truth-tables constructed in a similar manner have been considered ${ }^{3}$. In order to establish the failure we have only to note that if, in general, we denote the truth-values by the rational numbers $i /(m-1)(i=0, \cdots, m-1)$ then, in the case considered, $\frac{2}{3}$ is a truth-value and, if $P, Q$ both take the truth-value $\frac{2}{3}$, so does $S P Q$. A non-commutative solution to the binary generator problem was given earlier, for all $m\left(m<\boldsymbol{\aleph}_{0}\right)$ by McKinsey ${ }^{4}$.

We shall now, in the case where $m-1$ is divisible by 3 , consider the binary functor $F$ whose truth-table is such that

$$
F P Q={ }_{T} S P Q
$$

[^0]except when $P$ takes the truth-value $\frac{2}{3}$ and $Q$ takes one of the truth-values $\frac{1}{3}, \frac{2}{3}$. In both the latter cases we assign to $F P Q$ the truth-value 0 . We shall then consider a commutative functor closely related to $F$.

Theorem 1. In the m-valued propositional calculus with $F$ as the only primitive functor we may define $C$ and $N$ and, in the m-valued Łukasiewicz propositional calculus, we may define $F$ ( $m=4,7, \cdots$ ).

Since the truth-value of $F P Q$ is equal to 0 whenever it differs from that of $S P Q$ it follows at once from a theorem of McNaughton ${ }^{5}$ that we may define $F$ in terms of $C$ and $N$.

Let the truth-tables ${ }^{6}$ of the functors $J_{i}$ be such that $J_{i} P$ takes the truth-value 1 when $P$ takes the truth-value $i$ and $J_{i} P$ takes the truth-value 0 in all other cases $\left(i=\frac{1}{3}, \frac{2}{3}\right)$. Let $V$ be a functor such that $V P$ always takes the truth-value 1 and $B, L$ be functors ${ }^{7}$ such that if $P, Q, B P Q, L P Q$ take the truth-values $x, y$, $b(x, y), l(x, y)$ respectively then

$$
b(x, y)=\min (1, x+y), l(x, y)=\max (0, x+y-1)
$$

Let $B^{\prime}, L^{\prime}$ be functors such that if $P, Q, B^{\prime} P Q, L^{\prime} P Q$ take the truth-values $x, y, b^{\prime}(x, y), l^{\prime}(x, y)$ respectively then

$$
b^{\prime}\left(\frac{1}{3}, \frac{1}{3}\right)=b^{\prime}\left(\frac{1}{3}, \frac{2}{3}\right)=0, l^{\prime}\left(\frac{2}{3}, \frac{1}{3}\right)=l^{\prime}\left(\frac{2}{3}, \frac{2}{3}\right)=1
$$

and, in all other cases,

$$
b^{\prime}(x, y)=b(x, y), l^{\prime}(x, y)=l(x, y)
$$

We shall consider now ${ }^{8}$ the following definitions:

$$
\begin{aligned}
& D P={ }_{d f} F F P P F P P, \\
& V P={ }_{d f} F D^{m-2} P F D^{m-2} P D^{m-2} P
\end{aligned}
$$

( $D^{m-2}$ denoting $m-2$ symbols $D$ ),

[^1]\[

$$
\begin{gathered}
N P={ }_{d f} F V P P, L^{\prime} P Q={ }_{d f} N F P Q, B^{\prime} P Q={ }_{d f} F N P N Q \\
J_{\frac{2}{3}} P={ }_{d f} N F P N P, J_{\frac{1}{3}} P={ }_{d f} N F N P P, \\
L P Q={ }_{d f} L^{\prime} L^{\prime} L^{\prime} P Q N L^{\prime} L^{\prime} J_{\frac{2}{3}} P J_{\frac{2}{3}} Q Q N L^{\prime} J_{\frac{2}{3}} P J_{\frac{1}{3}} Q \\
C P Q={ }_{d f} N L P N Q .
\end{gathered}
$$
\]

Since, if $P, Q, F P Q$ take the truth-values $x, y, f(x, y)$ respectively,

$$
f\left(\frac{2}{3}, \frac{1}{3}\right)=f\left(\frac{2}{3}, \frac{2}{3}\right)=0
$$

and, in all other cases,

$$
f(x, y)=\min (1,2-x-y)
$$

it follows at once that, if $x \neq \frac{2}{3}$,

$$
\begin{aligned}
f(f(x, x), f(x, x)) & =\min (1,2-2 \min (1,2-2 x)) \\
& =\min (1, \max (0,4 x-2))
\end{aligned}
$$

and that

$$
f\left(f\left(\frac{2}{3}, \frac{2}{3}\right), f\left(\frac{2}{3}, \frac{2}{3}\right)\right)=f(0,0)=1 .
$$

If $D^{i} P$ takes the truth-value $d_{i}(x)$ when $P$ takes the truth-value $x(i=0,1, \cdots)$ it follows at once that

$$
d_{1}\left(\frac{2}{3}\right)=1, d_{1}(x)=\min (1, \max (0,4 x-2))\left(x \neq \frac{2}{3}\right) .
$$

Since

$$
d_{1}(0)=0
$$

and

$$
d_{1}(1)=1
$$

we deduce that

$$
d_{i}\left(\frac{2}{3}\right) \in\{0,1\} \quad(i=1,2, \cdots)
$$

and that, for all truth-values $x$, if

$$
d_{i}(x) \in\{0,1\}
$$

then

$$
d_{i+1}(x) \in\{0,1\} \quad(i=0,1, \cdots)
$$

Since, when $x \neq \frac{2}{3}$,

$$
d_{1}(x)=\min (1, \max (0,4 x-2))
$$

it follows at once that, unless $d_{i}(x) \in\{0,1\}$,

$$
d_{i+1}(x)>d_{i}(x) \quad \text { or } \quad d_{i+1}(x)<d_{i}(x)
$$

according as

$$
x>\frac{2}{3} \quad \text { or } \quad x<\frac{2}{3} \quad(i=0,1, \cdots)
$$

Hence, if $x>\frac{2}{3}$, it follows, using (A), that either

$$
d_{m-3}(x) \in\{0,1\}
$$

or

$$
d_{m-2}(x)>\frac{2}{3}+(m-2) /(m-1)>1
$$

It follows at once that

$$
d_{m-3}(x) \in\{0,1\}
$$

and hence, by (A), that

$$
d_{m-2}(x) \in\{0,1\}
$$

If $x<\frac{2}{3}$ then, by a similar argument, either

$$
d_{m-3}(x) \in\{0,1\}
$$

or

$$
d_{m-2}(x)<\frac{2}{3}-(m-2) /(m-1) \leqq 0
$$

In the first case it follows from (A) that

$$
d_{m-2}(x) \in\{0,1\}
$$

and, in the second case, we have again a contradiction.
Since we have already established that

$$
d_{i}\left(\frac{2}{3}\right) \in\{0,1\} \quad(i=1,2, \cdots)
$$

it follows at once that, for all truth-values $x$,

$$
d_{m-2}(x) \in\{0,1\}
$$

Since

$$
f(1,1)=0, f(0,0)=1
$$

it then follows immediately that the truth-value of the formula

$$
F D^{m-2} P D^{m-2} P
$$

is 1 or 0 according as that of $D^{m-2} P$ is 0 or 1 . Hence, since

$$
f(0,1)=f(1,0)=1
$$

our definition of the functor $V$ is appropriate. Since, for all truth-values $x$,

$$
f(1, x)=1-x
$$

our definition of the functor $N$ is appropriate.
We note next that, unless

$$
\begin{aligned}
& x=\frac{2}{3} \text { and } \quad y \in\left\{\frac{1}{3}, \frac{2}{3}\right\} \\
& \begin{aligned}
1-f(x, y) & =1-\min (1,2-x-y) \\
& =\max (0, x+y-1)
\end{aligned}
\end{aligned}
$$

and that

$$
1-f\left(\frac{2}{3}, \frac{1}{3}\right)=1-f\left(\frac{2}{3}, \frac{2}{3}\right)=1-0=1
$$

Thus our definition of the functor $L^{\prime}$ is appropriate.
Except when $x=\frac{1}{3}$ and $y \in\left\{\frac{1}{3}, \frac{2}{3}\right\}$,

$$
1-x \neq \frac{2}{3} \quad \text { or } \quad 1-y \notin\left\{\frac{1}{3}, \frac{2}{3}\right\}
$$

and it follows at once that

$$
\begin{aligned}
f(1-x, 1-y) & =\min (1,2-(1-x)-(1-y)) \\
& =\min (1, x+y)
\end{aligned}
$$

Since, further,

$$
f\left(1-\frac{1}{3}, 1-\frac{1}{3}\right)=f\left(\frac{2}{3}, \frac{2}{3}\right)=0
$$

and

$$
f\left(1-\frac{1}{3}, 1-\frac{2}{3}\right)=f\left(\frac{2}{3}, \frac{1}{3}\right)=0
$$

our definition of the functor $B^{\prime}$ is appropriate.

$$
\text { If } \quad \begin{aligned}
& x \neq \frac{2}{3}, \\
& 1-f(x, 1-x)=1-\min (1,2-x-(1-x)) \\
&=1-\min (1,1) \\
&=0 .
\end{aligned}
$$

But

$$
\begin{aligned}
1-f\left(\frac{2}{3}, 1-\frac{2}{3}\right) & =1-f\left(\frac{2}{3}, \frac{1}{3}\right) \\
& =1-0 \\
& =1
\end{aligned}
$$

Thus our definition of the functor $J_{\frac{2}{3}}$ is justified. Since

$$
N F N P P={ }_{T} N F N P N N P
$$

it follows, by definition, that

$$
N F N P P={ }_{T} J_{\frac{2}{3}} N P
$$

Hence $N F N P P$ takes the truth-value 1 or the truth-value 0 according as $N P$ does or does not take the truth-value $\frac{2}{3}$, i.e. according as $P$ does or does not take the truth-value $\frac{1}{3}$. Thus our definition of the functor $J_{\frac{1}{3}}$ is justified.

In order to justify our definition of the functor $L$ we note first that, for all truth-values $x$,

$$
l^{\prime}(0, x)=0, l^{\prime}(1, x)=x
$$

Hence the formula

$$
N L^{\prime} L^{\prime} J_{\frac{2}{3}} P J_{\frac{2}{3}} Q Q
$$

takes the truth-value $\frac{1}{3}$ when $P, Q$ both take the truth-value $\frac{2}{3}$ and, in all other cases, it takes the truth-value 1. For the same reasons the formula

$$
N L^{\prime} J_{\frac{2}{3}} P J_{\frac{1}{3}} Q
$$

takes the truth-value 0 when $P, Q$ take the truth-values $\frac{2}{3}, \frac{1}{3}$ respectively and, in all other cases, it takes the truth-value 1.

Unless $P$ takes the truth-value $\frac{2}{3}$ and $Q$ takes one of the truthvalues $\frac{1}{3}, \frac{2}{3}$, the truth-values of the formulae

$$
L^{\prime} P Q, N L^{\prime} L^{\prime} J_{\frac{2}{3}} P J_{\frac{2}{3}} Q Q, N L^{\prime} J_{\frac{2}{3}} P J_{\frac{1}{3}} Q
$$

are equal to $l(x, y), 1,1$ respectively. Since, for all truth-values $x$,

$$
l^{\prime}(x, \mathbf{1})=x
$$

it follows at once that the truth-value of the formula

$$
\begin{equation*}
L^{\prime} L^{\prime} L^{\prime} P Q N L^{\prime} L^{\prime} J_{\frac{2}{3}} P J_{\frac{2}{3}} Q Q N L^{\prime} J_{\frac{2}{3}} P J_{\frac{1}{3}} Q \tag{1}
\end{equation*}
$$

is equal to $l(x, y)$. If $P, Q$ both take the truth-value $\frac{2}{3}$ then $L^{\prime} P Q, N L^{\prime} L^{\prime} J_{\frac{2}{3}} P J_{\frac{2}{3}} Q Q, N L^{\prime} J_{\frac{2}{3}} P J_{\frac{1}{3}} Q$ take the truth-values $1, \frac{1}{3}$, 1 respectively and, since

$$
l^{\prime}\left(1, \frac{1}{3}\right)=l^{\prime}\left(\frac{1}{3}, 1\right)=\frac{1}{3}
$$

the formula (1) takes the truth-value $\frac{1}{3}$. If $P, Q$ take the truthvalues $\frac{2}{3}, \frac{1}{3}$ respectively then $N L^{\prime} J_{\frac{2}{3}} P J_{\frac{1}{3}} Q$ takes the truth-value 0 and since, for all truth-values $x$,

$$
l^{\prime}(x, 0)=\mathbf{0}
$$

the formula (1) takes the truth-value 0 . Thus our definition of the functor $L$ is justified. Finally, since

$$
\begin{aligned}
1-l(x, 1-y) & =1-\max (0, x+1-y-1) \\
& =1-\max (0, x-y) \\
& =\min (1,1-x+y)
\end{aligned}
$$

our definition of the functor $C$ is justified.
Thus Theorem 1 is proved. The solution to the problem provided thereby is not a commutative functor since

$$
f\left(\frac{2}{3}, \frac{1}{3}\right)=0, f\left(\frac{1}{3}, \frac{2}{3}\right)=1
$$

although, in all other cases,

$$
f(x, y)=f(y, x)
$$

It is not difficult, however, to obtain a commutative solution as a
corollary of Theorem 1. Let $G$ be a binary functor such that, if $P, Q, G P Q$ take the truth-values $x, y, g(x, y)$ respectively then

$$
g\left(\frac{1}{3}, \frac{2}{3}\right)=0
$$

and, in all other cases,

$$
g(x, y)=f(x, y)
$$

Thus

$$
G P Q={ }_{\boldsymbol{T}} G Q P
$$

Theorem 2. In the m-valued propositional calculus with $G$ as the only primitive functor we may define $C$ and $N$ and, in the m-valued Łukasiewicz propositional calculus, we may define $G(m=4,7, \cdots)$.

Since $g(x, y)=0$ in the only case where $g(x, y) \neq f(x, y)$, it follows at once from the theorem of McNaughton referred to above ${ }^{9}$ that we may define $G$ in terms of $C$ and $N$. In order to define $C$ and $N$ in terms of $G$ we note first that, by arguments strictly analogous to those given in the proof of Theorem 1, we make the definitions
$D P={ }_{d f} G G P P G P P, V P={ }_{d f} G D^{m-2} P G D^{m-2} P D^{m-2} P$,

$$
N P={ }_{d f} G V P P
$$

Similarly, if we make the definitions

$$
L^{\prime \prime} P Q={ }_{a f} N G P Q, B^{\prime \prime} P Q={ }_{d f} G N P N Q
$$

the formula $L^{\prime \prime} P Q$ will take the truth-value 1 when $P, Q$ take the truth-values $\frac{1}{3}, \frac{2}{3}$ respectively, the formula $B^{\prime \prime} P Q$ will take the truth-value 0 when $P, Q$ take the truth-values $\frac{2}{3}, \frac{1}{3}$ respectively and, in all other cases,

$$
L^{\prime \prime} P Q={ }_{\boldsymbol{T}} L^{\prime} P Q, B^{\prime \prime} P Q={ }_{\boldsymbol{T}} B^{\prime} P Q
$$

We consider next the definitions

$$
\begin{aligned}
H P={ }_{d f} L^{\prime \prime} P P, M P={ }_{d f} N G P N P, J_{\frac{2}{3}} P={ }_{d f} L^{\prime \prime} H P M P \\
J_{\frac{1}{3}} P={ }_{d f} J_{\frac{2}{3}} N P, F P Q={ }_{d f} B^{\prime \prime} G P Q L^{\prime \prime} J_{\frac{1}{3}} P J_{\frac{2}{3}} Q .
\end{aligned}
$$

We note first that if $P, Q, L^{\prime \prime} P Q$ take the truth-values $x, y$, $t^{\prime \prime}(x, y)$ respectively then

$$
l^{\prime \prime}(1,1)=1
$$

and, for all truth-values $x$,

$$
l^{\prime \prime}(0, x)=l^{\prime \prime}(x, 0)=0
$$

[^2]If $P$ takes the truth-value $\frac{2}{3}$ then $H P, M P$ both take the truthvalue 1, as does $L^{\prime \prime} H P M P$. If $P$ takes the truth-value $\frac{1}{3}$ then $H P$ takes the truth-value 0 , as does $L^{\prime \prime} H P M P$. If $P$ takes a truth-value other than $\frac{1}{3}$ or $\frac{2}{3}$ then $M P$ takes the truth-value 0 , as does $L^{\prime \prime} H P M P$. Thus our definition of the functor $J_{\frac{2}{3}}$ is justified. Since $N P$ takes the truth-value $\frac{2}{3}$ if and only if $P$ takes the truth-value $\frac{1}{3}$, our definition of the functor $J_{\frac{1}{3}}$ is justified.

In order to justify our last definition we note first that if $P$, $Q, B^{\prime \prime} P Q$ take the truth-values $x, y, b^{\prime \prime}(x, y)$ respectively then

$$
b^{\prime \prime}(0,1)=1
$$

and, for all truth-values $x$,

$$
b^{\prime \prime}(x, 0)=x
$$

If $P, Q$ take the truth-values $\frac{1}{3}, \frac{2}{3}$ respectively then the formula

$$
L^{\prime \prime} J_{\frac{1}{8}} P J_{\frac{2}{3}} Q
$$

takes the truth-value 1, as does the formula

$$
B^{\prime \prime} G P Q L^{\prime \prime} J_{\frac{1}{3}} P J_{\frac{2}{3}} Q
$$

In all other cases the formula

$$
L^{\prime \prime} J_{\frac{1}{3}} P J_{\frac{2}{3}} Q
$$

takes the truth-value 0 and

$$
B^{\prime \prime} G P Q L^{\prime \prime} J_{\frac{1}{3}} P J \quad Q={ }_{\boldsymbol{r}} G P Q
$$

Thus our definition of the functor $F$ is justified. Since $F$ is definable in terms of $G$ it follows at once from Theorem 1 that $C$ and $N$ are definable in terms of $G$.

It has been shown ${ }^{10}$ that, in the $\boldsymbol{\aleph}_{0}{ }_{0}$-valued case, there are no solutions, but that, if a certain third primitive functor is adjoined to those of Łukasiewicz ${ }^{11}$, a quaternary generator exists. We shall show now that another extension of the Lukasiewicz system possesses a binary generator and, in Theorem 4, that the resulting system is less extensive than that of the previous paper. Let us consider the functors $J, F$ of the $\aleph_{0}$-valued propositional calculus such that if $P, Q, J P, F P Q$ take the truth-values $x, y, j(x), f(x, y)$ respectively then

[^3]\[

$$
\begin{aligned}
j(x) & =1\left(\frac{5}{8}<x<\frac{3}{4}\right), \\
f(x, y) & =x+y-1\left(\frac{5}{8}<x<\frac{3}{4}, \frac{5}{8}<y<\frac{3}{4}\right), \\
f(x, y) & =0\left(\frac{5}{8}<x<\frac{3}{4}, \frac{1}{4}<y<\frac{3}{8}\right)
\end{aligned}
$$
\]

and, in all other cases,

$$
j(x)=0, f(x, y)=\min (1,2-x-y)
$$

Theorem 3. In the $\mathbb{N}_{0}$-valued propositional calculus we may define $F$ in terms of $C, N$ and $J$ and we may define $C, N$ and $J$ in terms of $F$.

In the system obtained from that of Lukasiewicz by taking $J$ as a third primitive functor let us consider the definition

$$
F P Q={ }_{d f} L L N L L S P Q J P J Q B S P Q L J P J Q B N J P N J N Q,
$$

where

$$
S P Q={ }_{d f} C P N Q, L P Q={ }_{d f} N C P N Q, B P Q={ }_{d f} C N P Q
$$

Let us denote the truth-values of $P, Q$ by $x, y$ respectively.
If $\frac{5}{8}<x<\frac{3}{4}$ and $\frac{5}{8}<y<\frac{3}{4}$ then

$$
j(x)=j(y)=1
$$

and

$$
N L L S P Q J P J Q=_{\boldsymbol{T}} N S P Q
$$

Since

$$
j(x)=j(y)=1
$$

it follows also that the formula

$$
B S P Q L J P J Q
$$

takes the truth-value 1. Hence
$L N L L S P Q J P J Q B S P Q L J P J Q={ }_{T} N S P Q$.
Since $\frac{5}{8}<y<\frac{3}{4}$ it follows at once that

$$
\frac{1}{4}<1-y<\frac{3}{8}
$$

and $J N Q$ takes the truth-value 0 . Hence the formula

$$
B N J P N J N Q
$$

takes the truth-value 1 and
$L L N L L S P Q J P J Q B S P Q L J P J Q B N J P N J N Q=_{T} N S P Q$.
Thus the formula $L L N L L S P Q J P J Q B S P Q L J P J Q B N J P N J N Q$ takes the truth-value

$$
\begin{aligned}
1-\min (1,2-x-y) & =1-(2-x-y) \\
& =x+y-1
\end{aligned}
$$

If $\frac{5}{8}<x<\frac{3}{4}$ and $\frac{1}{4}<y<\frac{3}{8}$ then $\frac{5}{8}<1-y<\frac{3}{4}$ and the formulae $J P, J N Q$ both take the truth-value 1 . Hence the formula

$$
B N J P N J N Q
$$

takes the truth-value 0 as does the formula
$L L N L L S P Q J P J Q B S P Q L J P J Q B N J P N J N Q$.
In all other cases $J P$ takes the truth-value 0 or $J Q, J N Q$ both take the truth-value $\mathbf{0}$. Hence the formulae

$$
N L L S P Q J P J Q, B N J P N J N Q, L J P J Q
$$

take the truth-values $1,1,0$ respectively and LLNLLSPQJPJQBSPQLJPJQBNJPNJNQ

$$
={ }_{T} B S P Q L J P J Q={ }_{T} S P Q
$$

Thus the formula $L L N L L S P Q J P J Q B S P Q L J P J Q B N J P N J N Q$ always takes the truth-value $f(x, y)$ and our definition of the functor $F$ is justified.

In the system with $F$ as the only primitive functor let us consider the definitions
$D P={ }_{d f} F F P P F P P, V P={ }_{d f} F D D P F D D P D D P$, $N P={ }_{d j} F V P P$,
$J^{*} P={ }_{d f} F P N P, J P={ }_{d f} N J^{*} P, L^{\prime} P Q={ }_{d f} N F P Q$, $B^{\prime} P Q={ }_{a f} F N P N Q$,
$L P Q={ }_{d f} L^{\prime} L^{\prime} N L^{\prime} L^{\prime} L^{\prime} P Q J P J Q B^{\prime} L^{\prime} P Q L^{\prime} J P J Q B^{\prime} B^{\prime} L^{\prime} Q P J^{*}$ $P J^{*} N Q$, $C P Q={ }_{a f} N L P N Q$.

Let us again denote the truth-values of $P, Q$ by $x, y$ respectively. If $x \leqq \frac{1}{2}$ then

$$
\begin{aligned}
f(f(x, x), f(x, x)) & =f(1,1) \\
& =\mathbf{0}
\end{aligned}
$$

If $\frac{1}{2}<x \leqq \frac{5}{8}$ then

$$
\begin{aligned}
f(f(x, x), f(x, x)) & =f(2-2 x, 2-2 x) \\
& =\left(\text { since } 2-2 x \geqq \frac{3}{4}\right) 4 x-2 .
\end{aligned}
$$

If $\frac{5}{8}<x<\frac{3}{4}$ then

$$
\begin{aligned}
f(f(x, x), f(x, x)) & =f(2 x-1,2 x-1) \\
& =\left(\text { since } 2 x-1<\frac{1}{2}\right) 1
\end{aligned}
$$

If $x \geqq \frac{3}{4}$ then

$$
\begin{aligned}
f(f(x, x), f(x, x)) & =f(2-2 x, 2-2 x) \\
& =\left(\text { since } 2-2 x \leqq \frac{1}{2}\right) 1
\end{aligned}
$$

Thus, if $D P$ (defined as in the previous paragraph) takes the truth-value $d(x)$,

$$
\begin{aligned}
& d(x)=0\left(x \leqq \frac{1}{2}\right) \\
& d(x)=4 x-2\left(\frac{1}{2}<x \leqq \frac{5}{8}\right) \\
& d(x)=1\left(x>\frac{5}{8}\right)
\end{aligned}
$$

Since

$$
4 x-2 \leqq \frac{1}{2}\left(\frac{1}{2}<x \leqq \frac{5}{8}\right)
$$

it follows that, for all truth-values $x$,

$$
d(d(x)) \in\{0,1\} .
$$

Hence our definition of $N$ may be justified exactly as in the proof of Theorem 1.

Since $\frac{1}{4}<1-x<\frac{3}{8}$ whenever $\frac{5}{8}<x<\frac{3}{4}$,

$$
f(x, 1-x)=0\left(\frac{5}{8}<x<\frac{3}{4}\right) .
$$

In all other cases

$$
\begin{aligned}
f(x, 1-x) & =\min (1,2-x-(1-x)) \\
& =1
\end{aligned}
$$

Since $1-1=0$ and $1-0=1$, our definition of the functor $J$ is justified.

Let $L P Q, B P Q$, as defined in terms of $C$ and $N$, take the truthvalues $l(x, y), b(x, y)$ respectively.

If $L^{\prime} P Q, B^{\prime} P Q$ take the truth-values $l^{\prime}(x, y), b^{\prime}(x, y)$ respectively when defined by the method now under consideration then, if $\frac{5}{8}<x<\frac{3}{4}$ and $\frac{5}{8}<y<\frac{3}{4}$,

$$
\begin{aligned}
l^{\prime}(x, y) & =1-f(x, y) \\
& =1-(x+y-1) \\
& =2-x-y .
\end{aligned}
$$

If $\frac{5}{8}<x<\frac{3}{4}$ and $\frac{1}{4}<y<\frac{3}{8}$ then

$$
\begin{aligned}
l^{\prime}(x, y) & =1-0 \\
& =1
\end{aligned}
$$

and, in all other cases,

$$
\begin{aligned}
l^{\prime}(x, y) & =1-\min (1,2-x-y) \\
& =\max (0, x+y-1) \\
& =l(x, y)
\end{aligned}
$$

If $\frac{1}{4}<x<\frac{3}{8}$ and $\frac{1}{4}<y<\frac{3}{8}$ then $\frac{5}{8}<1-x<\frac{3}{4}$ and $\frac{5}{8}<1-y<\frac{3}{4}$. Hence

$$
\begin{aligned}
b^{\prime}(x, y) & =1-x+1-y-1 \\
& =1-x-y .
\end{aligned}
$$

If $\frac{1}{4}<x<\frac{3}{8}$ and $\frac{5}{8}<y<\frac{3}{4}$ then $\frac{5}{8}<1-x<\frac{3}{4}$ and $\frac{1}{4}<1-y<\frac{3}{8}$. Hence

$$
b^{\prime}(x, y)=0
$$

In all other cases

$$
\begin{aligned}
b^{\prime}(x, y) & =\min (1,2-(1-x)-(1-y)) \\
& =\min (1, x+y) \\
& =b(x, y)
\end{aligned}
$$

It now follows at once that, for all truth-values $x$,
$l^{\prime}(0, x)=l^{\prime}(x, 0)=0, l^{\prime}(1, x)=l^{\prime}(x, 1)=b^{\prime}(0, x)=b^{\prime}(x, 0)=x$, $b^{\prime}(1, x)=b^{\prime}(x, 1)=1$.

If $\frac{5}{8}<x<\frac{3}{4}$ and $\frac{5}{8}<y<\frac{3}{4}$ the formulae $J P, J Q$ both take the truth-value 1. Hence the formula

$$
N L^{\prime} L^{\prime} L^{\prime} P Q J P J Q
$$

takes the truth-value

$$
\begin{aligned}
1-l^{\prime}(x, y) & =1-(2-x-y) \\
& =x+y-1 \\
& =(\text { since } x+y-1>0) l(x, y)
\end{aligned}
$$

Since $J P, J Q$ both take the truth-value 1 the formula
takes the truth-value 1 also. Since $\frac{1}{4}<1-y<\frac{3}{8}$ the formula $J^{*} N Q$ takes the truth-value 1 as does the formula

$$
B^{\prime} B^{\prime} L^{\prime} Q P J^{*} P J^{*} N Q .
$$

Since the formulae
$N L^{\prime} L^{\prime} L^{\prime} P Q J P J Q, B^{\prime} L^{\prime} P Q L^{\prime} J P J Q, B^{\prime} B^{\prime} L^{\prime} Q P J^{*} P J^{*} N Q$
take the truth-values $l(x, y), 1,1$ respectively it follows at once that the formula
$L^{\prime} L^{\prime} N L^{\prime} L^{\prime} L^{\prime} P Q J P J Q B^{\prime} L^{\prime} P Q L^{\prime} J P J Q B^{\prime} B^{\prime} L^{\prime} Q P J^{*} P J^{*} N Q$
takes the truth-value $l(x, y)$. If $\frac{5}{8}<x<\frac{3}{4}$ and $\frac{1}{4}<y<\frac{3}{8}$ then $J P, J^{*} P, J Q, J^{*} N Q$ take the truth-values $1,0,0,0$ respectively. Hence the formulae
$N L^{\prime} L^{\prime} L^{\prime} P Q J P J Q, B^{\prime} L^{\prime} P Q L^{\prime} J P J Q, B^{\prime} B^{\prime} L^{\prime} Q P J^{*} P J^{*} N Q$
take the truth-values $1, l^{\prime}(x, y), l^{\prime}(y, x)$ respectively. But, in this case,

$$
l^{\prime}(x, y)=1
$$

and

$$
\begin{aligned}
l^{\prime}(y, x) & =l(y, x) \\
& =l(x, y)
\end{aligned}
$$

Hence the formula (B) takes the truth-value $l(x, y)$. In all other cases at least one of the formulae $J P, J Q$ takes the truth-value 0 and at least one of the formulae $J^{*} P, J^{*} N Q$ takes the truth-value 1. Hence the formulae $N L^{\prime} L^{\prime} L^{\prime} P Q J P J Q, B^{\prime} L^{\prime} P Q L^{\prime} J P J Q$, $B^{\prime} B^{\prime} L^{\prime} Q P J^{*} P J^{*} N Q$ take the truth-values $1, l^{\prime}(x, y)$, 1 respectively. Since, in these cases,

$$
l^{\prime}(x, y)=l(x, y)
$$

the formula (B) takes the truth-value $l(x, y)$.
We have now established that, for all truth-values $x, y$, the formula (B) takes the truth-value $l(x, y)$. Thus our definition of the functor $L$ is justified and we may justify our definition of the functor $C$ as in the proof of Theorem 1.

Theorem 4. If EPQ takes the truth-value 1 when the truth-values of $P, Q$ are equal and it takes the truth-value 0 in all other cases then the functor $J$ is definable in terms of $C, N$ and $E$ but the functor $E$ is not definable in terms of $C, N$ and $J$.

Let

$$
\begin{aligned}
& \phi(x)=\min (1,11-16 x)\left(0 \leqq x \leqq \frac{11}{16}\right) \\
& \phi(x)=\min (1,16 x-11)\left(\frac{11}{16}<x \leqq 1\right)
\end{aligned}
$$

It follows at once from a theorem of McNaughton ${ }^{12}$ that, in terms of $C$ and $N$, we may define a functor $J^{\prime}$ such that, if $P$ takes the truth-value $x$, then $J^{\prime} P$ takes the truth-value $\phi(x)$. We may then, in the system with $C, N$ and $E$ as primitive functors, make the definition

$$
J P={ }_{d f} N E J^{\prime} P E P P
$$

In the system with $C, N$ and $J$ as primitive functors it follows easily, by strong induction on the number of (not necessarily distinct) symbols occurring in $P$ that, if $P$ contains no propositional variables other than $p$ and $p, P$ take the truth-values $x, y(=y(x))$ respectively, then there exist a positive number $\varepsilon(=\varepsilon(P))$ and an integer $n(=n(P))$ such that, whenever $x<\varepsilon$,

$$
y(x)-y(0)=n x
$$

Clearly no positive number $\varepsilon$ and integer $n$ correspond to the formula $E p N E p p$. Hence $E$ cannot be defined in terms of $C$, $N$ and $J$.

By a similar argument it can be shown that the $\boldsymbol{\aleph}_{0}$-valued generalisation of $E_{n-2}$ (in terms of which $C, N$ and $J$ can obviously be defined) cannot be defined in terms of $C, N$ and $J$.

Added in proof.
The $\boldsymbol{\aleph}_{0}$-valued propositional calculus considered in Theorem $\mathbf{3}$ may be generated by another binary functor. The generalised truth-table of this functor is constructed by a slightly more complicated rule, but the new table is commutative. Let us consider the functor $G$ such that if $P, Q, G P Q$ take the truth-values $x, y, g(x, y)$ respectively then

$$
\begin{aligned}
& g(x, y)=g(y, x)=\max (0, x+y-1)\left(\frac{1}{4}<x<\frac{3}{8}, \frac{5}{8}<y<\frac{3}{4}\right) \\
& g(x, y)=x+y-1\left(\frac{5}{8}<x<\frac{3}{4}, \frac{5}{8}<y<\frac{3}{4}\right)
\end{aligned}
$$

and, in all other cases,

$$
g(x, y)=\min (1,2-x-y)
$$

Theorem 5. The functor $G$ is commutative and may be defined in

[^4]terms of the functors $C, N$ and $J$ and the functors $C, N$ and $J$ may be defined in terms of $G$.

It follows at once from the definition of the function $g($, that

$$
G P Q={ }_{\boldsymbol{T}} G Q P
$$

In the propositional calculus with $C, N$ and $J$ as primitives we may make the definition

$$
\begin{array}{r}
G P Q={ }_{d f} B L L P Q B B L J P J Q L J P J N Q L J N P J Q L S P Q N \\
B B L J P J Q L J P J N Q L J N P J Q,
\end{array}
$$

the functors $L, B, S$ being defined as in the first part of the proof of Theorem 3. Let $P, Q$ take the truth-values $x, y$ respectively.

If $\frac{1}{4}<x<\frac{3}{8}$ and $\frac{5}{8}<y<\frac{3}{4}$ then the formula $L J N P J Q$ takes the truth-value 1 as does the formula

$$
B B L J P J Q L J P J N Q L J N P J Q
$$

For similar reasons the latter formula takes the truth-value 1 if $\frac{5}{8}<x<\frac{3}{4}$ and $\frac{1}{4}<y<\frac{3}{8}$ and also if $\frac{5}{8}<x<\frac{3}{4}$ and $\frac{5}{8}<y<\frac{3}{4}$. Thus, in all three cases, the formula

$$
L L P Q B B L J P J Q L J P J N Q L J N P J Q
$$

takes the same truth-value as $L P Q$, i.e. its truth-value is equal to the value of $g(x, y)$. Since, in these three cases, the formula
NBBLJPJQLJPJNQLJNPJQ
takes the truth-value 0 it follows easily that the formula $G P Q$, defined as above, takes the truth-value equal to the value of $g(x, y)$.

In all the remaining cases the formulae

$$
L J P J Q, L J P J N Q, L J N P J Q
$$

all take the truth-value 0 . Thus the formula

$$
B B L J P J Q L J P J N Q L J N P J Q
$$

and its negation take the truth-values 0,1 respectively and the formula $G P Q$, defined as above, takes the same truth-value as the formula $S P Q$, i.e. its truth-value is equal to the value of $g(x, y)$.

In the propositional calculus with $G$ as the only primitive functor let us consider the definitions

$$
\begin{aligned}
D P & ={ }_{d f} G G P P G P P, \\
V P & ={ }_{d f} G D D P G D D P D D P, \\
N P & ={ }_{d f} G V P P, \\
L^{\prime} P Q & ={ }_{d f} N G P Q, \\
B^{\prime} P Q & ={ }_{d f} G N P N Q, \\
J P & ={ }_{d f} L^{\prime} D D P N G P N P, \\
L P Q & ={ }_{d f} L^{\prime} N L^{\prime} L^{\prime} P Q B^{\prime} B^{\prime} L^{\prime} J P J Q L^{\prime} J P J N Q L^{\prime} J N P J Q B^{\prime} L^{\prime} \\
C P Q & ={ }_{d f} N L P N Q . \quad P Q B^{\prime} B^{\prime} L^{\prime} J P J Q L^{\prime} J P J N Q L^{\prime} J N P J Q,
\end{aligned}
$$

Our definitions of the functors $D, V, N$ may be justified exactly as in the proof of Theorem 3, if these functors are regarded as having the same generalised truth-tables now as then. If the formula ${ }^{13} L^{\prime} P Q$ takes the truth-value $l^{\prime}(x, y)$ when $P, Q$ take the truth-values $x, y$ respectively then

$$
l^{\prime}(x, y)=1-g(x, y)
$$

Thus

$$
\begin{aligned}
& l^{\prime}(x, y)=l^{\prime}(y, x)=\min (1,2-x-y)\left(\frac{1}{4}<x<\frac{3}{8}, \frac{5}{8}<y<\frac{3}{4}\right) \\
& l^{\prime}(x, y)=2-x-y\left(\frac{5}{8}<x<\frac{3}{4}, \frac{5}{8}<y<\frac{3}{4}\right)
\end{aligned}
$$

and, in all other cases,

$$
l^{\prime}(x, y)=\max (0, x+y-1)
$$

If $B^{\prime} P Q$ takes the truth-value $b^{\prime}(x, y)$ when $P, Q$ take the truthvalues $x, y$ respectively then

$$
b^{\prime}(x, y)=g(1-x, 1-y)
$$

Hence

$$
\begin{aligned}
& b^{\prime}(x, y)=b^{\prime}(y, x)=\max (0,1-x-y)\left(\frac{1}{4}<x<\frac{3}{8}, \frac{5}{8}<y<\frac{3}{4}\right) \\
& b^{\prime}(x, y)=1-x-y\left(\frac{1}{4}<x<\frac{3}{8}, \frac{1}{4}<y<\frac{3}{8}\right)
\end{aligned}
$$

and, in all other cases,

$$
b^{\prime}(x, y)=\min (1, x+y)
$$

Hence

$$
\begin{aligned}
& l^{\prime}(0, x)=l^{\prime}(x, 0)=0, b^{\prime}(1, x)=b^{\prime}(x, 1)=1 \\
& l^{\prime}(\mathbf{1}, x)=l^{\prime}(x, 1)=b^{\prime}(0, x)=b^{\prime}(x, 0)=x
\end{aligned}
$$

${ }^{13}$ The generalised truth-tables of the functors defined above are the same as in previous cases, except for the functors $L^{\prime}, B^{\prime}$. The functions corresponding to the generalised truth-tables of these two functors will now be determined.

We shall make use of these latter eight equations without comment.

If $x \leqq \frac{5}{8}$ then $D D P$ takes the truth-value 0 as does the formula $L^{\prime} D D P N G P N P$. If $\frac{5}{8}<x<\frac{3}{4}$ then $D D P$ takes the truth-value 1 and $G P N P$ takes the truth-value equal to the value of

$$
g(x, 1-x)
$$

Since

$$
\begin{gathered}
\frac{1}{4}<1-x<\frac{3}{8} \\
g(x, 1-x)=\max (0, x+1-x-1)=0
\end{gathered}
$$

Thus the formulae $N G P N P, L^{\prime} D D P N G P N P$ take the truthvalue 1 . If $x \geqq \frac{3}{4}$ then

$$
g(x, 1-x)=\min (1,2-x-(1-x))=1
$$

Thus the formulae $N G P N P, L^{\prime} D D P N G P N P$ take the truth-value 0 and our definition of the functor $J$ is justified.

If $\frac{1}{4}<x<\frac{3}{8}$ and $\frac{5}{8}<y<\frac{3}{4}$ then the formula $L^{\prime} J N P J Q$ takes the truth-value 1 as does the formula

$$
B^{\prime} B^{\prime} L^{\prime} J P J Q L^{\prime} J P J N Q L^{\prime} J N P J Q
$$

Thus the formula $L P Q$, defined as above, takes the same truthvalue as the formula $N L^{\prime} P Q$, i.e. its truth-value is given by

$$
1-\min (1,2-x-y)=\max (0, x+y-1)
$$

The justification of our definition in the case where $\frac{5}{8}<x<\frac{3}{4}$ and $\frac{1}{4}<y<\frac{3}{8}$ is similar, as is the justification when $\frac{5}{8}<x<\frac{3}{4}$ and $\frac{5}{8}<y<\frac{3}{4}$. In all the remaining cases the formula

$$
B^{\prime} B^{\prime} L^{\prime} J P J Q L^{\prime} J P J N Q L^{\prime} J N P J Q
$$

takes the truth-value 0 and the formula $L P Q$, defined as above, takes the same truth-value as $L^{\prime} P Q$, i.e. its truth-value is equal to the value of $\max (0, x+y-1)$. Thus our definition of $L$ is justified and the corresponding justification for $C$ is trivial.


[^0]:    ${ }^{1}$ Alan Rose, "Some generalized Sheffer functions", Proc. Cambridge Phil. Soc., vol. 48 (1952), pp. 369-373, especially pp. 370-371.
    ${ }^{2}$ See, for example, J. B. Rosser and A. R. Turquette, Many-valued logics, Amsterdam 1952, pp. 15-18.
    ${ }^{3}$ See footnote 1.
    4 J. C. C. McKinsey, "On the generation of the functions $C p q$ and $N p$ of $Ł u k a s i e-$ wicz and Tarski by means of a single binary operation", Bull. Amer. Math. Soc., vol. 42 (1936), pp. 849-851. The author was not aware of the existence of this paper when the paper referred to in footnote 1 was published, but the functor $E_{n-2}$ considered by McKinsey was not, except in the 2 -valued case, any of the functors considered by the author in either paper.

[^1]:    ${ }^{5}$ Robert McNaughton, "A theorem about infinite-valued sentential logic", Journal of Symbolic Logic, vol. 16 (1951), pp. 1-13, especially pp. 12-13.
    ${ }^{6}$ If integer truth-values are used these functors become the functors $J_{(m+2) / 3}()$, $J_{(2 m+1) / 3}()$ of Rosser and Turquette. See, for example, pp. 18-22 of the book referred to in footnote 2.
    ${ }^{7}$ Cf. Alan Rose and J. Barkley Rosser, "Fragments of many-valued statement calculi", Trans. Amer. Math. Soc., vol. 87 (1958), pp. 1-53, especially, pp. 2-3.
    ${ }^{8}$ The functor $B^{\prime}$ will not be considered further until the proof of Theorem 2.

[^2]:    ${ }^{9}$ See footnote 5.

[^3]:    ${ }^{10}$ See the paper referred to in footnote 1 , especially pp. 371-372.
    ${ }^{11}$ See, for example, the paper referred to in footnote 7 , especially pp. $1-5$.

[^4]:    12 See the paper referred to in footnote 5 , es pecially pp. 1-9.

