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Quantifier-free axioms
for constructive plane geometry 1

Dedicated to A. Heyting on the occasion of his 70th birthday

by

Nancy Moler and Patrick Suppes

The purpose of this paper is to state a set of axioms for plane
geometry which do not use any quantifiers, but only constructive
operations. The relevant definitions and general theorems are
stated; for reasons of space the proofs are only sketched. Quanti-
fier-free arithmetic and, to some extent also, quantifier-free
algebra have been the subjects of several investigations, but as
far as we know, no prior set of quantifier-free axioms for plane
geometry has been published. In a way, this omission is sur-

prising, for an emphasis on geometric constructions has existed
for a long time. The step of explicitly stating axioms in terms of
the familiar constructions seems not to have been taken. In view
of the highly constructive character of Euclidean geometry, it

seems natural to strive for a formulation that eliminates all

dépendence on purely existential axioms, but not, of course, by
the use of some wholly logical, non-geometric method of quantifier-
elimination.

After we had already begun the work reported here, we found
a very relevant and useful discussion of the constructions we take
as primitive in the last chapter of Hilbert’s well-known Founda-
tions of Geometry, but Hilbert does not investigate their axiomati-
zation. The axiomatic approach we have adopted here has been
much influenced by Tarski (1959) and by Royden (1959). How-
ever, both Tarski and Royden consider only primitive concepts

* We are indebted to Cleve Moler and Halsey Royden for a number of useful
remarks and suggestions. This work has been supported in part by the Carnegie
Corporation of New York and the U. S. National Science Foundation.

It is a pleasure to dedicate this paper to Professor Heyting on the occasion of his
seventieth birthday. In view of his long interest in constructive mathematics and
in geometry, we believe the subject of our paper makes it particularly appropriate
to dedicate it to him.
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that are relations. The use of constructions or operations as a
primitive basis introduces certain complexities that are closely
akin to division by zero in algebra. These complexities arise when
the constructions are not well-defined in an intuitive sense. The

variety of these conditions has probably been the greatest obstacle
to rigorous axiomatization of geometric constructions.
The two primitive constructions in our theory are those of

finding the intersection of two lines and of laying off or trans-
ferring segments. Because the representation theorem for models
of our theory is in terms of vector spaces over Pythagorean fields,
we refer to our theory as Pythagorean Constructive Geometry
(PCG).
The constructive operation S(xyuv) = w, corresponding to the

laying off of segments, is read: the point w is as distant from u
in the direction of v as y is from x. The constructive operation
I(xyuv) = w, corresponding in a limited sense with the drawing
of straight lines, is read: the point w is collinear with the two
points x and y and also collinear with the two points u and v;
in other words, w is the point of intersection of lines xy and uv.
To simplify the presentation of the axioms, we use four defined
relations which include one of Tarski’s primitives, betweenness.
Tarski’s other primitive, equidistance, can be defined as

E(xyuv) « S(xyuv) = v. To make the definitions and axioms

easy to read at a glance, we use standard logical notation for the
sentential connectives: « for i f and only if, ~ for if... then,
A for and, v for or, and -1 for not. Naturally, no quantifiers are
introduced in the definiens of the four definitions, for otherwise
our quantifier-free claim would be refuted by a statement of the
axioms just in terms of the two primitive symbols.
DEFINITION 1. Betweenness

DEFINITION 2. Collinearity

DEFINITION 3. Noncollineariiy o f f our points

DEFINITION 4. Distinctness

Note that Definition 4 can obviously be extended to more

variables.
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In addition to the two operation symbols S and I, our axiomati-
zation also depends on three individual constants ce, fl and y,
which stand for three points. Some simple axioms on these points
are required to avoid one-point or three-point models of our
axioms.

By a model of Pythagorean Constructive Geometry we understand
a structure 21 == A, S, I, a, 03B2, 03B3&#x3E; such that (i) A is a set con-

taining at least the three points a, 03B2 and y, (ii) S and I are four-
place operations on A, and (iii) all of the following eighteen
axioms are satisfied by any points t, u, v, w, x, y and z in A.

AXIOM 1. Lower-dimension Axiom

Axiom 2. Nondegeneracy Axiom

Axiom 3. Rellexivily Axiom f or Segment Construction

AXIOM 4. Identity Axiom for Segment Construction

Axiom 5. Transitivity Axiom for Segment Construction

AXIOM 6. Direction Axiom

Axiom 7. Distance Axiom

Axiom 8. Connectivity Axiom

Axiom 9. First Transitivity Axiom for Betweenness

Axiom 10. Second Transitivity Axiom for Betweennegs

Axiom 11. Five-segment A xiom
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Axiom 12. First Commutative Axiom for Line Intersection

AXIOM 13. Second Commutative Axiom for Line Intersection

AXIOM 14. Collinearity Axiom

Axiom 15. Pasch’s Axiom

Axiom 16. Axiom for Regular Line Intersection

Axiom 17. Euclid’s Axiom

Axiom 18. Upper-dimension Axiom

Axiom 1 insures that a, 03B2, 03B3 are three distinct, noncollinear
points and thus that the dimension of the space is greater than
or equal to two. If the distances between these three points were
equal, it would be impossible to construct any new points using
the operations S and I. Thus, Axiom 2 states that the distances
03B103B2 and fly are unequal.
Axioms 3, 4 and 5 express obvious conditions. Axioms 6 and 8

combine to formalize the concept that S(xyuv) is in fact on the
same side of u as v. Together they prove Tarski’s (1959) axiom
of connectivity. Axiom 7 states that a segment is longer than
any of its parts: that in fact the segment vz is congruent to the
segment uw. Axiom 7 is also important in extending the line
segment so that for all x and y there is a w such that B (xyw).
Both transitivity axioms for Betweenness (Axioms 9 and 10)
appear to be essential for this extension. Once this extension has
been made, one uses the strong form of Pasch’s Axiom (Axiom 15),
discussed below, to prove that for all x and y there is a zv such that
B(xwy). We feel that there may be a simpler way of stating Axioms
9 and 10 so that only the primitive symbol S is used.
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Axiom 11 is a direct translation from the similar axiom (A9)
of Tarski (1959). This axiom is important in proving addition and
subtraction of segments. Axiom 18, which we had developed
before finding a similar axiom in Szczerba and Tarski (1964) and
Axiom 11 combine to prove theorems relating to the congruence
of triangles, particularly the side-side-side theorem.
Axiom 14 shows that if the point of intersection of the two lines

xy and uv is collinear with one line it must be collinear with the

other. Axiom 15 is the weak form of Pasch’s Axiom as stated by
Veblen (1904). With axiom 14 it can be shown that B(z, t, I(xyzt))
also holds and thus the stronger form of A7 in Tarski (1959) can
be derived. Axiom 16 states that if xy and uv are two distinct lines
with one point in common, then that point is the point of inter-
section.

It has become common to use Playfair’s Axiom as the desirable
equivalent to Euclid’s Axiom. However, when dealing with con-
structions rather than relations as primitives, it is desirable to
have some criteria for deciding that two lines actually intersect
and where that point of intersection is. The form of Euclid’s
Axiom we have used, Axiom 17, is that if the distance between
two lines increases or decreases, the two lines must intersect.
The axiom appears complicated in form but gives an easily
applied criterion for intersection. With the Upper-dimension
Axiom and Pasch’s Axiom one can determine the location of the-

point of intersection with respect to the other two points given
on the line. Playfair’s Axiom can then be derived with the help
of the other axioms.
We have not investigated the independence of the axioms,.

but we feel that some simplification can be made.
A brief look at the axioms will show that for some x, y, u, and

v, I(xyuv) is not actually determined. For example, I(xxuu) is.

not determined. Similaily, the construction S(xyuu) is not deter-
mined if x ~ y. To make our viewpoint completely explicit, we
assume that the operations S and I are defined for all quadruples.
of points in A, but undecidable or undetermined by the theory
in the degenerate or nonstandard cases. For instance, S(xyuu)
is some point in A, since S is always defined, but what point it is.
cannot be determined from the axioms. To handle these conditions.
in the representation theorem, we extend the concept of isomor-
phism to include undecidable cases. In the definition that follows,,
it is required that A be a nonempty set and 0 a quaternary
operation on A in order for 2! = A, 0&#x3E; to be a model.
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Let 21 ’ A, 0&#x3E; be a model of a theory T. The operation 0 is
undecidable with respect to condition ~(xyuv) if and only if the
sentence

is undecidable in T. Let U = A, 0&#x3E; and %’ = (A’, 0’&#x3E; be two
models of a theory T. Then a and a’ are isomorphic (with respect
to T ) if and only if there is a function f such that:

1. The domain of f is A and the range of f is A’ ;
2. f is a one-one function;
3. For all x, y, u and v in A such that the operation 0 is not

undecidable with respect to any condition ~(xyuv), we have

4. Given any condition ~(xyuv) with respect to which 0 is

undecidable, there is a unique condition q’ with respect to which
0’ is undecidable, and conversely, such that

Using these definitions we may easily prove the following lemma.

LEMMA 1: Let 21 = A, S, l, (t, P, y) be a model o f PCG. Then
the operation S is undecidable with respect to the condition ~(xyuv),
where

The operation I is undecidable with respect to the condition

Pl v r2 v F3 where

T3 states the conditions under which xy is parallel to uv.
Our Representation Theorem is stated in terms of a special

Cartesian space over an ordered Pythagorean field, which we now
define. Let F = F, +, ., ~&#x3E; be an ordered field. Then F is a

Pythagorean field if for all a and b in F, v’ a2+b2 is in F. Now let
Ag = F X F. We define the operations S- and 1,, for all x, y, u, v,
and w in AF, in the following manner:
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where

where

and w2 is defined with the obvious symmetry.
We choose oc., 03B2F and 03B3F as three distinct points of Aij such that

and

From the definition of Sif it can easily be shown that such points
exist, for example, let oc, = 0, 0), Pif = 0, 1) and 03B3F = 1, 0&#x3E;.
The structure 2f, = AF, SF, Iz,, oQa, pg, 03B3F&#x3E; is called the Con-
structive Cartesian Space over the ordered Pythagorean field F,
and it is easily shown that it is a model of PCG.

LEMMA 2. Let 2lu be the Constructive Cartesian Space over the
ordered Pythagorean field F. Then the operation Sif is undecidable
with respect to the condition ~F(xyuv) where

The operation IF is undecidable with respect to the condition

0393F(xyuv) were

We are now ready to state and sketch the proof of the Represen-
tation Theorem.

Representaiion Theorem. For a structure U = A, S, I, oc, P, y)
to be a model o f PCG it is necessary and sufficient that 2( be iso-
morphic to the Constructive Cartesian Space 2l¡y over some ordered
Pythagorean field F.
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PROOF. As already remarked, it is easy to verify that all of the
axioms of PCG hold in UF and thus W. is a model of PCG. Thus
if 9t is isomorphic to UF then 2( must also be a model.
Now assume 91 is a model of PCG. We first must construct an

ordered field F. The elements of this field are taken to be the
points on the line through a and P, that is, F = (x e A : L(03B103B2x)}.
The definitions of operations in the field will involve several
geometric constructions.
The construction E(xy) = z extends the line segment xy through

x to z so that x is the midpoint of yz. From Axiom 2 we know that
S(03B103B203B203B3) ~ y. The axioms are so stated that either B(03B103B2S(03B203B303B103B2))
or B (03B203B3S(03B103B203B203B3)). For definiteness, but without loss of generality,
let us assume the former.

If x, y and z are not collinear, a point w so that xy and zw are
parallel is given by

If x, y and z are collinear then is a point on the line.
A third construction, R(xy) = z, can be defined so that the

angle xyz is a right angle. We omit the definition, but note that
if x = y then x = z. (The given points (x, f3 and y are used to make
the point z unique.)
We also define the following generalization of betweenness to

indicate direction.

Using these constructions, the relation  and the operation
+ are defined for the elements of F by
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In order to define the opération. it is necessary to use points
outside of F in the definiens. One such point is R(03B203B1) = e.

Further constructions are used in proving that F = F, +, ., ~&#x3E;
is an ordered Pythagorean field, but these constructions will

not be defined here.
In order to show that 2[ is isomorphic to UF a rectangular

coordinate system is defined for all x in A by

This coordinate system is used to define a one-one correspondence
f between the elements x in A and the coordinates, (xi, x2&#x3E; in
FxF.
The proof is completed by showing that when no undecidable

condition holds for points x, y, u and v in A then

and similarly for I(xyuv). Secondly, equivalence of undecidable
conditions for S and SF, and for I and l ij is easily shown from the
lemmas already stated.

Finally, we turn to the uniqueness theorem whose proof follows
standard lines and is therefore omitted. One preliminary defini-
tion is needed. A transformation T(x) is a generalized Euclidean
transformation of F F onto itself if T(x) = sPx+Q where s is
in F, P is an orthogonal 2 X 2 matrix of elements of F and Q
is in F X F.

Uniqueness Theorem. Let 21 be a model o f PCG isomorphic under
mappings f and g to the Constructive Cartesian Space UF for some
ordered Pythagorean field F. Then there is a generalized Euclidean
transformation T of F X F onto itself such that g = T o f, where o is
function composition.

REFERENCES

D. HILBERT

The Foundations of Geometry. LaSalle, Illinois: Open Court Publishing Co.,
1947; reprint edition.

H. L. ROYDEN

Remarks on primitive notions for elementary Euclidean and non-Euclidean



152

plane gemetry. In L. Henkin, P. Suppes and A. Tarski (Eds.), The Axiomatic
Method, With Special Reference to Geometry and Physics. Amsterdam: North-
Holland Publishing Co., 1959, pp. 86-96.

L. W. SZCZERBA &#x26; A. TARSKI

Metamathematical properties of some affine geometries. Proceedings of the 1964
International Congress for Logic, Methodology and Philosophy of Science.
Amsterdam: North-Holland Publishing Co., 1964, pp. 166-178.

A. TARSKI

What is elementary geometry? In L. Henkin, P. Suppes and A. Tarski (Eds.),
The Axiomatic Method, With Special Reference to Geometry and Physics.
Amsterdam: North-Holland Publishing Co., 1959, pp. 16 2014 29.

O. VEBLEN

A system of axioms for geometry. Transactions of the American Mathematical

Society, 1904, 5, pp. 343-384.

(Oblatum 3-1-’68) Stanford University
Stanford, California


