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The equivalence of two definitions
of elementary formal system

Dedicated to A. Heyting on the occasion of his 70th birthday

by

Haskell B. Curry

1. Introduction

In his book [TFS] 1 Smullyan introduced a notion of elementary
formal system. This notion is evidently closely related to a notion
which 1 called by the same name in [CFS] p. 267 and [FML]
p. 68. It is clear that there is some sense in which these two

definitions are equivalent; I found it interesting to work out expli-
citly the exact relationship between them. This note contains the
result of this study.

In order to clarify matters 1 shall here use the term "elementary
formal system" (efs) exclusively in the sense of [CFS], whereas
I shall call Smullyan’s notion a smef. Likewise, although I shall
on the whole follow the terminology of the sources, I shall use
modifications designed to avoid confusion between similar terms
as applied to the different sorts of system.
Enough explanation is given here to enable the reader to follow

the main argument without referring to the sources; but such
reference may be useful for additional details, illustrative ex-

amples, discussion of terms which are here taken as self-explana-
tory, etc.
Some emendations of [FML] are considered, mostly in the

footnotes.

2. Elementary formal systems

Let us begin by recapitulating the principal features of the
notion of efs.
A formal theory is essentially a class S of elementary theorems

1 The letters in brackets refer to the Bibliography according to the system
explained there.



14

constituting a subclass of a class OE of elementary statements. The
class I is generated from a subclass 9t by rules 9î. The classes 0152,
3Ï, and 8l are definite classes in the sense of [FML] § 2A5?-; and
there must be an effective way of checking a proof of an elemen-
tary theorem, i.e. of seeing whether or not the rules have been
correctly used; but the class Z is in general only semidefinite.
A formal system is a formal theory in which we postulate a

classe of formal objects and a class B of elementary predicates
of various degrees (where the degree of a predicate is the number
of its arguments), such that each elementary statement asserts
that a predicate P of degree n holds for an ordered n-tuple
u1, ’ ’ ’, un of objects from 0; this statement can be expressed
thus:

In regard to the formal objects, [FML] describes two alter-
natives. In the first alternative, called a syntactical system, the
formal objects are the words (i.e. finite strings ), formed from the
letters of a certain alphabet 58. In the second alternative, called an
ob system, the formal objects are generated from the certain atoms
by certain operations.3 The differences between these two alter-
natives are hardly relevant for our present purpose. If we assign
to the atoms letters from an alphabet B0, and to the operations of
degree 03BA &#x3E; 0 (i.e. with 03BA arguments) letters in an alphabet 58k, 1
and if we assign to the obs words formed from all these letters by
some standard notation such as the Lukasiewicz parenthesis-free
notation, then the obs will indeed be words in the alphabet
which is the union of all the 58k; only they will not constitute all

2 One of my students, L. Fleischhacker, has made the following comment on the
remarks made there. The notion of definiteness really has meaning, for an infinite
class, only with reference to some wider class, which we may call a fundamental
class or a universe. Thus, take the class 3B of words of finite length in a finite
alphabet B; this was cited in [FML] as a prime example of a definite class. But if
there really were such things as words of infinité length it might not be possible to
decide in finite terms when we had such a phenomenon. Thus when we say that OE
is a definite class we are implicitly involving some universe of recognizably finite
structure. Thus in [FML] p. 45 G is taken as definite relative to the class of U-
expressions ; and in other places, where the situation is less exacting, it is said simply
that, given a statement, it is a definite question whether it is in OE. A similar remark
applies to D and some other classes below. But 9t and I are considered with reference
top as universe.

3 This is meant in the sense that to each ob there corresponds a unique con-
struction which can be exhibited in the form of a labeled tree diagram. Thus the
obs can be exhibited as symbolic constructs of treelike structure instead of strings.
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the words in that alphabet, but only a certain well defined subset.4
Thus if we admit the possibility that not all the words in 0 are
admissible as formal objects, but only certain "well formed" ones,
we include both syntactical and ob systems.5 1 shall use the term
"ob" for a formal object in either type of system; the term " wef,",
which 1 have sometimes suggested for the purpose, will be reserved
for a related use in connection with a smef.
An elementary formal system (e f s ) is one in which the rules have

a certain form. An elementary rule instance is a statement of the
form

where A,, .. -, A., A 0 are elementary statements; (1) means that
if A 1, - - -, A m are in £t then A o is in Z. An elementary rule scheme
is a statement of the form (1) containing certain intuitive (or U- )
variables such that when arbitrary formal objects are substituted
for these variables the result is an elementary rule instance. An
elementary formal system is then one in which the axioms are
given by a finite number of axiom schemes and the rules are
given by a finite number s of elementary rule schemes.
We can state this definition otherwise by introducing the notion

of ob extension. Let 0153l, ..., 0153q be all the variables appearing in
the rule schemes of a system 6. Let G* be the formal system ob-
tained from 6 by adjoining 0153l, ..., 0153q to the formal objects as
letters to be added to 58 (or Q3o ) without making any other changes.
Now if we define an elementary rule scheme of 115 as an elementary
rule instance of G*, then it is clear that by substituting formal
objects of cl for x1, - - -, 0153q in a rule scheme of (5 we get a rule
instance of 6.

In an efs an elementary statement B is in Z just when there is
a sequence B1, ···, Bp such that Bp is B and every Bk is either
in 3t or is a consequence of some of its predecessors by a rule R;
this last means that there is a rule instance of form (1) such that
A o is Bk and every A i for i &#x3E; 0 is some B, for i  k. Further a

4 The converse transformation, from a syntactical to an ob system, is also

possible, but involves more complex ideas. If the operation is concatenation and
the letters are the atoms, then the same word may have different constructions.
Thus the syntactical system is a quotient structure of the ob system with respect
to equality generated by the associative law. (Cf. [FML], § 2C3, Examples 3 and 4.)

5 Of course still other types of system may be included.
g Conceivably we could generalize this by allowing, e.g., a recursive set of axiom

and rule schemes. In that case we should need to make a corresponding change in
the definition of a smef (see § 3).
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statement (1) is a derived rule just when there is a sequence

B1, · · ·, B1) such that Bp is Ao and every Bk is either 1) in U,
2) one of the A four 1 &#x3E; 0, or 3 ) the conclusion of a rule instance
of form (1) (of course not with the same A i ) whose premises are
all among the Bj for i  k.

It is perhaps worth remarking that in the foregoing an alphabet
is only a finite set of objects which we call letters. Generally these
letters have an order, called the alphabetical order, but that order
plays no role here. What objects the letters (or atoms) are is

completely arbitrary.

3. The notion of smef

We shall now consider the Smullyan definition. As explained in
§ 1, 1 shall change some of the terminology when there is conflict
with that already introduced in § 2. In view of thé explanation
made in § 2 we can now be somewhat more brief.
A smef is a collection 115’ consisting of the following items:
1) An alphabet 9.
2) Another alphabet SS of variables, i.e. indeterminates.
3 ) An alphabet D of "predicates", each of which has a certain

fixed degree. To avoid confusion with "predicate" as used in § 2,
1 shall call these attributes.

4) The implication sign "-&#x3E;" 7 and devices for indicating the
application of attributes to their arguments (for this Smullyan
uses a comma, I shall use the ordinary mathematical de vice).

5) A finite set 8 of axioms each of which is a wef in the sense
below.

In terms of these notions Smullyan defines categories as

follows:
Terms. These are certain words in the combined alphabets 9

and B. Smullyan allows arbitrary words; but he could equally
well allow any definite subset of these words, so they could be the
obs of an ob system or its term extension. Terms without variables
I shall call constant terms.

Elementary wefs. These are of the form f/J(t1, ..., tn ) where
t1, ..., tn are terms and 0 is an attribute of degree n.

Wefs (well formed formulas). These constitute an inductive
class generated as follows: ( f 1 ) every elementary wef is a wef,

’ This use of "~" is not to be confused with the usage of [FML] ; also "~" is not
to be confused with CC=&#x3E;".

8 On this restriction cf. footnote 6.
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(/2) if X2 is a wef and X, is an elementary wef, then Xl ~ X2
is a wef. Thus the wefs are of the form

where Xo, X1, ···, Xn are elementary wefs.9
The theorems in C5’ are an inductive class generated from the

axioms by two rules, substitution and modus ponens. The elemen-
tary theorems are those theorems which are also elementary wefs.
By the usual process of "Rückverlegung der Einsetzungen"
( [FML] § 3D3, p. 115) 10 we can suppose that the substitutions
are made in the axioms, so that the axioms are given by axiom
schemes; then the sole rule is modus ponens.

4. The equivalence theorem

The result of this note is the following:
THEOREM 1. Let 6 be an e f s and C5’ be a sme f such that the following

conditions are satisfied:
(i ) The formal objects o f C5 are precisely the constant terms o f G’.
(ii) There is a one-one correspondence preserving degree between

the elementary predicates o f 6 and the attributes of 6’. This estab-
lishes a correspondence which associates to each elementary statement
X o f 6 (or some term extension o f it) a unique elementary wef X’
of 6’ and vice versa.

(iii) The rules and (for n = 0 ) the axioms o f 6 are certain
schemes of the form

where X o , X1, ···, X n are obs in a term extension of the indeter-
minates functioning as U-variables f or formal objects; the axioms o f
are precisely the corresponding schemes

Further, let A o , A1, ···, A. be elementary statements o f G, and
A’0, A’1, ···, A’m, be the corresponding elementary wefs o f G’.

Then a necessary and su f f icient condition that (1) be a derived

9 Note that if "~" is regarded as an operational sign it is associated to the right;
i.e. (2) is formed from X i and X2 ~ ··· ~ Xn ~ X0, but not, e.g., from X1 ~ X2
and X3 ~ ··· ~ Xn ~ X0.

10 This is frequently ascribed to von Neumann; but in principle it appears in
Post [IGT], Lemma 2, p. 178.
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rule in 6, is that A’0 be an elementary theorem in that smef (5" which
is f ormed by adjoining A’1, ···, A’m to the axioms o f 6’.

PROOF OF NECESSITY. Let (1) hold. Then there exists a sequence
B1, B2, ···, Bp constituting a derivation 0394 of A0 from A1, ···, An.
1 shall show by deductive induction that every B’k is an elementary
theorem of 6". If Bk is one of the Ai, then B’k is A’i and hence an
axiom of G". Likewise, if Bk is an axiom of 6, B’k is an axiom of
6’, and so of 6". Finally, if Bk is obtained by an inference, let
the rule instance be

where C1, ···, Cr precede Bk in L1. Then

is an axiom of G’ and hence a theorem of G". By the inductive
hypothesis each C’j is a theorem of 6". Hence, by repeated applica-
tions of modus ponens, Bk is also.

PROOF OF SUFFICIENCY.11 Let B’1, ···, B’p be a derivation 0394’

in G" of A’0 Each B’ is then of the form

where the C’j are elementary. Then 1 shall show by induction on
k that

i s a derived rule in G. If Bk is A’i, then r - = 0 and C0 ~ Ai; (5)
is obvious. If Bk is an axiom of 6’, then (5) holds without the
A1, ···, Am, and hence a fortiori with them. If B’k is obtained by
an inference, then there is an elementary wef D’ such that D’and
D’ ~ Bk are both theorems of 6". By the inductive hypothesis
we have

Let the second derivation be exhibited as a tree proof; over each
occurrence of D as a top node put the first derivation of D; the
result well be a tree proof of (5).
For k = p we have r = 0 and Co = Ao. Then (5) gives us (1),

q.e.d. This completes the proof of the theorem.

11 Note that in this proof the B’, are not necessarily elementary wefs.
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REMARK 1. The restriction that the A’i be constant can be set
aside by adjoining any variables they contain to 6, i.e. using a
suitable term extension of (S. There is no difficulty with sub-
stitutions because we have excluded the substitution rule.

COROLLARY 1.1. The elementary theorems o f 6 correspond to the
elementary theorems of G’ and vice versa.

PROOF. This is the special case n = 0.

COROLLARY 1.2. Any theorem o f G’ corresponds to a derived rule
o f 6.

PROOF. If

is a theorem of G’, then A’0 is a theorem of G".

REMARK 2. The converse of Corollary 1.2 does not hold because
there is no deduction theorem in G’. A counterexample is the case
where n = 0 in all axioms (4); then one cannot establish A’0 ~ A’0.
Moreover not every derived rule of 6 is a theorem of G’. In fact

every theorem of @’ is an end-segment of an axiom; i.e., it is

obtained from an axiom of the form (4) by cutting off some of
the initial X’i. Thus if the axioms and (primitive) rules of 6 are

then

is a derived rule, but

is not a theorem of G’.

REMARK 3. If the elementary wefs are statements, then ~ is
a conjunctor, and a smef is not an efs. This can be got around by
regarding the 01 and as operators, much as in the reduction
of a formal system to assertional form (of [FML] § 2D1 ). The
restriction in modus ponens to the effect that the premise of an
implication must be elementary can also be got rid of, provided
that the axioms have that character.12 By this maneuver a smef
becomes a special kind of assertional efs.

12 This, of course, depends on the nonassociativity mentioned in footnote 9.
The conclusion follows by an induction on the number of steps in the proof.
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5. Concluding remarks

Theorem 1 shows that a smef and an efs are essentially equiv-
aient notions. Note that either 6 or 6’ could be given first and
the other determined from it. Thus every efs can be exhibited as
a smef and vice versa; and if one identifies the attributes of G’
with the elementary predicates of G the two systems will have
the same elementary theorems (Corollary 1.1.) and the same
derived elementary rules.13A smef has the advantage that all
smefs have the same rules; on the other hand it has certain dis-
advantages when it comes to applying techniques of formal

deducibility. 14
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