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Functional interpretation of bar induction
by bar recursion

Dedicated to A. Heyting on the occasion of his 70th birthday

by

W. A. Howard

Introduction

By means of his functional interpretation, Gôdel [1] gave a
consistency proof of classical first order arithmetic relative to
the free variable theory T of primitive recursive functionals of
finite type. Spector [7] extended Gôdel’s method to classical

analysis. The crucial step in [7] is the construction of a functional
interpretation of the negative version of the axiom of choice. For
this purpose Spector introduces the notion of bar induction of
finite type, which generalizes Kleene’s [3] formulation of Brouwer’s
bar theorem. The corresponding notion which Spector adds to T
is bar recursion of finite type. Actually he uses the schema of bar
recursion of finite type for his consistency proof, though apparent-
ly he had also intended to give a consistency proof based on
bar induction of finite type.
The purpose of the following is to give a functional interpreta-

tion of bar induction of finite type by means of bar recursion of
(the same) finite type and to show how this can be used to give
an alternative derivation of Spector’s result; i.e., a functional
interpretation of the negative version of the axiom of choice.
It is also shown that the axiom of bar induction of finite type can
be derived from the rule of bar induction of an associated finite

type (of higher type level); and the corresponding result is ob-
tained for bar recursion of finite type. Finally, we give a con-
sistency proof for analysis by means of the rule of bar induction
of finite type (applied intuitionistically) plus the general axiom
of choice.

1. Notation and definitions

Let T denote the free variable formal system of primitive
recursive functionals of finite type [1]. For the purpose of the
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present paper it is not necessary to give a precise formulation of
T. It is understood that the terms of T are classified into types,
and that, for terms s and t, the term st (interpreted : s applied to t)
is well-formed when the proper conditions on the types of s and t
are satisfied ([7], p. 5). The type symbols are generated as
follows: 0 is a type symbol; if cr and c are type symbols, so is (a)r;
the latter is the type of a functional which takes arguments of
type a and has values of type i (this notation is due to K. Schütte ).
Every type symbol has a level defined as follows: the level of 0
is zero; the level of (a)z is the maximum of 1+level (03C3) and
level (03C4). It is easily seen that every type symbol has the form
(03C31) ··· (03C3n)0 and that the level of the latter is the maximum of
1+level (03C31), ···, 1+level (03C3n).
Notation: if t1, ···, tk are terms, t1t2 ···tk denotes (···((t1t2)t3)···) tk.
There are two possible formulations of T: the intensional

formulation of Gôdel’s paper [1] and the extensional formulation
of Spector’s paper [7]. In Gôdel’s formulation, equality is inter-
preted as a decidable intensional equality; equations between
terms of finite type are allowed, and such equations are combined
in the usual way by means of the propositional connectives;
classical propositional logic is used (which we can regard as
arising from intuitionistic propositional logic together with the
axioms E v J E for equations E). The equality axioms and rules
for T are:

where A is any formula and A * arises from A by the replacement
of one occurrence of s by t. When T is extended by addition of
the schema of bar recursion it is necessary to replace (1.2) by
the more general rule (1.3), below.

In Spector’s formulation of T the atomic formulae are equations
between terms of type zero ; and an equation s = t between
terms of higher type is regarded as an abbreviation for

sx1 ··· xn = tx1 ··· xn where xl , - - -, xn are variables, not con-
tained in s or t, of types such that sx1 ··· xn and tx1 ··· xn are
terms of type zero.
The treatment of this paper is valid for both formulations of T.

Notation: in the following, the variable c ranges over sequences
c0, ···, ck-1) of some finite type a; lh(c) denotes the length k
of c; &#x3E; denotes the empty sequence (which has length zero);
e * u denotes c0, ···, ck-1, u&#x3E;; for a functional ce with numerical
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argument, 03B1k denotes 03B10, 03B11, ···, 03B1(k-1)&#x3E;; [c] denotes a func-
tion a associated with c in some systematic way (by primitive
recursion) such that a(lh(c» = c.
The funetional 99 of bar recursion of type a (where a is the type

of the components co, - - -, ek-1 of the sequence c) is introduced

by the following schema:

The type of 99YGHe is arbitrary. By T+BRu is meant the formal
system obtained from T by adjoining constants 99 of suitable

types together with the schemata BRq, the rule (1.2) of equality
being replaced by

where P is a propositional combination of equations between
terms of type zero. (Actually we need (1.3) only for the case in
which P has the form Y[c]  lh(c) or Y[c] ~ lh(c).)

H03C9 denotes Heyting arithmetic of finite type; namely, the
formal system obtained by adding quantifiers to T together with
the usual rules of formula formation, the axioms and rules of the
intuitionistic predicate calculus, and, of course, mathematical
induction. By lI(¡)+BRu is meant the system obtained by ex-
tending T+BRu in the same way.
The schema BI03C3 of bar induction of type a, applied to the

formulae P(c) and Q(c) of 1I(¡) is:

where (Hyp 1) denotes A oc V nP(&#x26;n), (Hyp 2) denotes

(Hyp 3) denotes ~ c[P(c) - Q(c)], and (Hyp 4) denotes

2. Gôdel’s functional interpretation

For formulae P of Il., let P’ denote the formula ~ y ~ zA(y, z)
which Gôdel [1] associates with P, where A (y, z) is quantifier
free. (Gôdel considers only P in Heyting arithmetic of lowest
type but his procedure obviously extends to formulae of 1IlJ).)
In Gôdel’s paper y and z stand for finite sequences of functionals.
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Although we could work with finite sequences in the present
paper it is perhaps more convenient to consider finite sequences
of functionals to be coded as single functionals. After such coding,
and the corresponding change in the formula A(y, z), we can
consider y and z to denote single functionals. If the reader prefers
to work with finite sequences in the following, he can easily supply
the necessary changes of phraseology and interpretation.

Let ~ y ~ zA(y, z) be Gôdel’s translation of P, as just described.
By a f unctional interpretation of P in the free variable system T
is meant a term t together with a proof in T of A (t, z). Gôdel
shows that every theorem of ordinary Heyting arithmetic has a
functional interpretation in T, and his procedure obviously
extends to H03C9. His procedure consists in giving a functional
interpretation of the axioms of 1Iw and showing how a functional
interpretation is transformed by the rules of inference of 11 w .

Let H*03C9 denote the formal system’ obtained from IIw by ad-
joining, as axioms, all formulae of the form P H P’. It is easy
to give a functional interpretation of P -H- P’ : merely observe
that (P ~ P’)’ is identical (P ~ P)’, and that P *-+ P has a
functional interpretation because it is a theorem of 11 w. Thus
every theorem of H* has a functional interpretation in ?’. Moreover,
since Gôdel’s translation of a quantifier free formula is the

formula itself, every theorem o f 1I:+BRu has a functional inter-
pretation in T+BRu.

3. Functional interpretation of bar induction

The existence of’a functional interpretation of each instance of
Blu in T+BRu follows from:

THEOREM. 3A. Every theorem of H*03C9+BI03C3 has a functional
interpretation in T +BRu.
As was shown in § 2, every theorem of 1f:+BRu has a func-

tional interpretation in T + BRu. Hence to prove Theorem 3A
it is sufficient to prove:

THEOREM 3B. Every instance of Blu is a theorem of 1f:+BRu.
The purpose of the present section is to prove Theorem 3B.

This will be accomplished by means of Lemmas 3A-3C, below.
We shall make use of the following property of If:: for all

formulae E(y) and F(z) of Ifw,
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is a theorem of 11:. Actually, in the following, we only need (3.1)
for the case in which E(y) and F(z) are purely universal formulae;
so let us consider this case. Temporarily taking the viewpoint
in which y and z denote finite sequences, we observe that

[~E(y) ~ ~ zF(z)]’ is identical to (~Z~y[E(y) ~ F(Zy)])’,
so (3.1) follows from axioms of the form P H P’.

Considering now the schema Blu of bar induction (§ 1), our
task is to prove Q« » from (Hyp 1), ···, (Hyp 4) in H*03C9+BR03C3.
We shall reason informally in H*03C9+BR03C3. Denote P(c)’ and
Q(c)’ by ~ rA(r, c) and ~ yB(y, c), where A(r, c) and B(y, c)
are purely universal formulae. Note: the formulae P(c) and Q(c),
and hence ~rA(r, c) and ~ yB(y, c), may contain free variables
(other than c). By virtue of the axioms D ~ D’ of Hgj we may
replace P(c) and Q (c) by P(c)’ and Q(c)’ in (Hyp 2), ···, (Hyp 4);
we may replace ~ uQ(c * u) by ~ Y ~ uB(Yu, c * u) in (Hyp 4),
and we may replace (Hyp 1) by V N V R A «A (Ra, 03B1(N03B1)).
Hence from (Hyp 1), ···, (Hyp 4) we conclude, with the help of
(3.1), that there exist N, R, L, S arid X such that:

(3.2) A mA (Roc, &#x26;(Noc»
(3.3) ~ c(~ m  lh(c» 1B r[A (r, c0, ···, Cm-l») - A (Lcmr, c)]
(3.4) ~ c ~ r[A(r, c) ~ B(Scr, c)]

(3.5) ~ c ~ Y[~ uB(Yu, c * u) - B(XcY, c)].
From (3.2)-(3.5) we shall prove the existence of w such that
B(w, &#x3E;); then Q(&#x3E;) follows in H*. Let W be defined in terms
of N, R, L, S and X by the équations

(3.6) N[c]  lh(c) - Wc = Sc(Lc(N[c])(R[c]))
(3.7) N(c) &#x3E; lh(c) - Wc = Xc(03BBu · W(c * u)),
which can easily be reduced to the schema BRu of bar recursion
(§ 1 ). It will be shown that W( ) is the desired functional w.

LEMMA 3A. N[c]  lh(c) - B(Wc, c) for all c.

PROOF. Substituting [c] for oc in (3.2), we conclude

where g denotes [c]. Assume N[c]  lh(c). Then

where m = N[c]. Hence A (Lc(N[c])(R[c], c) by (3.3). Hence
B(Wc, c). by (3.4) and the clause (3.6) in the definition of W.
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LEMMA 3B. If N[c] a lh(c), then

for all c.

PROOF. Take Y in (3.5) to be 03BBu · W(c * u) and apply the defini-
tion (3.7) of W for the case N[c] &#x3E; lh(c).
From Lemmas 3A and 3B we conclude

Recall that B(Wc, c) is a purely universal formula. Thus

B(Wc, c) is of the form A xD(c, x), where D(c, x) is quantifier
free; and (3.8) becomes

Also, by Lemma 1,

Our problem is to prove ~ xD(&#x3E;, x). By (3.9) and (3.10) our
problem has been reduced, essentially, to finding a functional
interpretation of a bar induction in which Q(c) is a purely universal
formula ~ xD(c, x) : the remainder of the present section provides
a solution of that problem. Let C denote (3.9). From (3.9) and
the axiom C ~ C’ we conclude that there exist U and Z such that

for all c, x. Taking c and x to be free variables, formula (3.11 )
can be regarded as the inductive clause of a free variable bar
induction. We shall reduce this to bar recursion by using Kreisel’s
trick [5] for reducing free variable transfinite induction to

ordinary induction plus transfinite recursion.
First we shall define a pair of functionals G and H by primitive

recursion. Both functionals will take arguments k and x, where
k is a number (upon which the primitive recursion is performed)
and x has the type required in (3.11). By convention G, H&#x3E;
will denote a functional such that (G, H&#x3E;kx = Gkx, Hkx&#x3E; for
all k, x. The types of Gkx and Hkx will be those of c and x, respec-
tively. Let Fcx denote c * (Ucx) and define the pair G, H&#x3E; by
the primitive recursion equations
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Using (3.11 ), we obtain, by ordinary induction on k (which is
allowed in H*03C9),

for all x, k.

Given x, we wish to show D(&#x3E;, x). We shall do this by showing
the existence of k such that N[Gkx]  lh(Gkx). The required
result D(&#x3E;, x) then follows from (3.10 ) and (3.12 ) with c = Gkx.
Denote U(Gkx)x by gk (where x is not indicated as an argument

of g because x remains constant in the following discussion).
From the defining equations for G and H it is easy to prove, by
induction on k, that gk = Gkx holds for all k. We must show the
existence of k such that N[gk]  k. This is done by the following
lemma (Kreisel’s trick [5] ).

LEMMA 3C. By bar recursion of type 03C3 plus primitive recursion
we can define 0 (as a function of N) such that

for all a.

PROOF. Define Bac to be 0 if (V k  lh(c))(N[c0,···,ck-1]  k)
and Bac equal to 1 + Oot(c * v) otherwise, where ro denotes oc (lh(c».
Clearly 0 is obtainable from bar recursion of type a plus primitive
recursion: because, if N[c]  lh(c) then 03B803B1c is defined outright
(as 0) whereas if N[c] ~ lh(c) then Bac can easily be expressed
as a certain primitive recursive functional of Âu - Oot(c * u). It
remains to show (~ k  03B803B1 &#x3E;) (N[03B1k]  k).
Denote 03B803B1(03B1i) by Pi. Putting «i for c in the definition of 0,

and observing that (03B1i) * (ai) is equal to 03B1(i+1), we get

By (3.13) and (3.14),

Using (3.15) we easily prove, by induction on i, that if Pi =,4 0
and i ~ i then PO = i+t3i. Putting i = i we conclude

Putting 03B20 for i in (3.16) we conclude 03B2(03B20) = 0. Hence, by (3.13)
and (3.14), (~ k  03B20) (N[&#x26;k]  k). Since PO is 03B803B1&#x3E;, Lemma
3C is proved.
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As explained in the discussion preceding Lemma 3C,
~ xD(&#x3E;, x ) follows from Lemma 3C. Thus Theorem 3B has been
proved.

1 wish to acknowledge Professor Kreisel’s help with the present
section, in particular his suggestion to use Lemma 3C.

4. Proof of Spector’s result

Let Z6) be the system 116) provided with classical logic. The
axiom of choice treated by Spector [7] is:

A Co" A n V YS(n, Y) - ~ F 1B nS(n, Fn ),

where n is a number variable, Y has arbitrary finite type Í, and
S(n, Y) is an arbitrary formula of Z6). For any formula P of Z6)t
let P- denote the "negative version" of P obtained by prefixing
all disjunctions and existential quantifiers by double negations.
Spector [7] capitalizes on the well known result that the mapping
of each formula P into its negative version P- sends the axioms
and rules of inference of Z6) into theorems and derived rules of
inference of H.. Thus Spector reduces the consistency problem
for Z03C9+AC003C4 to the consistency problem for H03C9+AC-003C4. He then
constructs a functional interpretation of AC- in T +BRO’ (for
suitably chosen a), thereby obtaining his reduction of the con-
sistency problem for Z03C9+AC003C4 to the consistency problem for
T+ BR,,..
The purpose of the present section is to show the existence of a

functional interpretation of AC-003C4 in T+BRO’ by using Theorem
3A of § 3 and a result of [2]. Indeed, we shall obtain a functional
interpretation of the negative version of

(4.1) ~ n ~ X ~ YA(n, X, Y) ~ ~ F ~ nA(n, Fn, F(n+1)).
where A (n, X, Y) is an arbitrary formula of Z6). As shown in
[2], pp. 351-352, the axiom (4.1) implies both ACoT and an
(apparently) stronger axiom DCT of "dependent choices". Thus
our purpose is to prove

THEOREM 4A. The negative version of (4.1) has a functional
interpretation in T +BRO’ for suitable G.
Theorem 4A follows immediately from Theorem 3A and the

following theorem.

THEOREM 4B. The negative version of (4.1) is provable in

H*03C9+BI03C3 for suitable a.



115

The proof of Theorem 4B will be accomplished by means of
four lemmas.

Let Z#03C9 be the forma] system obtained from Z. by adjoining,
as axioms, all formulae of the form D ~ (D-)’.
LEMMA 4A. For every formula P, if P is a theorem of Zf then

P- is a theorem of Il:.
PROOF. Since the mapping of each formula into its negative

version sends the axioms and rules of inference of Z. into theorems
and derived rules of inference of H,,,, it is sufficient to show that
the negative version of D H (D-)" is a theorem of H*03C9. Thus we
must prove D-~ (( D-)’) - in H*03C9. By taking D- to be P in the
axiom P ~ P’ of Il:, we obtain D- ~ (D-)’. As is well known,
D- ~  D- is a theorem of H03C9. Hence D- ~  (D-)’. But
(D-)’ is of the form V y /B zB(y, z), where B(y, z) is quantifier
free. Hence Il (D-)’ is ((D-/)-. Thus D ~ ((D-)’)-, which
was to be proved.

DIsCussION. Kreisel has shown in § 5.1 of [4] that by means
of the "quantifier free" axiom of choice

(QF -ACUT) n X ~ YA(X, Y) ~ ~ -F n XA(X, FX),
where A (X, Y) is quantifier free, all statements of the form

D- ~ (D-)’ can be derived in Z03C9. On the other hand, if D is

taken to be A X ~ YA (X, Y) with A (X, Y) quantifier free, then
(D-)’ is just V F ~ XA(X, FX) ; so (QF-ACUT) is a theorem
of Z#03C9. Thus Zf is identical to Z03C9+(QF-AC03C303C4). Of course Lemma
4A could have been proved by an appeal to this result plus the
observation that (QF-AC03B403C4)- is a theorem of 11=.
The fact that in Zf every formula D is equivalent to a formula

of the form ~ y ~ zB (y, z), with quantifier free B(y, z), allows
us to prove the following lemma.

LEMMA 4B. Each instance of (4.1) can be derived in Zf from
another instance of (4.1) with purely universal A (n, X, Y).
PROOF. For arbitrary A (n, X, Y), let (A (n, X, Y)-)’ be

~ W n ZB(n, X, Y, W, Z). Then

(4.2) A (n, X, Y) ~ ~ W n ZB(n, X, Y, W, Z)

by the axiom schema D ~ (D-)’ of Z#03C9. Assume

~ n ~ x ~ YA(n, X, Y).
It is required to prove
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~ F A nA (n, Fn, F(n+1))

by an appeal to (4.1) in which A (n, X, Y) has been replaced by
some purely universal formula. The reasoning from now on is

intuitionistic, so is certainly valid in Z#03C9. By (4.2) our assumption
is ~ n ~ X ~ Y ~ W ~ ZB(n, X, Y, W, Z). This can be written
as ~ n ~ X ~ U ~ Y ~ WA1(n, X , U, Y, W), where U is a

variable of the same type as W, and A1(n, X, U, Y, W ) dénotes
A ZB(n, X, Y, W). By coding the pairs (X, U&#x3E; and Y, W&#x3E;
and an appeal to (4.1) applied to a purely universal formula,
we conclude that there exist F and G such that

~nA1(n, Fn, Gn, F(n+1), G(n+1)).
But the latter formula implies

A n ~ W A ZB(N, Fn, F(n+1), W, Z),
which is equivalent to A nA (n, Fn, F(n+1)). Thus Lemma 4B
is proved.

Notation. (EX - BI u) denotes the schema BI u of § 1 applied
to purely existential formula P(c).
From the statement of Theorem (ii), page 352 of [2], we con-

clude that (4.1) is derivable from Blu in Z03C9; but from a glance at
the proof of Theorem (ii) we see that to derive (4.1) applied to a
purely universal formula A (n, X, Y ), the special form (EX-Blu)
is used 1. From this and Lemma 4B we conclude:

LEMMA 4C. Each instance of (4.1) can be derived in Zf from
some instance of (EX-Blu) with appropriate J.

Finally, we prove:
LEMMA 4D. Each instance of (EX-BI03C3)- is a theorem of

l1:+Blu.
PROOF. Denote P(c) in (EX-BI03C3) by V ZB(Z, c), where

B(Z, c) is quantifier free. Clearly (EX -Blu)- applied to this
P(c) and arbitrary Q(c) is just Blu applied to P(c)- and Q(c)-
except that (Hyp 1) is replaced by

/B 03B1  ~ nP(03B1n)-; i.e., ~ 03B1  ~ n  ~ ZB(Z, 03B1n).

Gôdel’s translation of the latter formula is the same as Gôdel’s
translation of ~ 03B1 ~ n  ~ ZB(Z, &#x26;n) because B(Z, ân ) is

1 A new, improved proof of Theorem (ü ) is given in the Appendix to the present
paper.
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quantifier free. Thus ~ 03B1  ~ nP(03B1n)- is equivalent in 11: to
~ oc ~ nP(ân)-, so (Hyp 1) has been restored.

PROOF OF THEOREM 4B. Taking P in Lemma 4A to be of the
form D ~ E, we conclude that if E is derivable from D in Zf
then E- is derivable from D- in H*03C9. Hence, by Lemma 4C,
each instance of (4.1)- can be derived in H* from some instance
of (EX-Blu)- with appropriate Q. Hence, by Lemma 4D,
(4.1)- is a theorem of H*03C9+BI03C3. Thus Theorem 4B is proved.

COMMENT 4.1. Since it is the negative version of (EX-BI03C3),
and not the negative version of BI u in general, which is shown
to be equivalent in II* to (another instance) of BIQ in Lemma 4D,
a crucial step in the proof of Theorem 4A consists in the reduction
of (4.1) to (4.1) applied to purely universal A (n, X, Y) (Lemma
4B). This reduction is accomplished at the price of raising the
type level of X and Y in (4.1). It is for this reason that the

consistency proof for Z03C9+(4.1) even for X and Y of type 0
(i.e., numerical X and Y) requires BRu for higher types Q.

COMMENT 4.2. By Theorem (vii), page 353 of [2], (4.1) is

equivalent to bar induction of finite type in Z6). Thus Theorem
4A provides a reduction of the consistency of Zw+BI., to the
consistency of T+BRu (where or may differ from c for the reason
explained in Comment 4.1).

5. The rules of bar induction and bar recursion

The purpose of the present section is to introduce the rule

of bar induction (Rule-Blu) and the corresponding recursion
schema (Rule-BR.), and to show that they yield the axiom BIT
and the schema BR" respectively, where a depends on T. The
discussion uses intuitionistic propositional and quantifier logic.
By (Rule-Blu) is meant the rule of inference (in some formal

system, say H03C9) which says that if (Hyp 1), ···, (Hyp 4) have
been proved, then infer Q(&#x3E;) - the notation being as in § 1.
Since this rule is perhaps most natural in the case in which P(c)
and Q(c) contain no free variables,other than c, it will be shown
below that (Rule-Blu) can be reduced to this case. Indeed, we
shall show that the axiom Blu follows from the rule (Rule-Bla),
of the same type a, plus the axiom of choice, when (Rule-BIa)
is applied to P(c) and Q(c) containing a free variable Y.

REMARK 5.1. By applying (Rule-Blu) to new formulae Pl(c)
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and Ql(c), we can replace the conclusion Q(&#x3E;) by the stronger
conclusion A dQ (d). Namely, for

let c n d denote c0, ···, cm-1, do, ..., dk-1&#x3E;, and take Pl(c) and
Ql(c) to be A dP(c n d) and /B dQ(c D d), respectively.
At first sight (Rule-BI u) appears weaker than the strong rule

of bar induction which says that if (Hyp 1) has been proved,
infer (Hyp 2) 039B ··· 039B (Hyp 4) ~ Q(&#x3E;). However, the strong rule
is easily derived from (Rule-BI03C3) by applying (Rule-BI u) to the
following Pi(c) and Ql(c): take Pl(c) to be (Hyp 2) ~ P(c) and
take Ql(c) to be (Hyp 2) 039B ··· A (Hyp 4) ~ Q(c).
The recursion schema corresponding to (Rule-Blq) is as follows.

For any given closed terms Y of type ((0)03C3)0 and G, H of proper
types, introduce a constant 0 and the schema

The schema (Rule-BRu) is stated for the particular closed terms
y, G and H with which 0 is associated; whereas the schema BR,
of § 1, for given 99, applies to all terms Y, G and H of the proper
types.
The recursion schema corresponding to the strong rule of bar

induction is as follows. For each closed term Y of type ((0)03C3)0,
introduce a constant 03BEY and the schema

understood to apply to all terms G and H of the proper types.
For a given closed term Y, in order to obtain a term ey by use of

(Rule-BR03C3) and 03BB-abstraction, such that ey satisfies (5.1) for all
G and H, proceed as follows. Let G1 and Hl be 03BBc · 03BBG · 03BBH · Gc
and 03BBX · 03BBc · 03BBG · 03BBH · H(03BBu · XuGH)c, respectively, and let 03B81 be
the constant associated with Y, G1 and Hl by (Rule-Blu). Define
8y to be ÀG. ÂH - 03BBc · O,CGH. From the schema (Rule-BRu)
applied to Y, G1, Hl and associated 61, it is easy to verify by
03BB-conversions that 03B81cGH equals Gc if Y[c]  lh(c) and equals
H(03BBu · 03B81(c * u)GH)c otherwise. Hence (5.1), since 03BEYGHc = 01 cGH
for all c, G and H.

CODING. If t and u are functionals of types T = (03C41) ··· (03C4n)0
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and 03C3 = (03C31) ··· (03C3k)0, respectively, then t and u can both be
coded as functionals of type v = (03C41) ··· (03C4n)(03C31) ··· (03C3k)0.
Namely, let A t and Bu denote ÂX1..... 03BBXn+k · tX1 ··· Xn
and ÂX1..... ÂXn . u respectively, where X1, ···, X n are

variables of type 03C41, ···, 03C4n, and Xn+1, ···, Xn+k. are variables of
type a1, ’ ’ ’, 03C3k. It is easy to define functionals A# and B# such
that A#(At) = t and B#(Bu) = u for all t and u of types c and ar,
respectively. Thus t and u have been coded as At and Bu, respec-
tively. We can now code the infinitely proceeding sequence
t, uo,..., um, ···&#x3E;, t of type c and Um of type a for all m, as a
functional of type (0)v. Namely, the sequence just mentioned is
coded as At, B2co , ’ ’ ’, Bum, ···&#x3E;. Correspondingly, finite initial
segments t, u0, ···, um-1&#x3E; are coded as At, Bu0, ···, Bum-1&#x3E;.
In the following, for clarity of notation, we shall sometimes omit
the functionals A and B in the coded sequences.

ELIMINATION OF FREE VARIABLES. To eliminate a free variable
t (other than c) from P(c) and Q(c) in (Rule-BI03C3), at the expense
of a possible change in a, proceed as follows. We indicate the
presence of t by the notation P(c, t ) and Q(c, t). Code infinitely
proceeding sequences t, c, ..., cm, ···&#x3E; as functionals of type
(0)v as described in the preceding paragraph, with finite initial
segments coded correspondingly. Define Pl and Q1 as follows.
 P1(&#x3E;) and Q1(&#x3E;) are defined to be true. P1(t, c0, ···, cm+1&#x3E;)
and Q1(t, c0, ···, cm-1&#x3E;) are defined to be P(c0, ···, cm-1&#x3E;, t)
and Q(c0, ···, cm-1&#x3E;, t ) respectively. If (Hyp 1), ···, (Hyp 4)
for P and Q have been proved as formulae with the free variable
t, then (Hyp 1), ···, (Hyp 4) preceded by the quantifier A t can
also be proved. But the latter formulae imply (Hyp 1), ···, (Hyp 4)
for Pi and Q1. Hence, by (Rule-BIv) applied to P1 and Q1 we
conclude A tQ1(t&#x3E;) by Remark 5.1, above. Thus A tQ« ), t).
PROOF OF Blu FROM (Rule-BI,, ), WHERE v = ((0)03C3)03C3, by use of

the axiom of choice. By the axiom of choice, /B oc V nP(«n) is

equivalent to ~ Y ~ 03B1P(03B1(Y03B1)), so Blu is equivalent to

Define Pl(c, Y) and Ql(c, Y) to be

and

respectively. It is easy to prove (Hyp 1), ···, (Hyp 4) for Pl
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and Q, in H03C9, treating Y as a free variable. Hence ~ YQ1(&#x3E;, Y)
by (Rule-Blu) applied to Pl and Q, with free variable Y. This is
the desired conclusion BI03C3. Finally, the free variable Y can be
eliminated from (Rule-BI03C3) by use of (Rule-BI03BD) as in the

preceding paragraph.

PROOF OF BRu FROM (Rule-BR03BD), WHERE v = ((0)03C3)03C3. In the
following discussion the strong version (5.1) of (Rule-BR03BD) is

needed. We shall construct primitive recursive terms Z, D, E
and F such that if 99 denotes 03BBY · 03BBG · 03BBH · 03BBc · 03BEZ(EG)(FH)(DYc)
then 99 can be proved in T to satisfy the schema BRu, assuming
the schema (5.1) of the strong version of (Rule-BRv) for ez.

Let 00’ denote 03BBX1 · ··· · 03BBXk · 0, where X1, ···, Xk are

variables of types 03C31, ···, ak respectively, where a = (03C31) ··· (03C3k)0.
In the rest of this paper, [c] denotes any primitive recursive
functional of c such that [c]i = ci for all i  lh(c). In the present
discussion we make [c] specific by requiring [c]i = 0°’ for all

i ~ lh(c). Let A, A#, B and B# be the functionals discussed in
the paragraph on coding, above. It is easy to define primitive
recursive functionals such that DYc = AY, Bc0, ···, Bcm-1&#x3E;
and D#(DYc) = c, for all Y and c = (c0, ···, cm-1&#x3E;. Define
Z to ÂX - {1+A#(X0)(03BBn · B#(X(n+1)))}, where X is a variable
of type (0 )v. Using the fact that B#003BD = 003C3 (because B003C3 = 003BD),
it is easy to verify Z[DYcJ = 1+Y[c] in T. Hence

Thus the mapping of each Y and c into DYc maps the tree of Y
(i.e., the set of c such that Y[c] &#x3E; lh(c)) isomorphically into the
tree of Z. Bar recursion of type a (resp. v) is, of course, just a kind
of transfinite recursion over the tree of Y (resp. Z).

Define E to be ÂG - ÂW - G(D#W), where W is a variable of
type v. Define F to be 03BBH · AS - 03BBW · H(03BBu · S(Bu)) (D#W),
where u, S and W are variables of types a, v and (a)p, respectively,
where p is the type of Gc. If 99 is defined as above, it is easy to prove _
in T (essentially by 03BB-conversions) that p satisfies the schema
BRu, assuming the schema (5.1) for ez.

6. Functional interprétation by use of (Rule-BR,,)

From a glance at § 3 we see that the proof of Theorem 3A
remains valid when BIQ and BRu are replaced by (Rule-BI03C3)
and (Rule-BRu), respectively. (The strong version (5.1) of
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(Rule-BRo) is needed because the variable a of Lemma 3C is
contained in the term H of BR03C3.) Thus we obtain:

THEOREM 6A. Every theorem of H*03C9+(Rule-BI03C3) has a func-
tional interpretation in T+(Rule-BR03C3).

Corresponding to Theorem 4A we have:

THEOREM 6B. The negative version of (4.1) has a functional
interpretation in T + (Rule- B Rv) for suitable v.

PROOF. Theorem 6B follows from Theorem 4A plus the reduc-
tion, given in § 5, BR03C3 to (Rule-BR") in T.

There are two other methods of proving Theorem 6B which
bring out some points of interest. By Theorem 6A it is sufficient
to prove:

THEOREM 6C. The negative version of (4.1) is provable in
H*03C9+(Rule-BI03BD) for suitable 03BD.

FIRST PROOF OF THEOREM 6C. It is easily seen that the axiom
of choice is provable in Il:. Theorem 6C now follows from the
proof, given in § 5, of BI q in Il. from (Rule-BI,,) and the axiom
of choice.

SECOND PROOF OF THEOREM 6C. This proof is based on the idea
(suggested to the author by G. Kreisel) of making the passage
from an axiom to a rule in Z03C9. Namely, consider the contra-
positive of (4.1):

(6.1) ~ F ~ n  A(n, Fn, F(n+1)) ~ ~ n ~ X ~ Y  A(n, X, Y),
which is equivalent to (4.1) in Z03C9. By using the trick which
Kreisel uses in [6] (Technical notes, III) we can derive (6.1),
regarded as an axiom, from the corresponding rule in Z03C9. Namely,
let (Rule-6.1) denote the rule which says that if the premise of
(6.1) has been proved then the conclusion may be inferred. Take
. A1(n, X, Y) to be /B F V n. A (n, Fn, F(n+1)) ~  A (n, X, Y).
Then ~ F ~ n  Al(n, Fn, F(n+1)) is easily proved in Z..
Hence by (Rule-6.1) we obtain ~ n ~ X ~ Y  A1(n, X, Y),
which implies (6.1).

It is easy to eliminate a free variable Z from the formula A
in (Rule-6.1). Namely, suppose ~ F V n. A (n, Fn, F(n+1), Z)
has been proved. Then ~ Z ~ F ~ n  A(n, Fn, F(n+1), Z) is

provable. Take -1 B(n, U, X, Z, Y) to be n A (n, X, Y), where U
is a variable of the same type as Z. Then
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By considering the pair W, F) to be a new functional G such
that Gn = Wn, Fn&#x3E;, and applying (Rule-6.1), we infer

from which the desired conclusion

follows.
Theorem 6C can now be proved by paralleling the discussion

of § 4, after first replacing (4.1) by (6.1) and then replacing the
axioms (6.1), (6.1)-, BI03C3 and (BI,,)- by the corresponding rules.

7. Functional interpretation in H03C9+(Rule-BI03BD)+AC03BD03C4

The purpose of the present section is to show that if a formula
D is a theorem of H*03C9+(Rule-BI03BD) then Gôdel’s translation D’
can be proved in H03C9+(Rule-BI03BD) with the help of the axiom of
choice.

From this and Theorem 6C together with the remarks at the
beginning of § 4, we will have a consistency proof of Z03C9+(4.1)
relative to H03C9+(Rule-BI03BD)+AC03BD03C4.
By Gôdel’s paper [1] and the remarks made in § 2, the

mapping of each formula D into D’ sends the axioms and rules of
inference of Ht into theorems and derived rules of inference of
T and hence of 1Iw (since H. contains T). Thus it remains to

show that this mapping sends (Rule-BI03BD) into a derived rule of
H03C9+(Rule-BI03BD)+AC03BD03C4. Hence suppose (Hyp 1)’, ..., (Hyp 4)’
have been proved, the notation being as in § 1. We must show
how to infer Q«»)’ in H03C9+(Rule-BI03BD)+AC03BD03C4.

It is easy to verify, for all formulae D and E, that

(D - E)’ ~ (D’ ~ E’ ) and [A xE(x)]’ ~ A x[E(x)]’ are theo-

rems of H03C9; of course [~ xE(x)]’ is essentially ~ x[E(x)]’. Using
these facts we conclude, in 1Iw,
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Observe that (7.1)-(7.3) are just (Hyp 1)-(Hyp 3) applied to
the formulae P(c)’ and Q(c)’. But (7.4) is not in the proper form
of (Hyp 4). However, by use of AC03BD03C4 we can prove

with free variable c. From this and (7.4) we get

which is (Hyp 4). Hence Q(&#x3E;)’ by (Rule-BI03BD).

Appendix

The purpose of this appendix is to give a new, improved proof
of Theorem (ii) of Howard and Kreisel [2], page 351, which says
that

is derivable from BI03C3 in Z03C9, where J is the type of X and Y.
Since (2), below, is equivalent to (1) in Zw, and since Z. contains
I-1., it is sufficient to prove:

THEOREM 1. In J03C9+BI03C3 we can derive 

PROOF. We shall reason informally in H03C9+BI03C3. For sequences
c0, ···, Ck-l) with components ci of type a, where k = lh(c),
define P(c) to be (~ i  lh(c)) J A(i, ci_l, ci), with the under-
standing that P(c) is false if lh(c)  1. Take Q(c) to be P(c).
To prove Theorem 1 it suffices to derive a contradiction from
the assumptions

and

by applying Blu to the P(c) and Q(c) just defined. In the notation
of § 1: (Hyp 1) follows from (3); (Hyp 2) and (Hyp 3) are auto-
matic since Q(c) is the same as P(c). To verify (Hyp 4), assume
~ uQ(c * 2c). Thus

where k = lh(c). But, by (4), there exists u such that
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1 A(k, ek-1 u). Taking this value for u in (5), we conclude
(~ i  lh(c)) 1 A(i, ci-,, ci), which is just Q(c).
Thus (Hyp 1), ···, (Hyp 4) have been verified. Hence Q(&#x3E;)

by Blu. But -1 Q( &#x3E;) by the definition of Q(c). Thus we have
obtained the desired contradiction.
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