
COMPOSITIO MATHEMATICA

PIERRE ROBERT
On some non-archimedean normed linear spaces. V
Compositio Mathematica, tome 19, no 1 (1968), p. 61-70
<http://www.numdam.org/item?id=CM_1968__19_1_61_0>

© Foundation Compositio Mathematica, 1968, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1968__19_1_61_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


61

On some non-Archimedean normed linear spaces

V

by

Pierre Robert

1. Introduction

This paper is the fifth of a series published under the same title
and numbered I, II, .... The reader is assumed to be familiar

with the definitions, notations and results of Parts 1 to IV.
The problem studied by C. A. Swanson and M. Schulzer in

[32] and [33] is that of the existence and the approximation of
the solutions of a class of equations in Banach spaces.

In this Part we generalize Theorems 4 and 5 of [33] to arbitrary
V-algebras and V-spaces. The hypotheses of [33] are slightly
weakened.

2. Equations in V-algebras

In this Section, X is a V-algebra.
We consider two points, x, y E X which have the following finite

or infinite expansions:

and we assume that xo admits a pseudo-inverse x-10 such that

It follows from Theorem 11-6.6 that:

THEOREM 2.1. The element x admits a pseudo-inverse x 1 and
the equation xw = y admits a pseudo-solution z = x-1 y (i.e.
xz == y).
The problem is to make use of the known expansions of x and y

to obtain approximations to z and x-1, as defined in the above
theorem. The sequences {zn} and {un} defined by
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will be shown to approximate z and x-1, respectively, provided
the rates of convergence of the series 03A3xn and 03A3yn satisfy certain
conditions.
More precisely, we shall consider two sets of assumptions on

the rates of convergence of the series 03A3xn and 03A3yn and, under
these assumptions, we shall obtain upper bounds for the values of
iz-z.1 and |x-1-un|.

In the first case we assume that

In the second case, our assumptions are that

The interest of the second case lies in its applicability in V-
algebras which admit distinguished bases with many elements
having the same norm (e.g. the V-algebra 15’o of 111-5). In such
cases, the norms of the terms in the expansions of x or y will not
necessarily decrease as rapidly as required by (V.4), and to sum
up the terms having the same norms may be inconvenient or
difficult.

THEOREM 2.2. (i) If (V.4a) and (V.4b) hold, then the sequence
{zn} defined by (V.2) converges to z and

if for all integers n, |xn| ~ 0, then {zn} converges to z.
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Before proving the theorem, we note that if yo - e and y.:= 0
for all n ~ 1, then (V.4b), (V.5c) and (V.5d) are satisfied and,
hence, the following corollary is deduced from Theorem 2.2:

COROLLARY 2.3. (i) If (V.4a) holds, then the sequence {un}
defined by (V.3) converges to x-1 and

(ii) If (V.5a) and (V.5b) hold, then

|x-1-un| ~ |xn||x-10|2 Max {|x0|, 1} for all n such that |xn| 1 =F 0;
if for all integers n, |xn| ~ 0, then {un} converges to x-1.

PROOF oF THEOREM 2.2. One verifies directly that

Thus,

and 

Both (V.4b) and (V.5c) imply |y| ~ |y0|; hence, from Theorem
II-6.6 (ii ) and the relation 1 ~ |x0||x-10|:

This shows that both (V.6) and (V.7) are satisfied for n == 0.
We complete the proof by induction, and for each set of assump-
tions separately.

(i) In the first case, suppose that (V.6) is satisfied for n =

0, 1, 2, ..., m-1.
From (V.4b) and Theorem 1-3.2 (ii):

from (V.4a), Theorem 1-3.2 (ii) and (V.9):
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from (V.2a) and the induction hypothesis:

It follows from (V.8) and these three inequalities that (V.6)
holds for n = m and hence for all n.

The convergence of p-n to 0 implies that limn~~|z-zn| - 0
and, consequently, {zn} converges to z.

(ii) In the second case, we note that (V.5a) implies that when
|xm| 1 =A 0, then |xn| ~ 0 for n = 0, 1, ..., m - l. Suppose that (V.7)
holds for n = 0, 1, ..., m-1. Then an argument similar to that
conducted in the first case shows that (V.7) holds also for n = m.

If for each integer n, |xn| ~ 0, the convergence of the series
03A3xn implies, as in the first case, the convergence of {zn} to z.
APPLICATION. Let Z be an arbitrary V-space. Let {An : n ==

0, 1, 2, ...} be a sequence of linear operators in the V-algebra
(Z).
Assume that, in the norm of (Z),

Assume also that A o is pseudo-regular, with pseudo-inverse
A-10, and that

Under these assumptions the equation

has a solution z for each w E Z.

Indeed, from Corollary 2.3, A has a pseudo-inverse A-1, so that
z = A-lw is a solution of (V.12).

Furthermore, it follows from (V.3) that A-1 is a limit of the
sequence {Bn}:

and, by the linearity of the operators A-10, z is a limit of the

sequence {zn}:

(Compare this result with the results of Section 4 below.)
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3. The équation Ax = y

In this section, X and Y are V-spaces, A E O(X, Y).

DEFINITION 3.1. Let y E Y and D C X.

(i) The equation Ax = y is said to have the pseudo-solution
z in D if z ~ D and Az = y.

(ii) The equation Ax = y is said to have a unique pseudo-
solutions in D if it has at least one pseudo-solution z in D and if
z’ == :s for all pseudo-solutions in D.
We consider the linear operator A o ~ (X, Y ) and assume that

A o has a bounded pseudo-inverse A-10 on its range A0(X). The
operator A-10 is linear.

THEOREM 3.2. Let yo E A0(X) and u Ao’yo. If there exists a
ball D = S’(u, r), r &#x3E; 0, such that K = |A-10|A0(D) and such that
the following conditions (V.13) and (V.14) are satisfied:

then, for all y E A0(D) the equation Ax = y has a unique pseudo-
solution z in D. Furthermore, the sequence {zn} defined by

converges to z.

PROOF: Let y’ - y-yo. Since y E Ao(D), A-10y E D and

Since, from (V.14), (A-Ao)x e Ao(X ) for all x E D, the equation

is equivalent, for x E D, to the equation

where

From (V.14)

From this inequality and (V.16), it follows that

Thus, L maps D into itself.
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From (V.13), we have, for all x1, x2 ~ D:

Since 0 is the only accumulation point ôf the norm range of a
V-space, it follows that

The contraction mapping principle ([19], Vol. I, p. 43) can be
applied to L on the closed sphere D, to conclude that the equation
(V.17) and, hence, the equation (V.18) have a unique pseudo-
solution z in D.
The contraction mapping principle also asserts that the sequence

{zn} defined by

converges to the pseudo-solution z.
Since K = |A-10|A0(D) ~ |A-10|A0(X) and |A-A0|D ~ |A-A0|X,

we see that the theorem holds if, in (V.13), |A-A0|D is replaced
by 1 A - Ao lx and/or if, in one or both of ( V.13 ) and (V.14 ), K is
replaced by |A-1|A0(X).

This theorem extends Theorem 4 of [33] (Th. 7.1 of [32]) to
arbitrary V-spaces.
APPLICATION. For some integer k ~ 1, let X = Y = ’9k, where

.9k is defined in Section 4 of Part III.
We consider an operator F e O(pk) such that

(Examples of such operators are F = Fn where Fnx = x+x",
n = 2, 3, ..., or Fnx = x(1+~n), n = 1, 2, ...).
Let 2 be the operator defined in Section 6 of Part IV; namely:

Consider the equation

(i.e.: y(03BB)+~0(1/03BB)e-t/03BBF(x(t))dt = 03B1x(03BB)), where y ~ pk and ais
a real number.
We shall apply Theorem 3.2 to prove that (V.20) has a unique

pseudo-solution in f!lJk when

(V.21) 03B1 ~ n! for each integer n &#x3E; k.



67

Define, for x E f!lJk:

The equation (V.20) is equivalent to the equation

It follows from the results of Section 6, Part IV, that if 03B1 ~ n !
for each integer n &#x3E; k, A o = 03B1I-L is pseudo-regular and that
its pseudo-inverse A-10 is defined on all of pk, with 1 AÕll = 1 Aol =1.
To apply Theorem 3.2, select ya = u = 0 and r = 03C1-k. Then,

D = pk.
Since A - A o = L(I-F) and |L| = 1, we have from (V.19)

and hence, (V.13) is satisfied.
Clearly (V.14) is also satisfied since (A-Ao) maps 9, into

itself and since |A-10| = 1.. 
The conclusion is that (V.22) and (V.20) have a unique pseudo-

solution z in gk when (V.21) holds. Furthermore, z is a limit of
the sequence {zn} defined by

Other examples of applications of Theorem 3.2 will be found
in [32].

4. The equation Ax = y involving expansions of A and y

As in the previous Section, X and Y are V-spaces, A E O(X, Y)
and we consider the equation Ax = y. However, we now suppose
that A and y are known from their finite or infinité expansions

We assume that A n E O(X, Y) for n = 1, 2, ...; that

A o E J(X, Y) and that yo E A0(X). We also assume that A o has
a pseudo-inverse A-10 on its range A0(X). Let u = A-10y0.

Suppose that there exists a ball D = S’(u, r), r &#x3E; 0, such that

K=|A-10|D and such that the following conditions (V.23) - (V.26)
are satisfied:
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(V.24) |Anx| ~ rK-1 min {1, |An|D} for all n ~ 1 and all x e D;

(V.26) In Y, the ball S’(0, rK-1) is contained in A0(X).
THEOREM 4.1. Under the conditions above, the equation Ax = y

has a unique pseudo-solution z in D.

PROOF : The convergence on D of the series 03A3n~0An implies
that limn~~|An|D = 0. Therefore, from (V.24), limn~~|Anx| = 0
for all x e D and, hence, the series 03A3n~1Anx is convergent on D.
Then, it follows, also from (V.24) that

A consequence of (V.25) and (V.26) is that yn e Ao(X) for all
n ~ 1 and that

From the linearity of Ao we conclude that y e A0(X) and the
last inequality gives

Hence: 

The relations (V.23), (V.24), (V.27) and (V.28) establish the
applicability of Theorem 3.2. Thus, Ax = y has a unique pseudo-
solution z in D.
As in Theorem 2.2, we now seek an approximation to the

pseudo-solution z. We consider the sequence {zn} defined by

The existence of this sequence is guaranteed by the following
lemma.

LEMMA 4.2. Let u, == 03A3ni=0 yi - 03A3ni=1 Aizn-i, n = 1, 2, ....
The domain of A-10 contains all Un, n = 1, 2, ... and z. E D
for aIl ’fi, = 0, 1, 2, ....

PROOF: Clearly zo E D. Suppose that z; E D for i = 0, 1, 2, ..., 
n-1. Then from (V.24)

and (V.26) implies that Aizn-i E A0(X) for i = 1, 2, ..., n.
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It was just shown that yi ~ A0(X) for all i ~ 0. Hence,
Ui E A0(X) for i = n. This induction shows that ui e A0(X) for
all i ~ 1, provided E D for all i &#x3E; 0.

By induction, zi ~ D for all i &#x3E; 0, since by (V.25) and the
above inequality:

n

|A-10un-A-10| ~ KI 1. (yi-Aizn-i)| ~ K · rK-1 = r.
i=l

In Theorem 4.3 we show that z. is an approximation to z and
we give an upper bound for |z-zn|. As in Theorem 2.2, the

degree of this approximation depends on the rates of convergence
of the series 03A3n~0An and 03A3n~0yn. In that respect, we make two
distinct sets of additional assumptions on A n and yn . First:

secondly:

Assumptions (V.30b) and (V.31d) imply (V.25).
THEOREM 4.3. (i) (V.30a) and (V.30b) hold, then the sequence

{zn} defined by (V.29) converges to z and

(V.32) |z-zn| ~ r03C1-n Max (1, K-1} for n = 0, 1, 2, ....

(ii) If (V.31a), (V.31b), (V.31c) and (V.31d) hold, then

( V.33 ) |z-zn| ~ rlAnlD Max {1, K-1} for all n
such that |An|D ~ 0;

if for each integer n ~ 0, |An|D ~ 0, then the sequence {zn}
converges to z.

PROOF: From (V.27), it follows that (A-Ao)z e Ao(X). Hence
[y-(A-Ao)zJ belongs to the domain of AÕ1. It may be verified
directly that
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From the definition of {zn} and the linearity of A-10, we have,
for n = 1, 2, 3, ...

Hence,

where

and, since z E D and zi E D for all i ~ 0 (Lemma 4.2),

Since 1 ~ |A0|D · |A-10|D,

So, (V.32) and (V.33) are both satisfied for n = 0.
The rest of the proof is conducted, for each set of assumptions

(V.30) and (V.31), by induction, and exactly as in Theorem 2.2.
We omit this later part of the proof.

It is easily verified that Theorems 4.1, 4.3 and Lemma 4.2

hold if in the hypotheses (V.23), (V.24), (V.30a), (V.31a), (V.31b),
(V.31d) and the estimate (V.33), we change all norms on D(|An|D)
to norms on X(tAnlx).

If we assume that X = Y and that all operators An are linear,
and that the above change to norms on X is made, the results of
Theorem 4.1 and 4.3 are refinements of those of the Application
of Theorem 2.2.

Applications can be found in [32].

(Oblatum 18-3-66)


