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On some non-Archimedean normed linear spaces
IV

by

Pierre Robert

Introduction

This paper is the fourth of a series published under the same
title and numbered I, II, .... The reader is assumed to be familiar
with the definitions, notations and results of Parts I, II and III.

This Part is devoted to the study of bounded linear and non-
linear operators on V-spaces.
We recall two conventions estabiished in previous Parts:
(i) In a V-space the relation x = y means that |x-y| = 0;

strict identity between x and y is indicated by symbol "x ~ y".
(II ) Whenever two or more V-spaces will be considered simul-

taneously, it will be assumed that the real number p which serves
to establish the norms is the same for all of these spaces (See
Definition II-1.1 ).

1. Définitions and notations

Unless otherwise specified, X and Y will denote two V-spaces
over the same field of scalars F ; Z will denote a closed subset of A.
An operator from Z to Y is a single valued mapping defined on all
of Z with range in Y.

DEFINITION 1.1. An operator A from Z to Y is said to be linear
on Z if

for all oc, f3 e F and all u, v E Z such that 03B1u+03B2v ~ Z.

DEFINITION 1.2. Let A be an operator from Z to Y.
(i) The norm of A on Z, denoted by |A|Z is defined by

(IV.1) |A|Z = inf{M ~ 0 : |Au-Av| ~ M|u-v| for all u, v ~ Z}.
(ii) If Z = X, the norm o f A on X is denoted by |A|, i.e.

|A|X = |A|.
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(iii) A is said to be bounded on Z if A Iz  oo.

It follows that A Iz = 0 if and only if for some fixed y e Y and
all u ~ Z, |Au-y| = 0.

If Z is a linear subspace of X and A is linear on Z, (IV.1) is
equivalent to

In X, the balls 5’(0, r), S’(0, r) are closed subspaces of X and
the quotient spaces X/S(O, r), X/S’(O, r) are discrete V-spaces
(See Theorem 1-2.2). Consequently, the norm on X of an operator,
even a linear operator, cannot be determined by consideration
of its values on these balls only (unless, of course, X = S(03B8, r) or
X = S’(03B8, r)). This is in striking contrast to the case of a linear
operator on a Banach space ([7], [36]) where

~A~ == inf {M ~ 0 : ~Ax~ ~ M~x~ for all x ~ S’(03B8, r)}.

In a V-space, if Z D Z’, then |A|Z &#x3E; |A|Z’.
O(Z, Y) will denote the set of all bounded operators from Z

to Y. Y(Z, Y) will denote the set of all bounded linear operators
from Z to Y.

If Z = X = Y, we shall use the notations O(X) and J’(X) in
place of 0(X, X) and f (X, X).
The product AB of two elements A, B of 0(X) is defined by

(AB)x ~ A(Bx) for all x e X. It is simple to verify that

In general, the product of non-linear operators does not satisfy
conditions (11.9) and (11.10) of Definition 11-6.1. and hence 0(X)
is not an algebra. These conditions are satisfied for linear operators
and hence J(X) is a non-commutative subalgebra of the space
0(X ).

0 will denote the zero-operator in 0(Z, Y) : Ou =-= 0 e Y for
all u e Z. I will denote the identity operator in 0(X), i.e. Ix ~ x
for all x e X.

2. The spaces 0(Z, Y) and O(X) of bounded operators

The spaces 0(Z, Y) and 0(X) are linear spaces over the field of
scalars F. Clearly the elements of O(Z, Y) or of O(X) are con-
tinuous mappings on their domains of definition, Z or X.
The norm on Z, defined by (IV.1) has the following properties:
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(i) In accordance with our convention, both the norms on
X and on Y are expressed in terms of the same real number p
(Definition II-1.1). It follows that the norm of an operator in
0(Z, Y) has a norm equal to zero or to p-l for some integer n.

(ii) |03B1A|Z = |A|Z for all A e O(Z, Y ) and all a e F, a =A 0.
(iii) |A+B|Z ~ Max {|A|Z, |B|Z} for all A, B e 0(Z, Y).
Indeed, for all u, v e Z:

(iv) |A+B|Z = Max {|A|Z, |B|Z} whenever |A|Z ~ |B|Z.
To prove this, suppose without loss of generality that

1 A lz &#x3E; |B|Z. Then, for every 8 &#x3E; 0 such that

there exist u = u(03B5) and == v(03B5), in Z, such that

Thus,

It follows that for every e &#x3E; 0,

These results lead to the following theorem on the structure of
0(Z, Y), (and of O(X) when Z = X = Y).
THEOREM 2.1. The space 0(Z, Y), under the norm on Z defined

by (IV.1), is a V-space.

PROOF: It follows from (i)-(iv) above that 0(Z, Y) satisfies
all the defining properties of V-spaces, except possibly for com-
pleteness.
To prove the completeness of 0(Z, Y), consider a Cauchy

sequence {An} in 0(Z, Y). Since (Th. I-3.1)

for any E &#x3E; 0, there exists an integer N(03B5) such that for all u,
v ~ Z and all n &#x3E; N(03B5),
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Let us select an arbitrary point x. of Z. For each x E Z, the
sequence {Anx-Anx0} is a Cauchy sequence in Y; since Y is
complete, this sequence has a limit. Let A be an operator from
Z to Y defined by

We shall show that A is a limit of {An}. For u, v E Z, define

For any 8 &#x3E; 0, there exists N(8) such that for all u, v E Z, all
n &#x3E; N(03B5) and all p &#x3E; 0,

With n fixed, we have, for all u, v E Z:

Since limp~~|yn,p(u, v)| = |limp~~yn,p(u, v)|, we have for
n &#x3E; N(03B5) and all u, v ~ Z:

Hence

This shows that A is a limit of the sequence {An}. As a limit
of a Cauchy sequence A is bounded on Z and

We note that the operator A defined above depends on the
selected point xo. Clearly two different selections of xo will in
general generate two distinct limits for the sequence {An}; the
norm of the difference between two such limits is obviously zero.

3. The spaces J(Z, Y) and (X)
of bounded linear operators

(Z, Y) is the set of bounded linear operators from Z to Y.
To avoid meaningless or trivial statements we shall assume that
Z properly lends itself to linearity arguments. This is achieved by
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requiring that Z be linearly non-trivial, defined as follows: A
subset Z of a linear space is said to be linearly non-trivial if and
only if there exist u, v E Z and oc, 03B2 E F such that

Obviously, any non-trivial subspace of a V-space is linearly
non-trivial.

THEOREM 3.1. The space (Z, Y) is a V-space. The space Jf(X)
is a V-algebra.

PROOF: Using continuity of the operators involved, it is easy
to verify that (Z, Y) is a closed linear subspace of 0(Z, Y). In
,f (X), the product of two linear operators is a linear operator.
Then, the theorem is a corollary of Theorem 2.1.
The following theorems are analogous to theorems valid in

topological normed linear spaces over the real or complex fields
with their usual valuations. The proofs are similar to those of
the corresponding theorems in [36], pp. 18, 85-86, and are
omitted. We shall use the following definition:

DEFINITION 3.2. Let A E (9 (Z, Y). An operator A-1 from A(Z)
to Z is called a pseudo-inverse of A on A(Z) if A-1(Az) = z for
all z e Z.

THEOREM 3.3. If Z is a subspace of X, then A e f (Z, Y) is
continuous either at every point of Z or at no point of Z.

THEOREM 3.4. Let Z be a subspace of X and A e (Z, Y).
(i) A pseudo-inverse of A on A(Z), when it exists, is linear on

A (Z).
(ii) A admits a bounded pseudo-inverse on A(Z) if and only if

there exists a constant m &#x3E; 0 such that m|z| ~ 1 A z for all z e Z.
A linear operator from a Banach space to another is bounded

if and only if it is continuous ( [36], p. 85 ). In V-spaces boundedness
implies continuity but the converse is not true. (See Example 1,
below). A. F. Monna ([24], Part III, p. 1136) has proved that
linear operators from a V-space to its field of scalars F, considered
as a V-space over itself, are continuous if and only if they are
bounded. The following theorem generalizes this result; the proof
is modelled after that of Monna.

THEOREM 3.5. Let A ~ (Z, Y) and suppose that A(Z) is a

discrète and bounded subspace of Y. Then, A is bounded if and
only if it is continuous.
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PROOF: Boundedness implies continuity.
To prove the converse, suppose that A is continuous. Since

A(Z) is a discrete subspace, there exists a &#x3E; 0 such that

(IV.4) y e A(Z) and Iyl  a imply Iyl = o.

Since A is continuous, there exists 03B4(03B5) such that

and therefore, by (IV.4)

Since A(Z) is bounded, there exists M &#x3E; 0 such that 1 YI ~ M
for all y ~ A(Z).

For all z e Z such that |z| &#x3E; 03B4(03B5), we have

Hence, |A|z ~ (M/03B4(03B5)), and A is bounded.
We conclude this section with two examples. The first is an

example of a continuous unbounded linear operator from a

V-space to itself; the second shows that the Uniform Boundedness
Principle ([36], p. 204; [7], p. 66) does not hold in V-spaces, i.e.
a family of bounded linear operators on a V-space which is point-
wise bounded is not necessarily uniformly bounded.

EXAMPLE 1. Let X be a V-space over the real numbers, with a
countable distinguished basis H = {ho, hl, h2 , ...} such that,
for some integer k,

(The space pk of III-4 is such a space. )
Every non-trivial element of X has an expansion in terms of H:

where N ~ 0 and |03B1N|+|03B2N| ~ o.
Let A be an operator from X to itself defined by

Clearly A is linear. A is unbounded since
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Yet, given any integer n &#x3E; 0,

This shows that A is continuous at 0 and, from Theorem 3.3,
that A is continuous on all of X.

EXAMPLE 2. Let X be as in Example 1. Every non-trivial
element x of X has an expansion in terms of H:

For each non-negative integer p, let A p be an operator from X
to itself defined by

i.e.: the image of hn is ho if n ~ p and is hn-p if n &#x3E; p.
The linearity of A. is easily verified. We have

Hence: |Ap| = 03C1p, p = 0, 1, 2 ...
This shows that the family of linear operators {Ap} is a family

of bounded linear operators which is not uniformly bounded
since limp~~ p P == 00.

Yet, the family {Ap} is point-wise bounded since |Apx| ~ 03C1-k
for all x c- X. We have shown that the Uniform Boundedness

Principle does not hold in V-spaces. ([36], p. 204.)

4. Characterization of bounded linear operators

In this section X and Y are V-spaces, Z is a linear subspace
of X which is not necessarily closed, H is a distinguished basis
of Z.

With each element h E H, let there be associated an element
Ah E Y such that for some M &#x3E; 0,

Each z E Z is a sum of an expansion in terms of H:

(IV.8) z = 03B11h1+03B12h2+..., 03B1i ~ F, 03B1i ~ 0, |hi| ~ |hi+1|.
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If {hl, h2, ...} is infinite, then limn~~|hn| = 0 and, by (IV.7),
limn~~ 1 Ahn = o.
We extend the definition of A to all of Z, by setting

(IV.9) Az = 03B11Ah1+03B12Ah2+ ..., z given by (IV,.8 ).

Since Y is complete, this series converges and Az is defined,
up to addition of trivial elements.

Clearly, A is a linear operator from Z to Y. It is also bounded
since, by Lemma 1-5.5,

In view of (IV.7), |A|Z = M.
We have constructed an element of (Z, Y). It is important

to note that the values of A on H were completely arbitrary,
except for conditions (IV.7).
Now, suppose that B is a continuous linear operator and that

Then

(recall that (H) is the set of all finite linear combinations of
elements of H ).

Since (H) is dense in Z and B-A is continuous, we must have

This result can be stated as follows:

THEOREM 4.1. Let X and Y be V-spaces and let Z be a linear
subspace (not necessarily closed) of X.

(i) An element A of J(Z, Y) is determined, up to addition of
trivial elements, by its values on a distinguished basis H of Z, and

|A|Z = inf {M &#x3E; 0 : |Ah| ~ Miki for all h ~ H}.
(ii) If a single valued mapping A is arbitrarily defined on H

except for the requirement that

be finite, then A can be extended by linearity to all of Z and
|A|Z is equal to (IV.10). Furthermore, if B is a continuous linear
operator from Z to Y and 1 Bh-Ahl = 0 for all h e H, then
Bc-.f(Z, Y) and 1 B-A Iz = 0.
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APPLICATION 1. The important feature of the assertion of part
(ii) of the above theorem is that, provided (IV. 10) is finite, the
values of A on the elements of H are arbitrary.
The same is not true in an infinite dimensional Hilbert space X

in which H = {h1, h2, h3, ...} would represent a countable com-
plete orthonormal basis. As two examples, consider A and B
defined on H by

Then

However, neither A nor B can be extended by linearity to all of
X : they are not defined at the point S = 03A3~n=1 hn/n.

If we suppose now that X is a V-space with distinguished
basis H = {h1, h2, ...} and limn~~ 1 h,, == 0, then the mapping
A of (IV.11 ) is not acceptable under Theorem 4.1 since

suph~H|Ah|/|h| = oo ; the mapping B can be extended into an
element of (X) since suph~H|Bh|/|h| = 1.

APPLICATION 2. Theorem 4.1 finds an application in a paper
of H. F. Davis [4]. We present the problem of [4] in our own
terminology. The notation is that of Section 4, Part III.
Let X = Y = R. Let Z be the open subspace of R for which

the set 03A60 u E (see (III.16 ) ) is a Hamel basis.
Let A’ be a single valued mapping defined on 03A60 ~ E by

where 03B2(n) is a scalar and f03B1 is an element of R.
Since every element of Z is a unique finite linear combination

of the elements of OEo w E, A’ can be uniquely extended by linear-
ity to all of Z. Let B denote this extension.
The main theorem of Davis [4] asserts that a necessary and

sufficient condition for B to be continuous on Z is that, in the

f/J-asymptotic norm on R:
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The result is obtained from Theorem 4.1 through the following
argument: 
00 is a distinguished basis of Z ~ P0 (see Section 111-4). The

mapping A’ is defined on 00 in such a way that supn~01 A’ Pn 1 Ilp. 1
= 1. Thus, by Theorem 4.1 (ii), there exists a "unique" linear
operator A from Z to 9 which agrees with A’ on 00; this extension
A is such that |A| - 1 and since

we must have

Hence, the above linear operator B is continuous on Z if and
only if |Bz-Az| = 0 for all z E Z; i.e. B is continuous if and only
if f03B1 = Bea = Ae03B1, so that ( Iv.13 ) is satisfied.
The reader will notice that the definition of continuity which

we use and the définition of "asymptotic continuity" given by
Davis ([4], p. 91) are different. Keeping to our own terminology,
Davis calls an operator A "asymptotically continuous" if |x|  p,,
implies |Ax|  03C1n. This is equivalent to saying that A is con-
tinuous if and only if A iz  1. However, in the example above
JA Iz = 1 and the two definitions of continuity lead to identical
results.

This definition of "asymptotic continuity" is too restrictive.
An operator which is asymptotically continuous is also continuous
in the topological sense but the converse is not true. The desira-
bility of removing such restrictions is comparable to the desira-
bility of accepting asymptotic expansions which are not of the
Poincaré type (see Section 111-3, e).
APPLICATION 3. Define the linear operator L from the space

15’o to the space 5i§ of Section 111-5 by:

Since

and

L can be extended (by Theorem 4.1) to all of .1io and IL 1 = p-2.
If, in the asymptotic norm on K0, the function x admits the

expansion
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then, in the asymptotic norm on K’0,

This result provides means to obtain asymptotic expansions of
Laplace transforms in two variables. See [6]. For example, since
Jo(Yuv) has the asymptotic expansion:

(Compare with [6], p. 100.)

5. Inverses and spectra in /(X)

The V-space J(X) is a V-algebra.
In accordance with Definition 11-6.2, a pseudo-identity in J(X)

is a linear operator I’ such that II, -Il = 0. 
The definition of a pseudo-inverse A-1 of A on its range A(X)

has been given (Definition 3.2). The operator A-1 belongs to
Y(X ) if and only if it is bounded and defined on all of X. There-
fore, A is (pseudo-) regular in the sense of Definition 11-6.3 if
and only if it admits a bounded (pseudo-) inverse and A (X ) - X.
In such a case, we shall say that A admits a (pseudo-) inverse
A-1, without any mention of the range of A.

Let A03BB = A-03BBI. By Définition 11-6.7, A belongs to the spectrum
a(A ) of A if and only if Ax is singular.
Theorems 6.6, 6.8 and 6.9 of Part II apply to the V-algebra

J(X), (with x EX replaced by A e Y(X) and e replaced by I).
The formulation of these three theorems for bounded linear

operators on a V-space should be compared with similar theorems
for bounded linear operators on Banach spaces: see [36], Theorems
4.1-C and 4.1-D, page 164, and Theorem 5.1-A, page 256.

NOTE : As in Theorem 5.1-A of [36], we can add to the statement
of Theorem 11-6.9 the following precision: Let A e (X), |A| &#x3E; 1;
if for some scalaru e F, A03BC has a pseudo-inverse A-103BC on its range
A e (X) and |A-103BC|  1, then, for all 03BB e F, A03BB has a pseudo-inverse
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on its range A03BB(X) and the topological closure of the range of AÀ
is not a proper subset of the topological closure of the range of
Ap.
The proof is identical to that given in [36], p. 256. Our modifica-

tion of Riesz’s Lemma (Theorem I-6.1) must be used.

6. Complete spectral decompositions

The scalar A is called an eigenvalue of A e J(X) if for some
x03BB e X, |x03BB| 1 =F 0, Ax03BB = 03BBx03BB. The point x03BB is called an eigenelement
associated with A. The set

is a closed subspace of X and is called the eigenspace associated
with Â.

DEFINITION 6.1. An operator A ~ (X) is said to have the

complete spectral decomposition {(03BBi, hi) : i E J} if for each i in the
index set J, Ahi = Aihi, not all Âi are equal to 0 and the set of
eigenelements H = {hi : i ~ J} is a distinguished basis of X.

THEOREM 6.2. If A has a complete spectral decomposition
{(03BBi, hi) : 1 e J), then:

(i) |A| = 1;
(ii) For all 03BB 0 {03BBi : i ~ J}, A03BB is pseudo-regular and 1 Ax =

|A-103BB| = 1.
(iii) If 03BBi ~ 0 for each i e J, then A is an isometry on X, i.e.

|Ax| = |x| for ail E X.

PROOF: (i) The operator A satisfies (IV.7) with M = 1. Thus,
by Theorem 4.1, 1 A = 1.

(ii) Let x be an arbitrary point in X. It admits a non-increasing
expansion in terms of H:

By Lemma 1-5.5, 1 x == |h0|.
Then,

If Â 0 {03BBi : i ~ J}, |A03BBx| = ho = |x|. It follows from Theorem

4.1, that the operator Axl, defined on H by
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is a pseudo-inverse of Ax. If x is given by (IV.14),

Thus, |A-103BBx| = |h0| = |x|.
(iii) follows from (IV.14) and (IV.15) with = 0, 03BBn ~ 0 for

each n e J.

COROLLARY 6.3. If A e J(X) admits a complete spectral de-
composition, then the cardinality of the set of its eigenvalues
cannot exceed the dimension of the space.

PROOF: Let {(03BBi, hi) : i ~ J} be a complete spectral decomposi-
tion of A. If the cardinality of the set of eigenvalues exceeds the
dimension of the space, i.e. the cardinality of the distinguished
basis fhi : i e J}, there exists an eigenvalue 03BB which does not
belong to {03BBi : i e JI. Since 03BB is an eigenvalue, A03BB is singular. This
contradicts (ii) of Theorem 6.2.

In the following Lemma 6.4 and Theorem 6.5, the assumptions
and notations are as follows:

A e (X) admits a complete spectral decomposition

For an arbitrary scalar

Xx denotes the closed subspace generated by HA. Clearly, if 03BB
is not an eigenvalue, by Theorem 6.2(ii), 03BB ~ 03BBi for each i c- j
and, therefore, J03BB, H03BB and Xx are empty. If 03BB is an eigenvalue,
then Z = 03BBi for some i E J and X03BB is the non-empty eigenspace
associated with A.

Let PA denote a linear operator from X to X, defined on H by

By Theorem 4.1, |P03BB| = 1 if Xx is not empty and 1 Px = 0 if
X03BB is empty.

LEMMA 6.4. For all x e X and all scalars A:
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PROOF: Given x E X, x admits an expansion of the form

(For notation, see Section 5 of Part I). Thus,

By Lemma 1-5.5,

Lemma 6.4 is the equivalent, in V-spaces, of a theorem of C. A.
Swanson, valid for Hilbert spaces: Theorem 1 of [34], Theorem
2 of [35]. This lemma is used to prove the following comparison
theorem:

THEOREM 6.5. Let B ~ (X) and suppose that 03BB is an eigenvalue
of B, with the associated eigenspace Y03BB. If |B-A| C 1, then:

(i) 03BB is also an eigenvalue of A,
(ii) the dimension of YA is less than or equal to the dimension

of X03BB.

PROOF: Let H’03BB be a distinguished basis for Y03BB. By Lemma 6.4,
we have for each h’ E H’03BB:

Therefore,

Hence, X03BB is non-trivial and (i) is proved.
By Theorem 11-2.4 (Paley-Wiener Theorem), the set PaH’ is a

distinguished subset of X03BB and, by Corollary 11-2.3, the cardinality
of a distinguished basis of Xx is greater than or equal to the
cardinality of PÀH’. (ii) follows.
The following corollaries are immediate:

COROLLARY 6.6. If both A and B admit complete spectral
decompositions and 1 B -A  1, then

(i) A and B have the same eigenvalues,
(ii) for each eigenvalue 03BB, the associated eigenspaces for A and

for B have the same dimensions.



58

COROLLARY 6.7. Suppose that A admits a complete spectral
decomposition and |B-A|  1. If 03BB is an eigenvalue of A but
is not an eigenvalue of B, then B does not admit a complete
spectral decomposition.

EXAMPLE 1. This example shows that the converse of Theorem
6.5(i) is not true, i.e. if A has a complete spectral decomposition
and |B-A| 1  1, an eigenvalue of A is not necessarily an eigen-
value of B.

Let H = {hi : i = 0, 1, 2, ...} be a distinguished basis of a
V-space X, with |hi| &#x3E; 1hi+ll for all i &#x3E; 0. Define A and B by
their values on H (Theorem 4.1):

Ahi = hi if i is even, Ahi == 0 if i is odd,
Bhi = hi if i is even, Bhi = hi+2 if i is odd.

A admits a complete spectral decomposition and, by Theorem
6.2, its only eigenvalues are 0 and 1.

Let x E X . Then for some N = N(x):

Thus, |A-B| C 1.
In accordance with Theorem 6.5(i), the eigenvalue 1 of B is

also an eigenvalue of A. It is easily verified that the eigenvalue
0 of A is not an eigenvalue of B. It follows from Corollary 6.7
that B does not have a complete spectral decomposition.
EXAMPLE 2. The following are linear operators on the space pk

of 111-4, for k ~ 0.

2 admits the complete spectral decomposition {(n!, 99,,); n = k,
k+1, k+2, ...} since 2cpn = n!cpn. ·
2 has arbitrarily large eigenvalues and was studied by T. E.

Hull [15].
Compare 2 with the Laplace Transform ([8], Vol. I ) :
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(ii) For fi &#x3E; 0,

_or admits the complete spectral decomposition

Compare vit p with the Riemann-Liouville fractional intégral
([8], Vol. II):

(iii) For K &#x3E; 1,

 admits the complete spectral decomposition {(1/n, ln) : n =
K, K+15 K+2, ...}. Concerning this convolution product, see,

for example, Mikusinski [23], pp. 174-178 and p. 456.
Since none of the above operators 2, M03BC,  has eigenvalue 0,

they are isometries:

From Theorem 6.2, they have no other eigenvalues than those
given in their respective spectral decompositions above.

7. Note on projections

A. F. Monna [24], [25] has introduced a notion of projection
in non-Archimedean normed linear spaces. In the special case of
V-spaces we have the following:

DEFINITION 7.1. Let Y be a closed subspace of a V-space X.
An operator P E (X) is called a projection on Y if for all x E X,
PxEY and

1 for all

Theorems on projections and comparisons with projections in
Hilbert space theory [7], [36] will be found in Monna [24],
Part IV and [25], Part I.
The existence and non-uniqueness of projections on a given
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subspace Y of X were proved by Monna. The proofs of Monna do
not involve explicitly the use of distinguished bases. We give here
an alternate and simple proof.
Let H(Y) be a distinguished basis of Y and H be an arbitrary

extension of H(Y) to all of X. Denote by Z the closed subspace
generated by HBH(Y).
Define the linear operator P on X by its values on H

(Theorem 4.1):

By Theorem 11-4.4 and Corollary 11-3.4, the spaces Y and Z
are distinguished complements of one another. Therefore for each
x E X, there exist Yae E Y and z., E Z such that x ~ yx+zx. Since
the restriction of P to Y is the identity mapping and its restriction
to Z is the 0-operator:

and

For an arbitrary y E Y, y-yx ~ Y and, since Y and Z are

distinguished subsets of X:

Hence (IV.16) is satisfied. This proves that P is a projection on Y.
The non-uniqueness of the projections on Y is a consequence

of the non-uniqueness of the extensions H of H(Y).
REMARK: The operator PA of Lemma 6.4 is a projection on Xx.

(Oblatum 18-3-66)


