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On some non-Archimedean normed linear spaces
III

by

Pierre Robert

1. Introduction

This paper is the third of a series published under the same
title and numbered I, II, III, .... The reader is assumed to be
familiar with the definitions, notations and results of Part 1 and
Part II.

Certain spaces of functions, mapping a Hausdorff space into a
normed linear space, can be normed in such a way that they
become V-spaces. In this Part III we shall describe two methods
to generate such V-spaces.

In the first type of V-spaces, the norm considered will char-
acterize the asymptotic behaviour of the functions; the resulting
spaces will be called "asymptotic spaces". In the second type,
we shall associate with each function a sequence of scalars, called
"moments", and the norm of a function will depend on the first
non-zero moment; the resulting spaces will be called "moment
spaces".

2. The 0 and o relations

a ) Let 039B be a Hausdorff space and let P and S be arbitrary sets.
We consider functions of the three variables 03BB E A, p E P and
s ~ S. The variable will be called the asymptotic variable;
p and s will be called the primary and secondary parameters
respectively.

b) Let 03BB0 be a fixed non-isolated point of A.
The abbreviation "cd-nbhd of 03BB0" will stand for "closed neigh-

bourhood of Âo in A, deleted of the point Âo itself". A cd-nbhd of
03BB0 has non-void interior. A finite intersection of cd-nbhds of 03BB0
is a cd-nbhd ofAo. _

c ) If f and g are two functions defined on V X P X S, where V
is some cd-nbhd of 03BB0, and with range in a (pseudo-) normed space
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(which may be different for the two functions ), then the relation

will mean that there exists, for each s e S, a positive constant 03B1(s)
and a cd-nbhd V (s ) of Âo such that

In this inequality the norms are those of the appropriate range
spaces.

Similarly, the relation

will mean that for any 8 &#x3E; 0, there exists, for each s E S, a
cd-nbhd V(s, 03B5) of 03BB0 such that

In using the 0 and o symbols, the specification 03BB ~ 03BB0 will
usually be omitted.

These 0 and o relations have the following properties:

Properties (111.7) and (111.8) apply when the range spaces are
(pseudo-) normed rings. The proofs are immediate and the
formulae can be extended to combmations of any finite number
of order symbols. For those and other relations, see [9], Chapter 1.

d) DEFINITION 2.1. A sequence {fn} of functions is called an

asymptotic sequence (as Â - 03BB0) if

(i) fn is defined on Vn X P X S, where Vn is some cd-nbhd of 03BB0;
(ii) all f. have the same range space; and
(iii) fn+1 = o(fn) for each n.
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3. Asymptotic spaces : Definition

a) Let A, P, S be as in Section 2 and ll’ - 039BB{03BB0}.
Let B and Bo be two (pseudo-) normed linear spaces. The

(pseudo-) norms on both spaces will be denoted by ~·~.
Let N be a set of integers such that sup N = oo. The ordering

on N is the natural ordering of the integers. For n E N, 03C30(n) = n,
03C31(n) = 03C3(n) denotes the successor of n in N and 03C3j(n),
i = 2, 3, ... denotes the jth successor of n in N ; the element
m E N such that 03C3j(m) = n is denoted by a-j (n).

b) DEFINITION 3.1. A family of functions 16 = {~n : n ~ N} is
called an asymptotic scale (as 03BB ~ 03BB0) if for each n E N:

(i) 9?n is defined on 039B’  P X S and have range in Bo; and
(ii) the sequence {~03C3j(n) : j - 0, 1, 2, ...} is an asymptotic

sequence.

In analogy with the terminology of J. G. van der Corput [38],
[39] we use the following

DEFINITION 3.2. A function f defined on V X P X S, where V is
some cd-nbhd of 03BB0, and with range in a (pseudo-) normed space
is said to be asymptotically finite with respect to an asymptotic scale
03A6 = {~n : n ~ N} if there exists n E N such that f == 0(~n).

c) Let X be the linear space of all functions defined on

039B’ X P X S, with range in B, which are asymptotically finite with
respect to a given asymptotic scale 0.
For each x c- X, define

and, for some fixed real p, 1  p  oo,

The function defined on X by (111.9) and ( III.10 ) will be called
the 0-asymptotic norm on X.

Since the asymptotic behaviour of a function, as 03BB ~ 03BB0, is

entirely determined by its values on any set of the form V X P X S,
where Tl is a cd-nbhd of 03BB0, the 03A6-asymptotic norm of the differ-
ence of two functions in X which are identical on V X P X S is

equal to zero. Conversely, if a function is defined on V X P X S
and is asymptotically finite with respect to 0, then it can be
arbitrarily extended to all of A’ X P X S and the 03A6-asymptotic
norm of the difference of any two of its extensions is equal to zero.
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d) THEOREM 3.3. The space X, under the 03A6-asymptotic norm,
is a V-space.

PROOF: Using (III.3)-(III.9) one easily verifies that, under the
norm (III.10 ), X has the properties of a pseudo-valued space. The
0-asymptotic norm satisfies (II.1) of Definition II-1.1 and also
(II.3).
To prove the completeness of X, consider an arbitrary Cauchy

sequence (z, : 1 = 0, 1, 2, ...}. Let

From Theorems 1-4.1 and 1-4.2, it is sufficient to prove the

convergence of a particular rearrangement of the series

Without loss of generality, we can assume that none of the
yz’s has zero-norm. Let

Since {zi} is a Cauchy sequence, it follows that q &#x3E; - oo. Also,
for each n E M, the number of yi’s with norms equal to pu is
finite. Let xn be their sum. It follows that

and that the series

can be considered as a rearrangement of (111.11).
We now fix an arbitrary value SES for the secondary para-

meter.

It follows from (111.12) that for each n e M, there exist a
constant oc[n, s] &#x3E; 0 and a cd-nbhd V[n, s] of Â. such that

We can assume without loss of generality that these yen, s]’s
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are nested and are selected in such a way that their intersection
is void. 2

Then, for all i ~ 0,

We shall now define an element x of X by specifying its values
on 039B’  P  {s}.

For Â e A’BV[q, s] we define

For Â e V[q, s], there exists an integer N(03BB, s):

If 03BB E V[n, s] then N(03BB, s ) ~ n. 
For À E V[q, s] we define

We shall now show that x is a limit of the sequence (111.13)
and thus of (111.11).

Let a &#x3E; 0 be given; there exists y such that for all i ~ J,
p-i  e. We assert that, for all i &#x3E; J, j E M,

or, equivalently, that

Indeed, for each s E S, for 03BB E V[j, s], (j E M), Â. E V[a(j), s],
À e V[a2(j), s], ..., A E V[N(Â., s), s] and

2 In addition to these requirements, the choice of the cd-nbhds V [n, s] is

guided by the condition that for A E V[03C3j(q), s], j = 1, 2, . . ·

which implies
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This completes the proof.
The above proof is modelled after the second part of the proof

of [33], Theorem 1 (also [32], Th. 4.2). In [33], the range space B
is a Banach space; we have shown that the completeness of X
does not require the completeness of B.

If B is a (pseudo-) normed ring, the product xy of two functions
x, y E X is defined by

If Bo is a (pseudo)-normed ring, a similar definition of the product
of two elements of 0 can be given.
THEOREM 3.4. Let B and Bp be (pseudo-) normed rings. If for

all m, n e N, ~m~n = 0(~m+n), then X satisfies the properties
(11.9), (11.10) and (11.11) of a V-algebra.
PROOF: If x, y e X and |x| = 03C1-m, |y| = p-n, then by (111.7)

and (111.3) :

Hence, |xy| ~ 03C1-(m+n) = |x| · |y| and (II.11) is satisfied.
One verifies easily that (11.9) and (Il.10) hold.
e) Let x E X have, in the 0-asymptotic norm on X, the follow-

ing expansion:

(111.15) x = aoxo+alxl+a2X2+ ..., xi e X, oci e F.

The expansion (111.15) is said to be an expansion o f the
"Poincaré type" ([11], pp. 218-219) if the sequence {xn : n =
0, 1, 2, ...} is an asymptotic sequence (see Définition 2.1).
When the range spaces B and Bo are identical, 0 C X. A

convergent expansion in terms of the elements of 0 is said to be
an expansion "essentially of the Poincaré type".

In [10] and [11] the desirability, in a theory of asymptotics,
of accepting expansions which are not of the Poincaré type is

highly stressed. In an asymptotic space, expansions which are not
of the Poincaré type can occur if there exist countable distin-
guished sets with elements having arbitrarily small norms and
which cannot be ordered into an asymptotic sequence. Specif ic
examples will be given in the next sections.
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4. Asymptotic spaces : Example I

a) Our first examples of asymptotic spaces are simple and do
not involve any primary or secondary parameters: P = S = 0.
The Hausdorff space 039B is the real interval [0, 03BB], 0  03BB  co,

and 03BB0 = 0. A cd-nbhd of 0 is an interval of the form (0, 03BB’],
0  03BB’ ~ 03BB. The range spaces B and Bo are both the space of the
real numbers. N is the set of all integers and the asymptotic scale
to be used is if) = {~n : n ~ N}, where ~n(03BB) = 03BBn.
Let X = .9 be the space of all real valued functions x on A’

which are asymptotically finite with respect to 16 and with norm
defined by (111.9) and (111.10).

Clearly: 0 C X; ~0(03BB) = 1 and |~0| = i ; ~m~n = 0(~m+n) for all
m, n E N. From this and Theorems 111.3 and 111.4, it follows that
X is a V-algebra. Direct proofs of this result were given by A.
Erdélyi [9], J. Popken [29], J. G. van der Corput [38], [39].

b) To illustrate the results of Parts I and II, we consider the
following subsets of .9:

where Jn : 03BB ~ Jn(03BB) is the Bessel function of the first kind of

order n; 

where 

It is easy to verify that !Î, 0 and 0, are distinguished subsets
of M.

For n = 0, 1, 2, ..., ([8], Vol. II)

Thus, by the Paley-Wiener Theorem (Theorem II-2.4) J is also a
distinguished subset of R.
The set G is also a distinguished subset of R since its elements

have distinct norms: iz.1 = p-". Since z. = o(z,.) is not true for
any n, m &#x3E; 0, the sequence {zn} is not an asymptotic sequence.
An expansion in terms of the elements of G:
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always converges to some element of R. Yet, it is not an expansion
of the Poincaré type (see Section 3, e). Expansions such as (111.19)
are mentioned in [ll].
For aIl f3 =F 0,

Thus (03A6, G ) is a distinguished pair of subsets of R. A consequence
is that there exists a distinguished basis of Q which contains
and G. Another consequence is that a function which is the sum
of a series (111.19) cannot admit an expansion in terms of elements
of 03A6, i.e. in terms of powers of À.
The set E is contained in the closed subspace generated by 00.

Indeed, it is well known that for any real number oc, the series

03A3~n=0 03B1n~n/n! converges asymptotically, as 03BB - 0, to the functione03B1.
E is not a distinguished subset of .9, since for 03B1 ~ 03B2:

c) Let G denote the closed subspace generated by G, i.e. the
set of functions which admit expansions of the form (111.19).
(See Theorem 1-5.6.)

Let .9 denote the closed subspace generated by 0, i.e. the set
of functions which admit expansions of the form

éP is a subalgebra of ffl. A non-trivial element of .9 is pseudo-
regular. From the above discussion, 9 n Y is trivial.

Let 9, be the closed subspace generated by 0,,, i.e. the set of
sums of expansions (111.20) with n ~ k.
E is contained in 9,, for all k  0.

190 is a V-algebra. From (111.18) and Theorem 11-2.4, J is a
distinguished basis of f!JJ 0 .
E and 03A60 do not form a distinguished pair of subsets of 90 but

their union is a linearly independent set. Therefore, there exists
a Hamel basis of 90 which contains E u 00. In [4], continuous
linear functionals on the subspace ( E u 03A60) are studied; see Part
VI (to be published in this series of papers).

d) To construct the space 9, we selected 03BB0 = 0. Clearly, we
would have obtained a similar space by choosing any other finite
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value for 03BB0 and the asymptotic scale 0 == {~n : n ~ N} where
~n(03BB) = (03BB-03BB0)n.
One may also consider 039B = [Â-, ~], 0 ~ 03BB  oo, Âo = oo and

the asymptotic scale 0 == {~n : n ~ N}, where ’Pn(Â) = Â-n.
e) Spaces such as 9 can be constructed in which 039B is some

subset of the complex plane and for more sophisticated asymptotic
scales. Examples are given in [11], with asymptotic scales such as

03BB is the complex asymptotic variable, 03BB ~ 03BB0 = ~; z is a complex
number considered as a primary parameter, i.e. order relations
must hold uniformly in z; the positive real numbers r and s are
secondary parameters. Proper conditions must be placed on the
domains of A and z. (See [11]; also [9], [10]. )

5. Asymptotic spaces : Example II

a ) In this section we give two examples involving formal power
series in two real or complex variables. The spaces to be con-
structed will be used in Part IV to obtain asymptotic expansions
of some functions defined as two-dimensional Laplace transforms
[6].
b) In this example the Hausdorff space 039B is the set of points

Â = (u, v ) of R2 for which 0  u, v  oo; Âo = (0, 0). The range
spaces B and Bo are the spaces of complex numbers and of real
numbers respectively. N is the set of all non-negative integers
and the asymptotic scale to be used is

Let X = Q be the space of all complex valued functions on A’
which are asymptotically finite with respect to 0.
As for the space 9 of Section 4, one verifies that Q is a V-algebra,

under the 0-asymptotic norm defined by (111.9) and (111.10).
Let xlj e X be the function defined by

For all non-zero complex numbers 03B1, 03B2, and all integers l, j such
that 0 ~ l ~ n, 1  j  n:

(111.21) xn-l, l = O(CPm) if and only if m  n,

(111.22) 03B1xn-l, l+03B2xn-j, j = 0(~m) if and only if m Ç n.
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Indeed, to verify (111.22) suppose firstly that m  n. Then:

Thus:

and (111.22) is satisfied if m  n. Conversely, suppose that the
relation is true for some m == n+k, k &#x3E; 0. Since every cd-nbhd
of (0, 0) must contain points (u, v) for which v = u, there exists
a constant A &#x3E; 0 such that for all u small enough

This is impossible. This completes the verification of (111.22).
Consider the set 

It follows from (111.21) and (111.22) that Hk is a distinguished
subset of Q. Let :Ytk denote the closed subspace of Q generated by
Hk, i.e. the set of all functions which admit expansions of the form

03B1lj complex.

Unlike the space Y, of Example I (Section 4.c), the elements
of a distinguished basis of Kk do not have distinct norms: from
(III.21)

A particular subspace of Kk is the subspace of functions which
admit expansions (111.23) such that for some sequence {03B1n} of
complex numbers (i2 == -1):

Setting z = u+iv, the expansions of such functions are of the
form 03A3n~k (Xnzn. .

c) We now let the Hausdorff space 039B be a set of points 03BB = (z, 03C9)
where z and w each belong to a subset of the complex Riemann
sphere which contains the point at infinity. Let 03BB0 = ( oo, ~).
N is the set of all non-negative integers and we denote by 03A8 the
asymptotic scale 

Thus, Bo is the space of the real numbers.
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Let B be the space of the complex numbers and consider the
space Q’ of complex valued functions on 039B’ which are asymptotic-
ally finite with respect to 03A8.

It can be shown (as in b)) that the set

is a distinguished subset of Q’. K’k will denote the closed subspace
generated by H’k.

6. Asymptotic spaces: Example III

a) B(D) will denote the set of all bounded transformations
from a closed subset D of a Banach space S into S itself; i.e.
the set of transformations from D to S for which ~A~D  00,
where

The function (111.24) is a pseudo-norm on f1i(D). If 11 A - BI = 0,
then As = Bs-f-so for all s e D and some fixed so e S.
Under the assumption that D is a linear subspace of S, f (D)

will denote the set of all bounded linear transformations from
D to S. On J(D), (111.24) is equivalent to the usual uniform
norm:

b) We now construct an asymptotic space of functions with
range in f1ï(D), i.e. B = f1ï(D).
The Hausdorff space 039B is the real interval [0, 1] and Ao = 0.

The space Bo is the space of the real numbers. N is the set of all
non-negative integers and we use the asymptotic scale

Let X be the space of all mappings x defined on 039B’ = (0, 1 ],
with range in e(D) and which are asymptotically finite with
respect to 0, i.e. such that for some n E N,

’ 

Suppose that y E X, y is independent of 03BB and ~y~D ~ o. Then,
one verifies easily that Iyl = 1. Furthermore, if x E X satisfies

|y-x|  1, then, as a function of 03BB, x converges uniformly to
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y on D, as 03BB - 0, since for 03BB small enough and some constant
03B1 &#x3E; 0

If x E X has a 03A6-asymptotic norm strictly less than 1 and for 03BB
in some cd-nbhd of 0, x maps D into itself, then x(03BB) is a contrac-
tion mapping on D for all À in some cd-nbhd of 0, i.e. for some 03BB’,
0  03BB’ ~ 1, x(03BB) maps D into itself and ~x(03BB)~D  1 when 03BB ~ 03BB’
([19], Vol. I, p. 43).
Spaces of this type have been considered by C. A. Swanson and

M. Schulzer [32], [33]. In these references, transformations satis-
fying (111.25) are said to be "of Class Lip (~n)". Spécifie examples
are given in [32], pp. 28-38.

c) The space X of b) consists of mappings from (0, 1] to the
set B(D) of bounded transformations from D to S. In the space
X’ to be constructed now, unbounded transformations will also
be considered. The range space B is the Banach space S.
Let A, 03BB0, N and 0 be as in b ). Let X’ be the space of all mappings

from (0, 1] X D to S which are asymptotically finite with respect
to 0 when s E D is considered as a secondary parameter.
The 0-asymptotic norm of x E X’ is less than or equal to pw

if for each fixed s E D, there exist a constant oc[s] &#x3E; 0 and a
cd-nbhd V[s] of 0 such that

equivalently, |x|  03C1-n if for all s E D,

where P[s] = 03B1[s] · ~s~-1 if s ~ o.
Suppose that y E X’, y is independent of 03BB and ~y~D ~ o. Then

for each s e D, ~y(03BB, s)~ - ~y(s)~ for all 03BB E A’and, hence, lyl = 1.
Furthermore, if x ~ X’ satisfies |x-y|  1, then, as a function
of 03BB, x converges strongly ([7], p. 475) to y on D, when 03BB ~ 0;
indeed, for each s e D, there exists a [s] &#x3E; 0 such that for all A
small enough

7. Moment spaces

a) For simplicity we restrict our definition of moment spaces
to spaces of real valued functions defined on a finite interval

[a, b], - oo  a  b  oo. All integrals considered are Riemann-
Stieltjes integrals ([41], p. 1).
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Let oc be a real valued function of bounded variation on [a, b]
([41], p. 6). Let 0 = {~n(t) : n = 0, 1, 2, ...} be a sequence of
non-zero, real functions on [a, b] such that all integrals

exist and are finite.
Let X’ be the linear space of all real functions x, defined on

[a, b] and such that all integrals

exist and are finite. un(x) is called the n-th moment of x relative
to 0.
For x e X’, define

and, for some fixed p, 1  p  oo,

It is immediate that X’, with the norm (111.27), is a V-space,
except possibly for completeness. In X’ the distance of two

functions x, y is less than or equal to p-n if and only if 03BCi(x) =
03BCi(y) for i = 0, 1, 2, ..., n-1.
X’ admits a distinguished basis (Theorem 11-2.2). Two elements

of a distinguished basis of X’ cannot have the same norm. Indeed,
if |x| = 1 y == p-n for some n, then

therefore

This implies that |03BCn(y)x-03BCn(x)y|  p-n. Thus x and y are not
distinguished.
Let N be the set of integers defined by

For each n E N, let xn be a function such that 03BCi(xn) = 03B4in for
i  n. The set H = {xn : n ~ N} forms a distinguished basis of X’.
The completion X of X’, i.e. the set of formal expansions in

terms of H, is a V-space (Theorem 1-5.6).
V-spaces constructed in the manner described above will be

called "moment spaces,".
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b ) For the remainder of the Section we suppose that the function
a is strictly increasing on [a, b] and that 0 is a linearly independent
set of continuous functions contained in X.

These assumptions imply that all the integrals (111.26) and the
integrals

exist and are finite (C41], p. 7).
A sequence {fn} of functions defined on [a, b] is said to be

orthonormal with respect to oc if

where

LEMMA 7.1. If f is a non-negative continuous function on [a, b]
and f. f(t)d03B1(t) = 0, then f(t) - 0.
The proof is identical to that of Proposition (5.2) in [37], p. 41.

THEOREM 7.2. There exists a unique sequense of functions {pn}
of the form

which is orthonormal with respect to oc.
The proof is an easy modification of [37], pp. 41-42.

THEOREM 7.3.

(i) |pn| = 03C1-n, n = 0, 1, 2, ....
(ii) {pn} is a distinguished basis of X.
(iii) If f E X, then, in the norm of X,

PROOF: (i) For all m, there exist coefficients bmi such that

Thus, |pn| - p-n follows from

(ii) follows from (i) and a previous remark, page 13.
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(iii) For m  n,

Thus |f-03A3n-1i=0 f, pi&#x3E; pi|  p-11 which proves the convergence.
The series (111.28) is usually called the Fourier series of i with

respect to {pn} ([37], p. 45). In the moment space X, the distance
of two functions f and g is less than or equal to p-11 if and only if
the first n Fourier coefficients of f : f, Pi)’ i = 0, 1, 2, ..., n-1,
are equal to the corresponding Fourier coefficients g, pi&#x3E; of g.

c) Whenever a is strictly increasing on [a, b] and for all n,

~n(t) = [~(t)]n, where 99 is a non-constant continuous function on
[a, b], the results of b) are valid. Furthermore, we have the
following Theorems 7.4 and 7.5.

THEOREM 7.4. The orthonormal sequence {pn} satisfies a recur-
rence formula of the form

where cn, dn, en are real constants. (Set p-1(t) = 0).
The proof is a modification of the proof of Proposition (5.4),

[37], p. 43.

THEOREM 7.5. |pm · pn| ~ p-Im-nl and for some coefficients cmni,

PROOF: Suppose m &#x3E; n. Then

From (111.29), 03BCi(pm · pn) = 0 for n+i &#x3E; m. The conclusion
follows from this and the fact that pmpn is a polynomial in ç of
degree m+ n.
For additional properties of the orthonormal sequence, Fourier

series and coefficients, see [37], Chapter 5.
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d) EXAMPLES. Let lpn(t) = tn and [a, b] = [-1, 1]. The follow-
ing are three examples of moment spaces (See [37], p. 50. Also
[81, [21].)

To illustrate how a problem can be interpreted within the scope
of a moment space, we consider the differential equation

Two methods have been proposed for the approximation of the
solution of a differential equation which take advantage of the
special properties (given in b) and c) above) of the Chebyshev
polynomials. One is due to Lanczos [20], [21], the other to
Clenshaw [2]. See L. Fox [13]. In both methods, the equation
(111.30) is replaced by the equation

It can be shown that for a certain value 03C40 of the parameter 03C4,

(III.31 ) has a solution of the form

By Theorem 7.5, if z E X, then Lz and Mz belong to X and

A study of this method of substitution of a perturbed equation
for the original one, if conducted within the frame of the theory
of moment spaces, may lead to interesting results and inter-
pretations.

(Oblatum 18-3-66)


