
COMPOSITIO MATHEMATICA

PIERRE ROBERT
On some non-archimedean normed linear spaces. II
Compositio Mathematica, tome 19, no 1 (1968), p. 16-27
<http://www.numdam.org/item?id=CM_1968__19_1_16_0>

© Foundation Compositio Mathematica, 1968, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1968__19_1_16_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


16

On some non-Archimedean normed linear spaces
II

by

Pierre Robert

Introduction

This paper is the second of a series published under the same
title and numbered I, II, .... The reader is assumed to be familiar
with the definitions, notations and results of Part I.

This Part II is devoted to the study of V-spaces (see Part I,
Introduction). In the last Section, V-algebras are introduced and
results to be used in the theory of operators on V-spaces (Part IV)
are stated.

1. Definitions

A systematic study of non-Archimedean normed linear spaces
has been made by A. F. Monna ([24], [25]). Other references are
[3], [12], [17].
Monna obtains interesting results when the norm range of the

non-Archimedean normed linear space is assumed to have at most
one accumulation point: 0. We shall retain this assumption. In
most of his work, Monna requires that the valuation of the field
of scalars be non-trivial; this, of course, is impossible in the case
of a valued space.

DEFINITION 1.1. A V-space X is a pseudo-valued or a valued
space which is complete in its norm topology and for which there
exists a set of integers c(X)) and a real number p &#x3E; 1, such that

(II.1) 03A9(X) = {0} u {03C1-n : n e 03C9(X)}.
DEFINITION 1.2. A discrete V-space is a V-space such that the

set co(X) of Definition 1.1 satisfies

(11.2) sup co(x) = M for some M  oo.

The topology of a discrete V-space is discrete. A V-space such
that
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has a proper sequence convergent to 0 and hence its topology is
not discrete.

CONYENTIONS. (i) In all of this work, the symbol "p" will retain
the meaning attached to it in Definition 1.1.

(ii) In the sequel, whenever two or more V-spaces will be

considered simultaneously, it will be assumed that the value of p
is the same for all of these spaces.
The definitions, theorems and remarks of the following sections

of this chapter, except Th. 2.4 (ü ), do not depend on the com-
pleteness of the V-space. They remain valid for any space which
satisfies Definition 1.1 except for the completeness requirement.
Part (ii) of Theorem 2.4 requires completeness.

2. Existence of distinguished bases

In this section we prove that a V-space admits a distinguished
basis (Theorem 2.2).
The proof of this statement is analogous, in part, to the proof

of the existence of an orthonormal basis in a Hilbert space
([7], p. 252). It is made possible by the following improvement
over Riesz’s Lemma (Theorem 1-6.1).

LEMMA 2.1. Let Y be a proper, closed subspace of a V-space X.
There exists z E X such that

PROOF: Let oc satisfy p-1  oc  1. Then

for any pair x, z E X.
By Theorem 1-6.1, there exists z E XBY, such that

Thus |y-z| ~ izl for all y e Y.

THEOREM 2.2. A V-space admits a distinguished basis.

PROOF: Let D be the family of all distinguished subsets of a
V-space X. D is not empty since a single point with non-zero norm
forms a distinguished subset of X. Let D be ordered by set inclu-



18

sion. It is easy to see that a linearly ordered subfamily of D
satisfies the conditions of Zorn’s Lemma. Therefore D contains
at least one maximal element H.
We shall show that [H] = X (see Section 1.5). Suppose the

contrary. Then by Lemma 2.1 there exists z ~ XB[H] such that

a) If for each y E (H), 1 y ~ |z|, then

b) If a) fails, then for each y e (H) such that 1 y = |z|, we have

and by the above inequality:

From a) and b) it follows that H u {z} is a distinguished subset
of X, contradicting the maximality of H. Hence [H] == X and
H is a distinguished basis of X.
The same argument applies as usual to yield the following:

COROLLARY 2.3. A V-space admits a distinguished basis which
contains any given distinguished set.

In a Banach space B a complete basis is a sequence {bn} such
that for every b E B there exists a unique sequence of scalars {03B1n}
such that b = 03A3n03B1n03B2n. The classical Paley-Wiener theorem

([1], [27], [30]) asserts that every sequence in B, which is "suf-
ficiently close" to a complete basis, is itself a basis.
Arsove [1 ] has extended the Paley-Wiener theorem to arbitrary

complete metric linear spaces over the real or complex field with
the usual valuation. Theorem 2.4 (ii) is the V-space analogue of
Arsove’s Theorem 1 ([1], p. 366). We do not require that H be
countable.

THEOREM 2.4. Let H be a distinguished subset of a V-space X
and f be a mapping of H into X such that, for each h E H,

for some scalar oc", =F 0. Then
(i) f (H) is a distinguished set of X;
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(ii) f(H) is a distinguished basis if H is a distinguished basis.

PROOF: (i) 11(h)l = Ihi for all h e H. Let fhi : i = 1, 2, ..., n}
be a subset of H such that 11(hi)l = r for i = 1, 2, ..., n and
some r &#x3E; 0. Let {03B2i : i = 1, 2, ..., n} be any set of non-zero

scalars. Then, from (2.4), |hi| = 11(hi)l = r and

Since H is distinguished, |03A3ni=1 Pij(Xi hi = r. It follows that

This proves that f(H) is a distinguished set.
(ü ) The proof is a rewording of Arsove [1], page 367, in which

"yn" and "A" must be replaced by "03B1hnf(hn)" and "03C1-1" respec-
tively. Note that the proof requires the completeness of the space.
(See the last paragraph of Section II-1).

3. Distinguished families of subsets

The notion of distinguishability was introduced for subsets of a
(pseudo-) valued space. It will now be extended to families of
subsets.

In all of this section X is a V-space.
A set will be called trivial if it is a subset of [0], i.e. if all its

elements have norms equal to zero.

DEFINITION 3.1. A family {A03B1} of subsets of X is a distinguished
family o f subsets of X if

(i) Aa 1 fi A03B12 is trivial for 03B11 ~ 03B12.
(ii) every non-empty subset B of U03B1A03B1 such that

a) |x| ~ 0 for each x E B,
b) no two elements of B belong to the same Aa,

is a distinguished subset of A.
Clearly, a trivial set and any other subset of X form a distin-

guished family. Also, if {A03B1} is a distinguished family, {B03B1} is a
distinguished family of subsets if B03B1 ~ A03B1 for all oc.
The following theorems give characterizations of distinguished

families of non-trivial subspaces of X.
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THEOREM 3.2. A family {X03B1} of non-trivial (closed or open)
subspaces of X is a distinguished family of subsets of X if and
only if:

(i) X03B11 n X03B12 is trivial for 03B11 ~ 03B12,
(ii) any union of distinguished subsets of some or ah of the

X03B1’s is a distinguished subset of X.

PROOF: The sufficiency is obvious. To prove the necessity, let
B = U03B1B03B1, where B is not empty and Ba is either empty or a
distinguished subset of X03B1.

Consider a finite linear combination of elements of B:

where no ocij is equal to 0 and where for each i e {1, 2, ..., n},
xij e Ba,. for i = 1, 2, ..., pi.
Define = 1.11=Ll ocij xij. Then x, e B,,,,.
Since the Ba,.’s are distinguished sets and {x1, x2, ..., xn} is by

(li) of Definition 3.1 a distinguished set:

This shows that B is a distinguished set.

THEOREM 3.3. A finite family A = {X1, X2, ..., Xn} of non-
trivial, closed subspaces of a V-space X forms a distinguished
family of subspaces of X if and only if there exists a family
élY = {H1, H2, ..., Hn} such that:

(i) Hi is a distinguished basis of Xi; i = 1, 2, ..., n,
(ii) Hi ~ Hj is empty for i ~ j,
(iii) Ho = U 1 Hi is a distinguished basis for the closed sub-

space Xo= [X1 ~ X2 ~ ... ~ Xn].
PROOF: Necessity. For each i, Xi is a V-space and admits a

distinguished basis, Hi. By (i) of Definition 2.5, the assumption
that si is a distinguished family implies that Xi ~ Xj is trivial
for i ~ j. Since distinguished bases do not contain any trivial
element, (ii) is satisfied. By (ii) of Theorem 3.2, Ho is a distin-
guished set. Clearly [Ho] - Xo.

Sufficiency. It is easy to see that Xi ~ Xj is trivial for i ~ j.
We must show that (ii) of Definition 3.1 is satisfied.

Let {x1, x2, ..., xm}, m  n, be such that |xi| ~ 0 and assume
that the X i’s are reindexed in such a way that xz E X i for
i = 1, 2, ..., m.
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For each fixed i, 1 ~ i ~ m, there exists a non-increasing
expansion of xi in terms of Hi :

According to Lemma 1-5.5

y

Suppose that

Pi is necessarily finite.
Consider now any set of scalars {03B21, 03B22, ..., 03B2m}. We can assume

without loss of generality that Pi ~ 0 for each i  m. Let

x = 03A3mi=103B2ixi. If we can show that

we will have proved that A is a distinguished family of subsets
of X.

Since Ho is a distinguished set by assumption, we have :

The equality (11.7) is guaranteed by the fact that no cancella-
tion of terms can arise in the finite sum 03A3ni=1 03A3pij=1 since the Hi’s
are assumed to be disjoint.
From (11.6), (11.7) and (11.8), it follows that (11.5) is true, and

the proof of sufficiency is completed.
If a finite family {X1, X2, ..., XJ of non-trivial, closed sub-

spaces of a V-space is a distinguished family, the closed subspace
[Xl u X2 U ... u Xn] will be called the direct sum of X1, X2, ...,
Xn.
The following corollary to Theorem 3.3 is easily proved:
COROLLARY 3.4. Let {X1, X2, ..., Xn} be a distinguished family
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of non-trivial closed subspaces of X. The decomposition of any
point of their direct sum as a sum of elements of these Xi’s is
unique except for order and addition of trivial elements.

In this section we have exhibited some analogy between Hilbert
spaces and V-spaces. The analogy is a consequence of the similarity
of the rôles played by the concepts of orthogonality and distin-
guishability in the two types of spaces.

In the next section an important difference between the two
structures will become apparent.

4. Distinguished complements

In a Hilbert space, the orthogonal complement of a set A is

defined to be the set of all the elements of the space which are

orthogonal to all the elements of A. In a V-space, we introduce
a corresponding notion: The distinguished adjunct Ad of a subset
A of a V-space X is defined by
Ad = (x E X : (x) and A form a distinguished pair of subsets

of X}.
In Theorem 4.1, simple properties of distinguished adjuncts are
stated. (ii) expresses the fact that the distinguished adjunct of a
set A is the largest set which forms with A a distinguished pair
of subsets of X. Parts (i), (iii), (iv) and (v) should be compared
with Theorems 1, 2, 3, 4 of [14], p. 24. The proofs of the statements
follow directly from our definitions and are omitted.

THEOREM 4.1. If A and B are subsets of a V-space, then each
of the following statements is valid:

(i) A ~ Ad is trivial.
(ii) If (A, B) is a distinguished family of subsets of X, then

A C Bb and B C Ad.

In a Hilbert space the orthogonal complement of any set is a
closed subspace. However, the same is not true of the distinguished
adjunct of a set in a V-space. The following example illustrates
this fact. Let A = S(03B8, r ) and |z| &#x3E; r; then z E Ad and for all

y E A, y+z ~ Ad; clearly y = (y+z)-z does not belong to Ad.
Thus, Ad is not, in general, a subspace of the V-space, even when
A itself is a subspace.
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Two consequences of the discrepancy just mentioned are, first,
that the notion of distinguished adjunct will not be useful in the
sequel; and, secondly, that the non-uniqueness of the distinguished
complement of a closed subspace (as described in the following
définition) will have a rôle in the theory.
DEFINITION 4.2. Two closed subspaces Y, Z, of a V-space X are

said to be distinguished complements of one another if

(i) Y and Z form a distinguished pair of subsets of X,
(ii) X is the direct sum of Y and Z.
It is clear that the only distinguished complement of [0] is X,

and conversely. If Y is a non-trivial, closed, proper subspace of
X, Y admits a distinguished complement, but, in general, it is

not unique. This is expressed in Theorem 4.4, in which we use
the following terminology.
DEFINITION 4.3. Let Y and Z be closed subspaces of a V-space,

with distinguished bases H(Y) and H(Z) respectively. H(Z) is
called an extension of H(Y) to Z if H(Y) C H(Z). (This implies
Y ~ Z).
THEOREM 4.4. Let Y be a non-trivial, closed, proper subspace

of a V-space X. Let H(Y) be any distinguished basis of Y and H
be any extension of H(Y) to X. The subspace [HBH(Y)] is a

non-trivial, closed, proper subspace of X which is a distinguished
complement of Y.
The theorem is easily proved, using Corollary 2.3 and Theorem

3.3. It does not state that two different pairs (H1(Y), H1) and
(H2(Y), H2) necessarily will generate distinct distinguished com-
plements of Y.
As a simple example, let X have a distinguished basis formed

by three elements x1, x2, x3 with |x1| = |x2| = IX31. Let Y = [xl]
and H(Y) = {xl}. Three possible extensions of H(Y) to X are:

Hl = {x1, x2, x3}, H2 - {x1, x1+x2, x3}, H3 = {x1, x2+x3, x3}.
The distinguished complements of Y generated by the pairs
(H(Y), H1) and (H(Y), H3) are both equal to [x2, x3] but that
generated by (H(Y), H2) differs from [x2, x3].

5. Notes

(i) The concept of distinguishability has been introduced by
Monna under a different name and through another formal defini-
tion.
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In his early papers, [24], Monna uses the term "pseudo-
orthogonal" ; in his later work [25], he uses the word "orthogonal".
In a strongly non-Archimedean normed linear space, a point x
is said to be orthogonal to a point y if the distance from x to the
linear subspace (y) is equal to the norm of x. ([24], V, p. 197;
[25], 1. p. 480). It is easily verified that y is then orthogonal to x.
The equivalence of this definition of orthogonality and of our

definition of distinguishability is indicated in the following
theorem (cf. Monna, [24]):

THEOREM 5.1. Let A be a subset of a V-space X. For x E A,
let Ax denote the linear subspace (AB{x}). Then, A is a distin-

guished subset of X if and only if, for all x E A :

and distance

The proof is omitted.
From the notion of orthogonality, Monna constructs a theory

of orthogonal sets and orthogonal complements quite analogous
to our theory of distinguished sets and complements.

In [25], it is assumed that the valuation of the field of scalars
is not trivial. Use is not made very extensively of "complete
orthogonal" (distinguished) bases, which exist only under spécial
assumptions, such as local compactness and separability.
An important tool used by Monna is the concept of a "projec-

tion". We have postponed the introduction of projections in our
theory until linear operators are studied.

(ii) Ingleton ([17], p. 42; see also [25], 1, p. 475) defines a
spherically complete totally non-Archimedean metric space (field)
as a totally non-Archimedean metric space (field) in which every
family of closed balls linearly ordered by inclusion has non-void
intersection. Spherical completeness implies completeness ([25],
I, p. 476). In general, completeness does not imply spherical
completeness, but, if the norm (valuation) satisfies (2.1) and (2.3)
of Definition 1.1, then completeness implies spherical completeness
([25], II, p. 486). Therefore, a V-space is spherically complete.
Monna ([25], III, p. 466) has shown that the existence of a

complete orthogonal (distinguished) basis in a non-Archimedean
normed linear space is related to the completeness of the space
and the spherical completeness of the field of scalars, when the
valuation of the field is non-trivial.

It is possible that a reformulation of the arguments of Monna
to the case of a field of scalars provided with a trivial valuation
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could lead to a proof of existence of a distinguished basis for a
V-space. Our proof (Theorem 2.2) is more direct and shows that
completeness conditions are unnecessary.

6. V-algebras

In this section we shall consider V-spaces X on which a multi-
plication is defined, i.e. such that to each pair (x, y ) e X X X there
corresponds a unique "product" xy E X.

REMARK: We shall define some elements of a V-space by use of
sequences and series. Since a V-space can be a pseudo-normed
space, the limit of a sequence or the sum of a series are not

necessarily unique. For this reason we make the following nota-
tional convention:

CONVENTION. In the sequel, the relation "x = y" means that
|x-y| - 0; strict identity between x and y is indicated by the
symbol "x ~ y".
The definitions and theorems of this Section are simple modifi-

cations of the definitions and theorems of the classical theory of
normed rings ([22], [26]).

DEFINITION 6.1. A V-space X with a multiplication is called a
V-algebra if for all x, y E X and all scalars oc:

We also assume the existence of an identity, i.e. of an element
e such that

X is said to be a commutative V-algebra if

As usual, we denote by xn the product xx ... x of n elements
equal to x. x0 ~ e for all x E X.

DEFINITION 6.2. An element e’ will be called a pseudo-identity
if e’ = e.
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DEFINITION 6.3. Let x be an element of a V-algebra X.

(i) x is said to be pseudo-regular if there exists an element x-1
such that

x-1 is called a pseudo-inverse of x.
(ii) x is said to be regular if there exists an element x-1 such

that

x-1 is called the inverse of x. (It can be proved that such an element
is unique.)

(iii) If x is not (pseudo-) regular it is said to be singular.
No element of [0] is (pseudo-) regular for otherwise

THEOREM 6.4. Let x-1 be a pseudo-inverse of an element x of
a V-algebra X. Then y is a pseudo-inverse of x if and only if
y = x-1. Consequently, any two pseudo-inverses of x have equal
norms. (The proof is omitted).

LEMMA 6.5. Let X be a V-algebra, x e X and |x|  1. Then

(i) the sums of the series 03A3~n=0xn are pseudo-inverses of (e-x);
(ii) for every pseudo-inverse x’ of (e-x):

The proof is obtained by direct verification. (See [22], pp.
64-66).

THEOREM 6.6. Let Y denote the set of pseudo-regular points
of X. If y e Y, x e X and |x-y|  |y-1|-1, then

(iv) Y is an open subset of X and the mapping y - y-1,
defined on Y, is continuous.

The proof is similar to that of Theorem 4.1-D of [36], p. 164.

DEFINITION 6.7. The spectrum a(x) of an element x of a V-
algebra X is the set of scalars A for which (x-Ae) is singular.



27

THEOREM 6.8. Let x e X, 0  |x| ~ 1. If for some scalar ,u,

|x-03BCe|  1, then

(i) a(x) is empty or 03C3(x) = {03BC};
(ii) for 03BB ~ y, the pseudo-inverses of (x-03BBe) are the sums of

the series

and satisfy

PROOF: We note first that this theorem is an extension of

Lemma 6.5. Indeed, if |x|  1, we take p = 0.

(i) is a consequence of (ii).
(ii) Since |(x-03BCe)n|  |x-03BCe|n, the series (11.16) converges.

Using the continuity of the multiplication, we verify directly that
if y is a sum of (II.16),

(11.17) follows from (11.16).
A direct proof of the following theorem is similar to that of

Theorem 6.8.

THEOREM 6.9. Let x e X, |x| &#x3E; 1. If for some scalar y, (x-pe)
is pseudo-regular and 1 (x-jue)-li  1, then

(i) a(x) is empty;
(ii) for A ~ y, the pseudo-inverses of (x-Ae) are the sums

of the series

and satisfy

REMARK. As in the classical theory of normed rings, the singular-
ity or regularity of an element of a Q-algebra depends on its

belonging to some maximal ideal of the algebra.
The theory of Banach algebras ([22], [26]) is partially based

on the fact that any Banach field is completely isomorphic to the
field of the complex numbers (with its usual topology). From this
result one attemps to characterize the maximal ideals of the
algebra. There does not seem to be any interesting analogue of
this theory in the case of V-algebras.
(Oblatum 18-3-66) Université de Montréal, Canada


