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Topological analysis
of differentiable transformations

by

Kenneth O. Leland

1. Introduction

In Section 3 of [4] the author extended the topological methods
developed by Porcelli and Connell [9] for handling isolated singu-
larities of complex differentiable functions to the case of more
complicated singularities. In particular he was able to resolve by
topological methods the case when the singularity was a rectifiable
arc. In this paper the results of [4] are generalized to the case of
complex (Frechét ) differentiable functions on a complex Euclidean
space into itself. In particular the removable singularity problem,
when the singularity is a "rectifiable interface" separating two
adjacent cells, is resolved.
The topological index of Whyburn [12] is replaced by degree

theoretic methods from algebraic topology [1, 2].
The topological analogue of our results, wherein the requirement

of complex differentiability is replaced by the requirement of being
light and locally sense preserving, may be found in the work of
Titus and Young [10].
We are unable to generalize the algebra of difference quotients

developed in [4, 6, 9, 12]; however, the need for such auxiliary
functions is obviated by use of a geometric characterization of
harmonie functions [Theorem 4.1].
Let B and C be Banach spaces, f a continuous function on an

open set S in B into C, and p e S. Then f is said to be (real Frechét)
differentiable [3] at p if there exists a bounded linear operator A
from B into C, such that for all e &#x3E; 0, there exists t5 &#x3E; 0, such that

||x||  03B4, x-f-p ~ S, implies ||f(x+p)-f(x)-A(x)||~ 03B5||x||.
In Section 3 degree theoretic methods are employed to prove

Maximum Modulus Theorems. In Section 4 the basic machinery
for handling removable singularities is developed. In Section 5 this
machinery is applied to the case when the singularity is a "recti-
fiable interface".
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No use is made in this paper of Jacobian matrices or determinants,
or of kernel integrals.

2. Notation and definitions

Let R denote the real numbers, K the complex numbers, and 03C9

the positive integers. Throughout this paper E shall denote a fixed
Euclidean space and m shall denote Lebesgue measure on E. For
x~E, 03B4 &#x3E; 0, set

If A, B, C Ç E and f and g are functions on A into Z and B
into Z for Z = R, K, E, then we set (f+g)(x) = f(x)+g(x) for
x e A n B, and we let IIC be the function h on A n C such that
h(x) = f(x) for x e A n C. If f and g are functions we shall write
fg for the composition of f and g.

B [E, E] shall denote the Banach algebra of linear transformations
of E into E. By I shall be meant the element of B[E, E] such that
I(x) = x. We shall denote by G(E) the rotation group of E, that
is the group of unitary transformations of B[E, E]. A subgroup
G of G(E) is said to be transitive if for all x, y e B0(1), there exists
g e G, such that g(x) = g(y).
DEFINITION 2.1. Let F be a collection of continuous functions

on open subsets of E into R, and G a subgroup of G(E). Then F
is called a TG family [7] if:

1. ForceR, f eF, cf e F.
2. For f,geF, I+g e F.
3. For f e F, S an open set in È, Ils lies in F.
4. For f e F, and x e B, the function fx lies in F, where gx(y) =

I(y-ae) for y e E such that y-x e domain f.
5. For f e F, g e G, f g e F.

A function f e F is said to maximum modular, if for all open
sets S in E, such that S C dom f, we have f|(x)| ~ sup {|f(t)|;
t ~ -S} for all x e S. A TG family F is called a TGM family if
F contains the constant function 1, and if all elements of F are
maximum modular.
Let S be an open set in E containing V0(1), and let f be a con-

tinuous function on S into E. If p is a point of E- f (B), where
B = B0(1), then the degree 03BCB(f, p) of f with respect to B and p
may be defined. If x is a point of S, such that there exists 03B4 &#x3E; 0,
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such that f(y) ~ f(x) for all y --A x, y e Vx(03B4) n S, then the local
degree 03BCx(f) of f at x may be defined. For formal definitions and
development of degree theory one may refer to Alexandroff and
Hopf [1] or Cronin [2]. Our notation is inspired by that used by
Whyburn [12] in the two dimensional case.
We shall need the following facts from degree theory:

2.1. 03BCB(f, P) = 03BCB(f-p, 0).
2.2. If 03BCB(f, p) =1= 0, then p e f[V0(1)].
2.3. If H = 1-1(p) t1 V0(1) is finite, then PB(f, p) = 03A3x~H 03BCx(f).
2.4. If p and q are points of the same component of E- f(B),

then PB(f, p) = 03BCB(L, q).
2.5. If M and N are elements of the same component of the set of

invertible elements I[E, E] of B[E, E], then 03BC(M) =,uB(M, 0)
= 03BCB(N, 0) = p(N)-

2.6. If for some p e V0(1), the derivative A of f at p exists and is
invertible, then there exists 03B4 &#x3E; 0, such that for q = f(p),
Vp(03B4) ç V0(1), Vq(03B4) ~ f[V0(1)], f(x) ~ f(p) for all x c- Vp(03B4),
x ~ p, and 03BCx(f) = 03BCp(f) = 03BC(A) for x E Vp(03BC).

We shall also need the following form of Sard’s Theorem:

THEOREM 2.1. Let f be a (Frechét) differentiable function on an
open set S in E into E, and let H be set of all points x e S, such
that the derivative Ax of f at x does not invert. Then m[J(H)] = 0.

In the form found in Cronin [2, 32-36] the first partial deriva-
tives of f are required to exist and be continuous. This implies the
existence and continuity of the Frechét derivative of f. This con-
tinuity, however, is not assumed here. The argument for the case
of complex differentiable functions from K to K may be found in
Whyburn [12, 72-73.

PROOF. Let a &#x3E; 0, and let Q be a cube of side a in S. For n e cv,
let Fn be the subdivision of Q into equal cubes of side a/2", where
n is the dimension of E. Let Ho = H n Q, and for m e co, set

Hm = {x ~ H0; ||Ax|| ~ m}. Then Ho = U~1Hm.
Let a &#x3E; 0, e  1, and let m e cv. Let x e Hm. Then there exists

t5 &#x3E; 0, such that Vx(03B4) ~ S, and such that

Now there exists k ~ 03C9, and an the element Ex of Fk containing x
which lies in Vx(03B4). Let D = {Ex; x ~ Hm}. For each x eHm, there
exists ~Hm, such that ExE , and such that Ex is not a
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proper subset of any element of D. Since U~1Fi is countable,
Do = {E; x~Hm} is countable. Clearly A = B or A n B is a
"face" cube of dimension n -1 for all A, B E Do .

Let x e Hm, set y = {y-; y e E}, and set A = Ax. Then there
exists an n -1 dimensional subspace T of E such that A(J) T.
For y e E, set 03B4(y) = inf{||y-t||; t~T}, and let P(y) be the
orthogonal projection of y into T. For y e J,

and

where s is the side of J. Thus for y e J, 03B4[f(+y)- f()] ~ 03B5~ns,
and P[f(+y)-f()] e V0(m~ns+03B5~ns) = V0[(m+03B5)ns]. Then

where Cn-1 is a constant determined by n-1, and

We note that f(E) lies in a "cylinder" with the subset

of T as a base, and with altitude 03B5~ns. Then

Since 8 is arbitrary, m[f(Hm)] = 0. Thus

3. Maximum modularity theory

Let f be a complex differentiable function on an open set S in
K into K. Then f satisfies the Maximum Modulus Theorem. For
oe E S, t e E2 = K, set Ax(t) = f’(x) t. Then Ax is the Frechét
derivative of f at x, and Ax is an element of the family W of elements
of B[E2, E2] of the form rU, where r e R, and U is a rotation of
index 1. The maximum modularity of f can be deduced directly
from the fact that W is a linear space all of whose elements which
invert have index 1. The argument is independent of the dimension
of the space in question, and does not involve K.



193

THEOREM 3.1. Set U = Vo(l) and E* = B[E, R] and let f be a
continuous function on TJ into E, and H a nowhere dense subset of
U, such that for x e U-H, the derivative Ax of f at x exists. Then if

1. For all x E U-H and r e R, such that A.-rI is invertible,
we have 03BC(Ax-rI) = 1; and

2. For all r e R, m[f-rI)(H)J = 0, then

and

for all x~U, L~E*.

PROOF. Let L e E*, and let e &#x3E; 0. There exists a countable
subset X of U-H, dense in U. For x E X, let Cz be the set of all
r e R, such that Ax-rI does not invert. Clearly, for x e X, Cx is
finite or empty, and thus Ux~XCx is countable. Let ro be an element
of R, such that ro &#x3E; 0, ro 03B5, and ro e Ux~XCx. Then Ax-r0I
is invertible for all x e X. Set f0 = f-r0I.
Let S be a component of E-f0[B0(1)], such that S n f(U) ~ 0.

Then P = f-10(S) is an open set in U, and hence open in E. Thus
there exists x ~X, such that x e P. Since the derivative of f o at x
is invertible, from Fact 2.6, we have that S D f0(P) contains an
open set Q. Let K be the set of all pohits z e U-H, such that the
derivative of f o at x does not invert. Then from Sard’s Theorem,
m[f0(K)] = 0, and hence f0(K) is nowhere dense in E.
By hypothesis f o(H) is nowhere dense in E. Then

is nowhere dense in Q. Let p e Q-Qo Ç S, and let M = f-1(p) ~ U.
Since M is compact, from Fact 2.6, M is finite. By hypothesis,
the derivative of fo at x is of index 1 for all x e M. Hence from
Fact 2.6, for x e M, 03BCx(f0) = 1, and thus IÀ.8 (/0, p) = k &#x3E; 0, where
k is the number of elements of M. Then from Fact 2.2, S Ç F(U).
Assume there exists z e U, such that ILfo(z)1 &#x3E; sup {|Lf0(t)|;

t e B0(1)}. Then f0[B0(1)]  D = {x ~ E; |L(x)|  |Lf0(z)|}, and

fo(z) e E-D. Then fo(z) lies in the unbounded component P of

E-lo[BO(l)], and hence P  fo(U). But fo(tJ) is compact and
hence bounded. Similarly for z EU, Ilfo(z)11 ~ sup{||f0(t)||; te B0(1)}.
Since s is arbitrary the theorem follows.

THEOREM 3.2. Let S be an open set in E, H and X nàsetq of S,
and f a continuous function on S into E such that:

1. H is nowhere dense in S, and m[/(H)] = 0.
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2. For x e (S-H) u X, the derivative Ax of f at x exist8, and is
o f index 1 i f invertible.

3. X is dense in S, and for x e X, Ax is invertible. Then i f f is
light, f is open [12, 75-76].

PROOF. Let x E S. Since f is light, from the Zoretti Theorem
[12, 35], there exists an open set T containing x, such that T C S,
T is homeomorphic to 170(l), and such that (-T) n f-lf(x) = 0.
Thus f(x)f(-T). Then from Fact 2.6, we see that the com-
ponent V of E- f(-T) containing 1(x) lies in f(T), and thus
f(x) lies in the open subset V of f(S).

4. Removable singularities

DEFINITION 4.1. Let f be a continuous function on an open set
S in E into E, and A a subset of S. Then f is called a PA function
if for every x e A, there exists Mz &#x3E; 0, such that

It may be readily shown [4, Theorem 3.2] that if f is a PA function
and m(A) = 0, then m[f(A)] = 0.

THEOREM 4.1. Let G be a compact transitive subgroup of G(E),
and F a TGM family of E. Then the elements of F are harmonic
functions and hence continuously differentiable.

PROOF. This lemma may be found in Lowdenslager [8, 468-469]
and [7].

Set U = V0(1), and let W be the family of all continuous functions
h on U, such that hl U lies in F. For h e w and z~, set

L(h) = C fU hdm, and Â(z) = fG hg(z)du(g), where p is normalized
Haar measure on G, and C-1 = m(U). Then for h e W, x e U, and
g e G, Îg(x) = À(x). Hence for 0  r ~ 1, since G is transitive,
Â(x) = À(y) for all x, y e Bo(r).
Fix h e W. Then A lies in the closure of W and hence must be

maximum modular, and thus must be a constant function. Thus

Thus the elements of W satisfy the volume mean characterization
of harmonic functions.
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THEOREM 4.2. Let f be a bounded continuous function on an open
set S in E into E, H a subset o f S, and A an element of B[E, E],
A ~ 0, such that:

1. There exists a polynomial P, irreducible over R, such that

P(A) = 0.
2. For x e S - H, the derivative Ax o f f at x exists, and is such

that AxA = AAx.
3. Either :
a. m(H) = 0, and f is a PH function; OR
b. H is countable.

Then f is differentiable on S, and A x A = AAx f or all x eS.

PROOF : Let Z be the subalgebra of B[E, E] generated by A, and
let T be the set of all elements B of B [E, E] such that A B = BA.
Since A is irreducible over R, Z is isomorphic to the complex
field K. For x e E, c e Z, set cx = c(x). Then E can be considered
as a complex Hilbert space H over Z, with T = B[H, H]. Let
x E S - H. Then Ax e T, and Px = {c e Z; A - cI does not invert}
is finite. Thus there exists an arc W in Z with endpoints Ax and I,
containing no points of Px. Thus W CI [E, E], and from Fact
2.5 03BC(Ax) = p(I) = 1. Set G = G(H) Ç B[H, H] C B[E, E]. Then
G is a compact transitive subgroup of G(E).
Let V be the family of all continuous functions h on open subsets

of E into E, such that there exists Hh Ç dom h, such that h and
HA satisfy the hypothesis and conditions 1, 2 and 3.a of this theorem.
Let L e E*, and set V L = {Lh; h ~V}. Then L f ~ VL.
For h E V , since h is differentiable on S-HA, where S = dom h,

h is a Ps function. Let hl, ..., hm e V, rI, ..., rm e R, m e m. Then,
setting H = Um1Hhi, m(H)~ 03A3mi=1 m(HAi) = 0. Clearly h = 03A3mi=1 rihi
is a Ps function, and hence h is a PH function. Then V L is a TG
family. For r e R, and h e V, since h-rI and Hh satisfy condition
3.a, m[(h-rI)(Hh)] = 0, and hence from Theorem 3.1, Lh is

maximum modular. Thus V L is a TGM family.
From Theorem 4.1, the elements of VL are harmonic functions

and hence continuously differentiable. Since E is finite dimensional,
we readily deduce [3] that the elements of Tl are continuously
differentiable. For h e V, since Hh is nowhere dense in E, and T is
closed, Ax must lie in T for all x e HA.
The argument in the case that H satisfies condition 3.b. is

similar.

REMARK 4.1. Theorem 4.1 asserts that the elements of a TGM

family F are harmonic functions. Hence the elements of F are
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actually analytic. It is then easy to strenghten the conclusion of
Theorem 4.2 to an assertion of analyticity.
REMARK 4.2. In the two dimensional theory [4, 6, 9, 12] strong

use is made of auxilary functions of the form

however in the higher dimensional case, in general, no similar
functions, are available. For example, let M be a closed subspace
of dimension greater than one of a complex Banach space B. Assume
there exists a complex differentiable function g on M-{0} into B or
into K, such that ||g(x)|| = ||x||-1 for x~M-{0}. Now there exists
a subhyperplane N of M, such that 0  N. Then giN is a bounded
non-constant complex differentiable function on N, contradicting
Liouville’s Theorem [3, 5].
The only extension the author is aware of involves the space

of quaterneons Q. Let H be a closed nowhere dense subset of
U = V0(1), and let f be a continuous function on U into Q, such
that for x e U-H, the derivative Ax of f at x exists and is such
that there exists qx~ Q, such that Ax(y) = qxy for all y e Q. Let
xl, x2 E S-H, and set, for i = 1, 2, Ti(h) = [f(xi+h)-f(xi)]h-1
for all h E Q, h ~ 0, such that xi+h e H, and set Ti (h) = qxi for
h = 0.
Then for i = 1, 2, Ti is continuous at 0, and the derivative Hix of

Ti at x exists for ah x e dom Ti, x ~ 0. Let x e dom T’1 n dom T2,
x ~ 0. Then for i = 1, 2, by direct computation

where pix=qx-[f(xi+x) (H1x-H2x)(t)= (P1x-P2x)tx-1.
Since Q is a skew field H1x-H2x is identically 0 or inverts. In the
latter case there exist continuous functions u and v on [0,1] into
Q - (0), such that u(0)==v(0)=1, u(1)=p1x-p2x, and v(1)=x-1.
For s e [0, 1], t e Q, set g8(t) = u(s)t . v(s). Then g8 is invertible
for all s e [0, 1], and hence from Section 2, 03BC(H1x-H2x) =03BC(g1)=
p(go) = peI) = 1. Then if U-H has finitely many components,
and m(H) = 0 and f is a PH function, or in the terminology of
[4] there exists an M family of partitions E of H and f is a Z’
function, we conclude that T1-T2 satisfies the Maximum Modulus
Theorem. Then working with sequences of difference quotients (cf.
[9] or [4, Theorem 3.3]) we deduce that f is differentiable on U.
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5. Rectifiable interfaces

DEFINITION 5.1. Throughout this section H shall denote a.

fixed finite dimensional complex Hilbert space with an involution
x~x*, x~H.

If f is a differentiable function on an open subset S of H into H+
then f is said to be symmetrically differentiable if for all x e S,
y, z e H, [fx(y), z*] = [f’x(z), y*]. We let f(n)xdenote the n-th derivative
of f at r for z e S, n e m.
We observe that if we replace H by a three dimensional real

Euclidean space that the requirement of symmetric differentiability
of a function g reduces to the requirement that the curl of g, V X g,
vanishes identically.

THEOREM 5.1. Let f be a symmetrically differentiable function on
U = V0(1) into H. Then there exists a complex differentiable function
h on U into K, such that for x E U, y e H, h’x(y) = [J(x), y*].
PROOF. Let x e U, s e H, and p e K. Then for all t e H,

(ps), t*] = [fx’ (t), (03C1s)*] = p [fx’ (t), s* ] = p [1.’ (s), t*], and thus-

fx(ps) = pfx(s) and f is complex differentiable. Then (cf. Remark
4.1 and [3], [5]) f(n) exists for all n e ro, and the power series

03A3~0 fÕn) (x, ..., x)/n! converges uniformly on compact subsets of
U to f(x). For n e cv, x E H, set kn(x) = f(n)0 (x, ..., x)/n! and
hn(x)= [f(n)0 (x, ..., x), X*].
Let e &#x3E; 0, x e U. Then there exists 0  03B4  1-||x||, such that

for y e Ux(03B4), s, t e H, ||f’x+y-f’x-f’’x(y)||~ 03B5||y||/2, and hence since
f is symmetrically differentiable,

and thus

Continuing this process we deduce that

Now îor x, t e H,

and
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uniformly on compact subsets of U to a differentiable limit function
h, and for x~U, t~H,

Now for

and thus h is complex differentiable.

THEOREM 5.2. Set U = Vo(1 ), let M &#x3E; 0, and let h be a homeo-

morphism of ET onto tl, such that ||h(y)-h(x)|| ~ Mlly-xll I and
||h-1(y)-h-1(x)||~ Mlly-aell for all z, y e U. Let z e E, ||z|| = 1,
and set Ao = {x e U; [x, z] = 0}, and So = h(Ao), and let f be a
continuous function on U into U. Then if f is symmetrically dif-
ferentiable on U-So, f is symmetrically differentiable on U.

PROOF. Set Al = {x e U; [XI ZI  0}, A2 = (x~ U; [XI z] &#x3E; 0},
and SI = h(A1), S2 = h(A2). From Theorem 5.1, making use of
the line integral analogue of [4] (or equivalently the monodromy
theorem of analytic continuation theory), for i = 1, 2, a complex
differentiable function gi on Si into K is found, such that for
x e Si, (gi)’(y) = [f(x), y*] for all y e H.
We shall show that gl and g2 can be continuously extended to

1 and 82 in such a way that they can be pieced together to form
a single function g on U which satisfies a Lipschitz condition on U.
We will then apply Section 4 to g and deduce its differentiability,
and hence that of f, everywhere on U.

If W is a rectifiable arc in H, let L(W) denote the length of W.
Let i = 1, 2, and let x, y e A,. Then the interval [x, y] Ç A, and
h([x, y]) is a rectifiable arc in Si such that L(h[x, y])  M||y-x||.
Then from the suitable form of the mean value theorem [3, 5],
setting N = sup {||f(t)||; t ~ },

Thus gi h and hence g, = (gih)h-1 is uniformly continuous on S;,
and thus gi can be continuously extended to a continuous function
g, on Si.

Let e &#x3E; 0. Then there exists 03B4 &#x3E; 0, such that ||y-x||~03B4,
x, y~, implies ||f(y)-f(x)||03B5. Let O03C10~03B4/2M, and
0  p  po and set for x ~J = {y E Ao ; y-poz, y+03C10z~U},
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and

Since s is arbitrary, |c(v)-c(u)| = 0, and c is a constant function Q.
Set g(x) = gl(x) for x e Sl, and g(x) = 2(x)+03C3 for x~2-S0.
Then g is continuous on U.

Clearly for

and m(So) = 0. Hence from Theorem 4.2 and Remark 4.1, glU
is at least twice continuously differentiable, and thus f is sym-
metrically differentiable on U.
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