Compositio Mathematica

Kenneth O. Leland
 Topological analysis of differentiable transformations

Compositio Mathematica, tome 18, $\mathrm{n}^{\circ} 3$ (1967), p. 189-200
http://www.numdam.org/item?id=CM_1967__18_3_189_0
© Foundation Compositio Mathematica, 1967, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Topological analysis of differentiable transformations

by
Kenneth O. Leland

1. Introduction

In Section 3 of [4] the author extended the topological methods developed by Porcelli and Connell [9] for handling isolated singularities of complex differentiable functions to the case of more complicated singularities. In particular he was able to resolve by topological methods the case when the singularity was a rectifiable arc. In this paper the results of [4] are generalized to the case of complex (Frechét) differentiable functions on a complex Euclidean space into itself. In particular the removable singularity problem, when the singularity is a "rectifiable interface" separating two adjacent cells, is resolved.

The topological index of Whyburn [12] is replaced by degree theoretic methods from algebraic topology [1, 2].

The topological analogue of our results, wherein the requirement of complex differentiability is replaced by the requirement of being light and locally sense preserving, may be found in the work of Titus and Young [10].

We are unable to generalize the algebra of difference quotients developed in $[4,6,9,12]$; however, the need for such auxiliary functions is obviated by use of a geometric characterization of harmonic functions [Theorem 4.1].

Let B and C be Banach spaces, f a continuous function on an open set S in B into C, and $p \in S$. Then f is said to be (real Frechét) differentiable [3] at p if there exists a bounded linear operator A from B into C, such that for all $\varepsilon>0$, there exists $\delta>0$, such that $\|x\|<\delta, x+p \in S$, implies $\|f(x+p)-f(x)-A(x)\| \leqq \varepsilon\|x\|$.

In Section 3 degree theoretic methods are employed to prove Maximum Modulus Theorems. In Section 4 the basic machinery for handling removable singularities is developed. In Section 5 this machinery is applied to the case when the singularity is a "rectifiable interface".

No use is made in this paper of Jacobian matrices or determinants, or of kernel integrals.

2. Notation and definitions

Let R denote the real numbers, K the complex numbers, and ω the positive integers. Throughout this paper E shall denote a fixed Euclidean space and m shall denote Lebesgue measure on E. For $x \in E, \delta>0$, set

$$
V_{x}(\delta)=\{y \in E ;\|y-x\|<\delta\} \text { and } B_{x}(\delta)=\nabla_{x}(\delta)-V_{x}(\delta)
$$

If $A, B, C \subseteq E$ and f and g are functions on A into Z and B into Z for $Z=R, K, E$, then we set $(f+g)(x)=f(x)+g(x)$ for $x \in A \cap B$, and we let $f \mid C$ be the function h on $A \cap C$ such that $h(x)=f(x)$ for $x \in A \cap C$. If f and g are functions we shall write $f g$ for the composition of f and g.
$B[E, E]$ shall denote the Banach algebra of linear transformations of E into E. By I shall be meant the element of $B[E, E]$ such that $I(x)=x$. We shall denote by $G(E)$ the rotation group of E, that is the group of unitary transformations of $B[E, E]$. A subgroup G of $G(E)$ is said to be transitive if for all $x, y \in B_{0}(1)$, there exists $g \in G$, such that $g(x)=g(y)$.

Definition 2.1. Let F be a collection of continuous functions on open subsets of E into R, and G a subgroup of $G(E)$. Then F is called a $T G$ family [7] if:

1. For $c \in R, f \in F, c f \in F$.
2. For $f, g \in F, f+g \in F$.
3. For $f \in F, S$ an open set in $E, f \mid S$ lies in F.
4. For $f \in F$, and $x \in B$, the function f_{x} lies in F, where $g_{x}(y)=$ $f(y-x)$ for $y \in E$ such that $y-x \in$ domain f.
5. For $f \in F, g \in G, f g \in F$.

A function $f \in F$ is said to maximum modular, if for all open sets S in E, such that $\bar{S} \cong \operatorname{dom} f$, we have $f|(x)| \leqq \sup \{|f(t)|$; $t \in \bar{S}-S\}$ for all $x \in S$. A $T G$ family F is called a $T G M$ family if F contains the constant function $\overline{1}$, and if all elements of F are maximum modular.

Let S be an open set in E containing $V_{0}(1)$, and let f be a continuous function on S into E. If p is a point of $E-f(B)$, where $B=B_{0}(1)$, then the degree $\mu_{B}(f, p)$ of f with respect to B and p may be defined. If x is a point of S, such that there exists $\delta>0$,
such that $f(y) \neq f(x)$ for all $y \neq x, y \in V_{x}(\delta) \cap S$, then the local degree $\mu_{x}(f)$ of f at x may be defined. For formal definitions and development of degree theory one may refer to Alexandroff and Hopf [1] or Cronin [2]. Our notation is inspired by that used by Whyburn [12] in the two dimensional case.

We shall need the following facts from degree theory:
2.1. $\mu_{B}(f, p)=\mu_{B}(f-p, 0)$.
2.2. If $\mu_{B}(f, p) \neq 0$, then $p \in f\left[V_{0}(1)\right]$.
2.3. If $H=f^{-1}(p) \cap V_{0}(1)$ is finite, then $\mu_{B}(f, p)=\sum_{x \in H} \mu_{x}(f)$.
2.4. If p and q are points of the same component of $E-f(B)$, then $\mu_{B}(f, p)=\mu_{B}(f, q)$.
2.5. If M and N are elements of the same component of the set of invertible elements $I[E, E]$ of $B[E, E]$, then $\mu(M)=\mu_{B}(M, 0)$ $=\mu_{B}(N, 0)=\mu(N)$.
2.6. If for some $p \in V_{0}(1)$, the derivative A of f at p exists and is invertible, then there exists $\delta>0$, such that for $q=f(p)$, $V_{p}(\delta) \subseteq V_{0}(1), V_{q}(\delta) \subseteq f\left[V_{0}(1)\right], f(x) \neq f(p)$ for all $x \in V_{p}(\delta)$, $x \neq p$, and $\mu_{x}(f)=\mu_{p}(f)=\mu(A)$ for $x \in V_{p}(\mu)$.
We shall also need the following form of Sard's Theorem:
Theorem 2.1. Let f be a (Frechét) differentiable function on an open set S in E into E, and let H be set of all points $x \in S$, such that the derivative A_{x} of f at x does not invert. Then $m[f(H)]=0$.

In the form found in Cronin [2, 32-36] the first partial derivatives of f are required to exist and be continuous. This implies the existence and continuity of the Frechét derivative of f. This continuity, however, is not assumed here. The argument for the case of complex differentiable functions from K to K may be found in Whyburn [12, 72-73].

Proof. Let $a>0$, and let Q be a cube of side a in S. For $n \in \omega$, let F_{n} be the subdivision of Q into equal cubes of side $a / 2^{n}$, where n is the dimension of E. Let $H_{0}=H \cap Q$, and for $m \in \omega$, set $H_{m}=\left\{x \in H_{0} ;\left\|A_{x}\right\| \leqq m\right\}$. Then $H_{0}=U_{1}^{\infty} H_{m}$.

Let $\varepsilon>0, \varepsilon<1$, and let $m \in \omega$. Let $x \in H_{m}$. Then there exists $\delta>0$, such that $V_{x}(\delta) \subseteq S$, and such that

$$
\left\|f(x+h)-f(x)-A_{x}(h)\right\| \leqq \varepsilon\|h\| \text { for all } h \in V_{0}(\delta) .
$$

Now there exists $k \in \omega$, and an the element E_{x} of F_{k} containing x which lies in $V_{x}(\delta)$. Let $D=\left\{E_{x} ; x \in H_{m}\right\}$. For each $x \in H_{m}$, there exists $\tilde{x} \in H_{m}$, such that $E_{x} \subseteq E_{\tilde{x}}$, and such that $E_{\tilde{x}}$ is not a
proper subset of any element of D. Since $U_{1}^{\infty} F_{i}$ is countable, $D_{0}=\left\{E_{\tilde{x}} ; x \in H_{m}\right\}$ is countable. Clearly $A=B$ or $A \cap B$ is a "face" cube of dimension $n-1$ for all $A, B \in D_{0}$.

Let $x \in H_{m}$, set $J=\left\{y-\tilde{x} ; y \in E_{\tilde{x}}\right\}$, and set $A=A_{\tilde{x}}$. Then there exists an $n-1$ dimensional subspace T of E such that $A(J) \subseteq T$. For $y \in E$, set $\delta(y)=\inf \{\|y-t\| ; t \in T\}$, and let $P(y)$ be the orthogonal projection of y into T. For $y \in J$,

$$
\|f(\tilde{x}+y)-f(\tilde{x})-A(y)\| \leqq \varepsilon\|y\| \leqq \varepsilon \sqrt{n} s
$$

and

$$
\|A(y)\| \leqq m\|y\| \leqq m \sqrt{n} s
$$

where s is the side of J. Thus for $y \in J, \delta[f(\tilde{x}+y)-f(\tilde{x})] \leqq \varepsilon \sqrt{n} s$, and $P[f(\tilde{x}+y)-f(\tilde{x})] \in V_{0}(m \sqrt{n} s+\varepsilon \sqrt{n} s)=V_{0}[(m+\varepsilon) \sqrt{n s}]$. Then

$$
\begin{aligned}
m\left[f\left(E_{\tilde{x}}\right)\right] & \leqq C_{n-1}[(m+\varepsilon) \sqrt{ } n s]^{n-1}[\varepsilon \sqrt{n} s] \\
& \leqq M \varepsilon s^{n}=M \varepsilon \cdot m\left(E_{\tilde{x}}\right)
\end{aligned}
$$

where C_{n-1} is a constant determined by $n-1$, and

$$
M=C_{n-1}(m+1)^{n-1} n^{n / 2}
$$

We note that $f\left(E_{\tilde{x}}\right)$ lies in a "cylinder" with the subset

$$
V_{\tilde{x}}[(m+\varepsilon) \sqrt{n} s]
$$

of T as a base, and with altitude $\varepsilon \sqrt{n} s$. Then

$$
m\left[f\left(H_{m}\right)\right] \leqq \sum_{J \in D_{0}} m[f(J)] \leqq \sum_{J \in D_{0}} M \varepsilon \cdot m(J) \leqq m \varepsilon \cdot m(Q)
$$

Since ε is arbitrary, $m\left[f\left(H_{m}\right)\right]=0$. Thus

$$
m\left[f\left(H_{0}\right)\right] \leqq \sum_{i=1}^{\infty} m\left[f\left(H_{i}\right)\right]=0
$$

3. Maximum modularity theory

Let f be a complex differentiable function on an open set S in K into K. Then f satisfies the Maximum Modulus Theorem. For $x \in S, t \in E_{2}=K$, set $A_{x}(t)=f^{\prime}(x) \cdot t$. Then A_{x} is the Frechét derivative of f at x, and A_{x} is an element of the family W of elements of $B\left[E_{2}, E_{2}\right]$ of the form $r U$, where $r \in R$, and U is a rotation of index 1. The maximum modularity of f can be deduced directly from the fact that W is a linear space all of whose elements which invert have index 1 . The argument is independent of the dimension of the space in question, and does not involve K.

Theorem 3.1. Set $U=V_{0}(1)$ and $E^{*}=B[E, R]$ and let f be a continuous function on \bar{U} into E, and H a nowhere dense subset of U, such that for $x \in U-H$, the derivative A_{x} of f at x exists. Then if

1. For all $x \in U-H$ and $r \in R$, such that $A_{x}-r I$ is invertible, we have $\mu\left(A_{x}-r I\right)=1$; and
2. For all $r \in R, m[f-r I)(H)]=0$, then
and

$$
|L f(x)| \leqq\|L\| \sup \left\{|L f(t)| ; t \in B_{0}(1)\right\}
$$

$$
\|f(x)\| \leqq \sup \left\{\|f(t)\| ; t \in B_{0}(\mathbf{1})\right\}
$$

for all $x \in U, L \in E^{*}$.
Proof. Let $L \in E^{*}$, and let $\varepsilon>0$. There exists a countable subset X of $U-H$, dense in U. For $x \in X$, let C_{x} be the set of all $r \in R$, such that $A_{x}-r I$ does not invert. Clearly, for $x \in X, C_{x}$ is finite or empty, and thus $U_{x \in X} C_{x}$ is countable. Let r_{0} be an element of R, such that $r_{0} \geqq 0, r_{0}<\varepsilon$, and $r_{0} \notin U_{x \in X} C_{x}$. Then $A_{x}-r_{0} I$ is invertible for all $x \in X$. Set $f_{0}=f-r_{0} I$.

Let S be a component of $E-f_{0}\left[B_{0}(1)\right]$, such that $S \cap f(U) \neq \emptyset$. Then $P=f_{0}^{-1}(S)$ is an open set in U, and hence open in E. Thus there exists $x \in X$, such that $x \in P$. Since the derivative of f_{0} at x is invertible, from Fact 2.6, we have that $S \supseteqq f_{0}(P)$ contains an open set Q. Let K be the set of all points $x \in U-H$, such that the derivative of f_{0} at x does not invert. Then from Sard's Theorem, $m\left[f_{0}(K)\right]=0$, and hence $f_{0}(K)$ is nowhere dense in E.

By hypothesis $f_{0}(H)$ is nowhere dense in E. Then

$$
Q_{0}=\left[f_{0}(H) \cup f_{0}(K)\right] \cap Q
$$

is nowhere dense in Q. Let $p \in Q-Q_{0} \subseteq S$, and let $M=f^{-1}(p) \cap U$. Since M is compact, from Fact 2.6, M is finite. By hypothesis, the derivative of f_{0} at x is of index 1 for all $x \in M$. Hence from Fact 2.6, for $x \in M, \mu_{x}\left(f_{0}\right)=1$, and thus $\mu_{B}\left(f_{0}, p\right)=k>0$, where k is the number of elements of M. Then from Fact 2.2, $S \subseteq F(U)$.

Assume there exists $z \in U$, such that $\left|L t_{0}(z)\right|>\sup \left\{\left|L f_{0}(t)\right|\right.$; $\left.t \in B_{0}(1)\right\}$. Then $f_{0}\left[B_{0}(1)\right] \subseteq D=\left\{x \in E ;|L(x)|<\left|L f_{0}(z)\right|\right\}$, and $f_{0}(z) \in E-D$. Then $f_{0}(z)$ lies in the unbounded component P of $E-f_{0}\left[B_{0}(1)\right]$, and hence $P \subseteq f_{0}(U)$. But $f_{0}(\bar{U})$ is compact and hence bounded. Similarly for $z \in U,\left\|f_{0}(z)\right\| \leqq \sup \left\{\left\|f_{0}(t)\right\| ; t \in B_{0}(1)\right\}$. Since ε is arbitrary the theorem follows.

Theorem 3.2. Let S be an open set in E, H and X subsets of S, and f a continuous function on S into E such that:

1. H is nowhere dense in S, and $m[f(H)]=0$.
2. For $x \in(S-H) \cup X$, the derivative A_{x} of f at x exists, and is of index 1 if invertible.
3. X is dense in S, and for $x \in X, A_{x}$ is invertible. Then if f is light, f is open [12, 75-76].

Proof. Let $x \in S$. Since f is light, from the Zoretti Theorem $[12,35]$, there exists an open set T containing x, such that $T \subseteq S$, T is homeomorphic to $\vec{V}_{0}(1)$, and such that $(\bar{T}-T) \cap f^{-1} f(x)=\emptyset$. Thus $f(x) \notin f(\bar{T}-T)$. Then from Fact 2.6, we see that the component V of $E-f(T-T)$ containing $f(x)$ lies in $f(T)$, and thus $f(x)$ lies in the open subset V of $f(S)$.

4. Removable singularities

Definition 4.1. Let f be a continuous function on an open set S in E into E, and A a subset of S. Then f is called a P_{A} function if for every $x \in A$, there exists $M_{x}>0$, such that

$$
\|f(y)-f(x)\| \leqq M_{x}\|y-x\| \text { for all } y \in S
$$

It may be readily shown [4, Theorem 3.2] that if f is a P_{A} function and $m(A)=0$, then $m[f(A)]=0$.

Theorem 4.1. Let G be a compact transitive subgroup of $G(E)$, and F a TGM famiiy of E. Then the elements of F are harmonic functions and hence continuously differentiable.

Proof. This lemma may be found in Lowdenslager [8, 468-469] and [7].

Set $U=V_{0}(1)$, and let W be the family of all continuous functions h on \bar{U}, such that $h \mid U$ lies in F. For $h \in W$ and $z \in \bar{U}$, set $L(h)=C \int_{U} h d m$, and $\tilde{h}(z)=\int_{G} h g(z) d \mu(g)$, where μ is normalized Haar measure on G, and $C^{-1}=m(U)$. Then for $h \in W, x \in \bar{U}$, and $g \in G, \tilde{h} g(x)=\tilde{h}(x)$. Hence for $0<r \leqq 1$, since G is transitive, $\check{h}(x)=\tilde{h}(y)$ for all $x, y \in B_{0}(r)$.

Fix $h \in W$. Then \tilde{h} lies in the closure of W and hence must be maximum modular, and thus must be a constant function. Thus

$$
\begin{aligned}
h(0) & =\tilde{h}(0)=C \int_{U} \tilde{h} d m=L(\tilde{h})=L\left[\int_{G} h g d \mu(g)\right] \\
& =\int_{G} L(h g) d \mu(g)=\int_{G} L(h) d \mu=L(h)
\end{aligned}
$$

Thus the elements of W satisfy the volume mean characterization of harmonic functions.

Theorem 4.2. Let f be a bounded continuous function on an open set S in E into E, H a subset of S, and A an element of $B[E, E]$, $A \neq 0$, such that:

1. There exists a polynomial P, irreducible over R, such that $P(A)=0$.
2. For $x \in S-H$, the derivative A_{x} of f at x exists, and is such that $A_{x} A=A A_{x}$.
3. Either:
a. $m(H)=0$, and f is a P_{H} function; $O R$
b. H is countable.

Then t is differentiable on S, and $A_{x} A=A A_{x}$ for all $x \in S$.
Proof: Let Z be the subalgebra of $B[E, E]$ generated by A, and let T be the set of all elements B of $B[E, E]$ such that $A B=B A$. Since A is irreducible over R, Z is isomorphic to the complex field K. For $x \in E, c \in Z$, set $c x=c(x)$. Then E can be considered as a complex Hilbert space H over Z, with $T=B[H, H]$. Let $x \in S-H$. Then $A_{x} \in T$, and $P_{x}=\{c \in Z ; A-c I$ does not invert $\}$ is finite. Thus there exists an arc W in Z with endpoints A_{x} and I, containing no points of P_{x}. Thus $W \subseteq I[E, E]$, and from Fact $2.5 \mu\left(A_{x}\right)=\mu(I)=1$. Set $G=G(H) \subseteq B[H, H] \subseteq B[E, E]$. Then G is a compact transitive subgroup of $G(E)$.

Let V be the family of all continuous functions h on open subsets of E into E, such that there exists $H_{h} \subseteq$ dom h, such that h and H_{h} satisfy the hypothesis and conditions 1,2 and $3 . a$ of this theorem. Let $L \in E^{*}$, and set $V_{L}=\{L h ; h \in V\}$. Then $L f \in V_{L}$.

For $h \in V$, since h is differentiable on $S-H_{h}$, where $S=\operatorname{dom} h$, h is a P_{S} function. Let $h_{1}, \ldots, h_{m} \in V, r_{1}, \ldots, r_{m} \in R, m \in \omega$. Then, setting $H=U_{1}^{m} H_{h_{t}}, m(H) \leqq \sum_{i=1}^{m} m\left(H_{h_{i}}\right)=0$. Clearly $h=\sum_{i=1}^{m} r_{i} h_{i}$ is a P_{S} function, and hence h is a P_{H} function. Then V_{L} is a $T G$ family. For $r \in R$, and $h \in V$, since $h-r I$ and H_{h} satisfy condition 3.a, $m\left[(h-r I)\left(H_{h}\right)\right]=0$, and hence from Theorem 3.1, $L h$ is maximum modular. Thus V_{L} is a $T G M$ family.

From Theorem 4.1, the elements of V_{L} are harmonic functions and hence continuously differentiable. Since E is finite dimensional, we readily deduce [3] that the elements of V are continuously differentiable. For $h \in V$, since H_{h} is nowhere dense in E, and T is closed, A_{x} must lie in T for all $x \in H_{h}$.

The argument in the case that H satisfies condition 3.b. is similar.

Remark 4.1. Theorem 4.1 asserts that the elements of a $T G M$ family F are harmonic functions. Hence the elements of F are
actually analytic. It is then easy to strenghten the conclusion of Theorem 4.2 to an assertion of analyticity.

Remark 4.2. In the two dimensional theory [4, 6, 9, 12] strong use is made of auxilary functions of the form

$$
\frac{f\left(x_{n}\right)-f(x)}{x_{n}-x}-\frac{f\left(x_{m}\right)-f(x)}{x_{m}-x}
$$

however in the higher dimensional case, in general, no similar functions, are available. For example, let M be a closed subspace of dimension greater than one of a complex Banach space B. Assume there exists a complex differentiable function g on $M-\{0\}$ into B or into K, such that $\|g(x)\|=\|x\|^{-1}$ for $x \in M-\{0\}$. Now there exists a subhyperplane N of M, such that $0 \notin N$. Then $g \mid N$ is a bounded non-constant complex differentiable function on N, contradicting Liouville's Theorem [3, 5].

The only extension the author is aware of involves the space of quaterneons Q. Let H be a closed nowhere dense subset of $U=V_{0}(1)$, and let f be a continuous function on U into Q, such that for $x \in U-H$, the derivative A_{x} of f at x exists and is such that there exists $q_{x} \in Q$, such that $A_{x}(y)=q_{x} y$ for all $y \in Q$. Let $x_{1}, x_{2} \in S-H$, and set, for $i=1,2, T_{i}(h)=\left[f\left(x_{i}+h\right)-f\left(x_{i}\right)\right] h^{-1}$ for all $h \in Q, h \neq 0$, such that $x_{i}+h \in H$, and set $T_{i}(h)=q_{x_{i}}$ for $h=0$.

Then for $i=1,2, T_{i}$ is continuous at 0 , and the derivative H_{x}^{i} of T_{i} at x exists for all $x \in \operatorname{dom} T_{i}, x \neq 0$. Let $x \in \operatorname{dom} T_{1} \cap \operatorname{dom} T_{2}$, $x \neq 0$. Then for $i=1,2$, by direct computation

$$
\begin{aligned}
H_{x}^{i}(t) & =A_{x}(t) x^{-1}-\left[f\left(x_{i}+x\right)-f\left(x_{i}\right)\right] x^{-1} t x^{-1} \\
& =q_{x} t x^{-1}-\left[f\left(x_{i}+x\right)-f\left(x_{i}\right)\right] x^{-1} t x^{-1} \\
& =p_{x}^{i} t x^{-1} \text { for all } t \in Q,
\end{aligned}
$$

where $p_{x}^{i}=q_{x}-\left[f\left(x_{i}+x\right)-f\left(x_{i}\right) x^{-1}\right]$. Then $\left(H_{x}^{1}-H_{x}^{2}\right)(t)=\left(p_{x}^{1}-p_{x}^{2}\right) t x^{-1}$. Since Q is a skew field $H_{x}^{1}-H_{x}^{2}$ is identically 0 or inverts. In the latter case there exist continuous functions u and v on [0,1] into $Q-\{0\}$, such that $u(0)=v(0)=1, u(1)=p_{x}^{1}-p_{x}^{2}$, and $v(1)=x^{-1}$. For $s \in[0,1], t \in Q$, set $g_{s}(t)=u(s) t \cdot v(s)$. Then g_{s} is invertible for all $s \in[0,1]$, and hence from Section $2, \mu\left(H_{x}^{1}-H_{x}^{2}\right)=\mu\left(g_{1}\right)=$ $\mu\left(g_{0}\right)=\mu(I)=1$. Then if $U-H$ has finitely many components, and $m(H)=0$ and f is a P_{H} function, or in the terminology of [4] there exists an M family of partitions Σ of H and f is a Σ function, we conclude that $T_{1}-T_{2}$ satisfies the Maximum Modulus Theorem. Then working with sequences of difference quotients (cf. [9] or [4, Theorem 3.3]) we deduce that f is differentiable on U.

5. Rectifiable interfaces

Definition 5.1. Throughout this section H shall denote a fixed finite dimensional complex Hilbert space with an involution $x \rightarrow x^{*}, x \in H$.

If f is a differentiable function on an open subset S of H into H, then f is said to be symmetrically differentiable if for all $x \in S$, $y, z \in H,\left[f_{x}^{\prime}(y), z^{*}\right]=\left[f_{x}^{\prime}(z), y^{*}\right]$. We let $f_{x}^{(n)}$ denote the n-th derivative of f at x for $x \in S, n \in \omega$.

We observe that if we replace H by a three dimensional real Euclidean space that the requirement of symmetric differentiability of a function g reduces to the requirement that the curl of $g, \nabla \times g$, vanishes identically.

Theorem 5.1. Let f be a symmetrically differentiable function on $U=V_{0}(1)$ into H. Then there exists a complex differentiable function h on U into K, such that for $x \in U, y \in H, h_{x}^{\prime}(y)=\left[f(x), y^{*}\right]$.

Proof. Let $x \in U, s \in H$, and $\rho \in K$. Then for all $t \in H$, $\left[f_{x}^{\prime}(\rho s), t^{*}\right]=\left[f_{x}^{\prime}(t),(\rho s)^{*}\right]=\rho\left[f_{x}^{\prime}(t), s^{*}\right]=\rho\left[f_{x}^{\prime}(s), t^{*}\right]$, and thus $f_{x}^{\prime}(\rho s)=\rho f_{x}^{\prime}(s)$ and f is complex differentiable. Then (cf. Remark 4.1 and [3], [5]) $f^{(n)}$ exists for all $n \in \omega$, and the power series $\sum_{0}^{\infty} f_{0}^{(n)}(x, \ldots, x) / n$! converges uniformly on compact subsets of U to $f(x)$. For $n \in \omega, x \in H$, set $k_{n}(x)=f_{0}^{(n)}(x, \ldots, x) / n!$ and $h_{n}(x)=\left[f_{0}^{(n)}(x, \ldots, x), x^{*}\right]$.

Let $\varepsilon>0, x \in U$. Then there exists $0<\delta<1-\|x\|$, such that for $y \in U_{x}(\delta), s, t \in H,\left\|f_{x+y}^{\prime}-f_{x}^{\prime}-f_{x}^{\prime \prime}(y)\right\| \leqq \varepsilon\|y\| / 2$, and hence since f is symmetrically differentiable,

$$
\begin{aligned}
\mid\left[f_{x}^{\prime \prime}(y, s), t^{*}\right] & -\left[f_{x}^{\prime \prime}(y, t), s^{*}\right]|\leqq|\left[f_{x+y}^{\prime}(s)-f_{x}^{\prime}(s), t^{*}\right] \\
& \quad-\left[f_{x}^{\prime \prime}(y, s), t^{*}\right]\left|+\left|\left[f_{x+y}^{\prime}(t)-f_{x}^{\prime}(t), s^{*}\right]-\left[f_{x}^{\prime \prime}(y, t), s^{*}\right]\right|\right. \\
& \leqq \varepsilon\|y\| \cdot\|s\| \cdot\|t\| / 2+\varepsilon\|y\| \cdot\|t\| \cdot\|s\| / 2=\varepsilon\|y\| \cdot\|s\| \cdot \| t| |
\end{aligned}
$$

and thus $\left[f_{x}^{\prime \prime}(y, s), t^{*}\right]=\left[f_{x}^{\prime \prime}(y, t), s^{*}\right]$ for all $x \in U, y, s, t \in H$. Continuing this process we deduce that

$$
\left[f_{0}^{(n)}(x, \ldots, x, s), t^{*}\right]=\left[f_{0}^{(n)}(x, \ldots, x, t), s^{*}\right] \text { for all } x, s, t \in H
$$

Now for $x, t \in H$,

$$
\begin{aligned}
(n+1)!\left(h_{n}\right)_{x}^{\prime}(t) & =\left[n f_{0}^{(n)}(x, \ldots, x, t), x^{*}\right]+\left[f_{0}^{(n)}(x, \ldots, x), t^{*}\right] \\
& =\left[n f_{0}^{(n)}(x, \ldots, x), t^{*}\right]+\left[f_{0}^{(n)}(x, \ldots, x), t^{*}\right] \\
& =(n+1)\left[f^{(n)}(x, \ldots, x), t^{*}\right]=(n+1)!\left[k_{n}(x), t^{*}\right]
\end{aligned}
$$

and $\left\|h_{n}(x)\right\| \leqq\left\|k_{n}(x)\right\| /(n+1)$. Thus $[3,5], \quad \sum_{0}^{\infty} h_{n}$ converges.
uniformly on compact subsets of U to a differentiable limit function h, and for $x \in U, t \in H$,

$$
h_{x}^{\prime}(t)=\sum_{0}^{\infty}\left(h_{n}\right)_{x}^{\prime}(t)=\sum_{0}^{\infty}\left[k_{n}(x), t^{*}\right]=\left[\sum_{0}^{\infty} k_{n}(x), t^{*}\right]=\left[f(x), t^{*}\right] .
$$

Now for

$$
x \in U, y \in H, \rho \in K, h_{x}^{\prime}(\rho y)=\left[f(x),(\rho y)^{*}\right]=\rho\left[f(x), y^{*}\right]=\rho h_{x}^{\prime}(y)
$$

and thus h is complex differentiable.
Theorem 5.2. Set $U=V_{0}(1)$, let $M>0$, and let h be a homeomorphism of \bar{U} onto \bar{U}, such that $\|h(y)-h(x)\| \leqq M\|y-x\|$ and $\left\|h^{-1}(y)-h^{-1}(x)\right\| \leqq M\|y-x\|$ for all $x, y \in \bar{U}$. Let $z \in E,\|z\|=1$, and set $A_{0}=\{x \in U ;[x, z]=0\}$, and $S_{0}=h\left(A_{0}\right)$, and let f be a continuous function on \bar{U} into \bar{U}. Then if f is symmetrically differentiable on $U-S_{0}$, f is symmetrically differentiable on U.

Proof. Set $A_{1}=\{x \in U ;[x, z]<0\}, A_{2}=\{x \in U ;[x, z]>0\}$, and $S_{1}=h\left(A_{1}\right), S_{2}=h\left(A_{2}\right)$. From Theorem 5.1, making use of the line integral analogue of [4] (or equivalently the monodromy theorem of analytic continuation theory), for $i=1,2$, a complex differentiable function g_{i} on S_{i} into K is found, such that for $x \in S_{i},\left(g_{i}\right)_{x}^{\prime}(y)=\left[f(x), y^{*}\right]$ for all $y \in H$.

We shall show that g_{1} and g_{2} can be continuously extended to \bar{S}_{1} and \bar{S}_{2} in such a way that they can be pieced together to form a single function g on \bar{U} which satisfies a Lipschitz condition on \bar{U}. We will then apply Section 4 to g and deduce its differentiability, and hence that of f, everywhere on U.

If W is a rectifiable arc in H, let $L(W)$ denote the length of W. Let $i=1,2$, and let $x, y \in A_{i}$. Then the interval $[x, y] \subseteq A_{i}$ and $h([x, y])$ is a rectifiable are in S_{i} such that $L(h[x, y]) \leqq M\|y-x\|$. Then from the suitable form of the mean value theorem $[3,5]$, setting $N=\sup \{\|f(t)\| ; t \in \bar{U}\}$,

$$
\begin{aligned}
\left|g_{i} h(y)-g_{i} h(x)\right| & \leqq L(h[x, y]) \cdot \sup \left\{\left\|\left(g_{i}\right)_{t}^{\prime}\right\| ; t \in h([x, y])\right\} \\
& =L(h[x, y]) \cdot \sup \{\|f(t)\| ; t \in h([x, y])\} \\
& \leqq M\|y-x\| \cdot N .
\end{aligned}
$$

Thus $g_{i} h$ and hence $g_{i}=\left(g_{i} h\right) h^{-1}$ is uniformly continuous on S_{i}, and thus g_{i} can be continuously extended to a continuous function \bar{g}_{i} on \bar{S}_{i}.

Let $\varepsilon>0$. Then there exists $\delta>0$, such that $\|y-x\| \leqq \delta$, $x, y \in \bar{U}$, implies $\|f(y)-f(x)\|<\varepsilon$. Let $0<\rho_{0} \leqq \delta / 2 M$, and $0<\rho<\rho_{0}$ and set for $x \in J=\left\{y \in A_{0} ; y-\rho_{0} z, y+\rho_{0} z \in U\right\}$,

$$
\theta_{\rho}(x)=g_{2} h(x+\rho z)-g_{1} h(x-\rho z)
$$

Then for $x \in J, t=h(x), a=h(x+\rho z), b=h(x-\rho z)$,
$\|b-a\| \leqq M\|(x+\rho z)-(x-\rho z)\|=2 M\|\rho z\|=2 M \rho \leqq 2 M \rho_{0} \leqq \delta$, and

$$
\left\|\left(\theta_{\rho} h^{-1}\right)_{t}^{\prime}\right\|=\left\|\left(g_{2}\right)_{a}^{\prime}-\left(g_{1}\right)_{b}^{\prime}\right\|=\|f(a)-f(b)\|<\varepsilon .
$$

Let $u, v \in h(J)$, and set $x=h^{-1}(u), y=h^{-1}(v)$. Then

$$
\begin{aligned}
\left\|\theta_{\rho}(y)-\theta_{\rho}(x)\right\| & \leqq L([h(x), h(y)]) \cdot \sup \left\{\left\|\left(\theta_{\rho} h^{-1}\right)_{t}^{\prime}\right\| ; t \in h([x, y])\right\} \\
& \leqq M\|y-x\| \varepsilon \leqq M^{2}\|v-u\| \varepsilon
\end{aligned}
$$

and setting $c(t)=\left(\bar{g}_{2}-\bar{g}_{1}\right)(t)$ for $t \in S_{0}$,

$$
|c(v)-c(u)|=\lim _{\rho \rightarrow 0}\left|\theta_{\rho}(y)-\theta_{\rho}(x)\right| \leqq M^{2}| | v-u \| \varepsilon
$$

Since ε is arbitrary, $|c(v)-c(u)|=0$, and c is a constant function $\bar{\sigma}$. Set $g(x)=\bar{g}_{1}(x)$ for $x \in \bar{S}_{1}$, and $g(x)=\bar{g}_{2}(x)+\sigma$ for $x \in \bar{S}_{2}-S_{0}$. Then g is continuous on \bar{U}.

Clearly for

$$
x, y \in \bar{U},|g(y)-g(x)| \leqq N M\left\|h^{-1}(y)-h^{-1}(x)\right\| \leqq N M^{2}\|y-x\|
$$

and $m\left(S_{0}\right)=0$. Hence from Theorem 4.2 and Remark 4.1, $g \mid U$ is at least twice continuously differentiable, and thus f is symmetrically differentiable on U.

REFERENCES

P. Alexandroff and H. Hopf,
[1] Topology I, Springer, Berlin 1935, pp. 457-498.

J. Cronin,

[2] Fixed Points and Topological Degree in Nonlinear Analysis, American Math. Soc. Math. Surveys No. 11, 1964.

J. Dieudonné,

[3] Foundations of Modern Analysis, Academic Press, New York, 1960.
K. O. Leland,
[4] Topological Analysis of Analytic Functions, Fundamenta Mathematicae, LVI (1964), pp. 157-182.
K. O. Leland,
[5] A Characterization of Analyticity, Duke Math. J. 33 (1966), 551—565.
K. O. Leland,
[6] A Polynomial Approach to Topological Analysis, Compositio Math. 17 (1967), 291-298.
K. O. Leland,
[7] Characterizations of Solutions of " $\Delta f=c f$ ", To appear in the Studia Math., Vol. 29, no. 2.
D. B. Lowdenslager,
[8] Potential Theory in Bounded Symmetric Homogeneous Complex Domains, Annals of Math. 67, Second Series, 1958, 467-484.
P. Porcelli and E. H. Connell,
[9] A Proof of the Power Series Expansion woithout Cauchy's Formula, Bull. Amer. Math. Soc. 67 (1961), 177-181.
C. J. Titus and G. S. Young,
[10] The Extension of Interiority weith some Applications, Trans. Amer. Math. Soc. 103 (1962), 329-340.
G. T. Whyburn,
[11] Developments in Topological Analysis, Fund. Math. 50 (1962), 305-318.
G. T. Whyburn,
[12] Topological Analysis, Princeton University Press, Princeton, N. J., Second Edition, 1964.

