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Finite and infinite in intuitionistic mathematics

by

A. S. Troelstra

1. Introduction

Various investigations in the domain of intuitionistic mathe-
matics constitute our point of departure; in the first place, an
unpublished manuscript of a lecture, held by J. J. de Iongh in
December 1956 in Amsterdam, concerning notions of finiteness
of different constructive content ([4]).

Further important sources were the treatment of relations

between cardinalities by L. E. J. Brouwer in [1] and the in-
vestigations of A. Heyting on the countability predicates ([2]).
We are trying to treat and to extend these researches from a

common point of view.
In the second paragraph general relations of a certain kind are

introduced; in the next paragraph these relations are used to
define various notions of finiteness and infiniteness, relations
between cardinalities, and countability predicates.

In the last paragraph some notions of finiteness, not defined
by means of the relations of § 2, are discussed.

I am indebted to prof. J. J. de Iongh for his permission to make
use of his results, and to prof. dr. A. Heyting for his valuable
help and criticism.

2. P-Q- and P-Q-T-relations

A relation is a binary predicate; relations will be denoted by
capitals: R, P, Q, T, .... Species ([3], 3.2.1) will be denoted by
lower case letters: a, b, c, .... 

Inclusion, product and relative product of two relations Rl,
R2 will be written as R1 C R2, R1 n R2, RlR2 respectively. The
relative product binds stronger than the product does. We

remark the following general laws:



95

The identity relation will be designated by I. We have a

general rule:

As a consequence we have for example:

For predicates in general we use sometimes set-theoretic

notions for sake of convenience, so for example:

Further we use a e P, a 0 P, Pi n P2, Pl U P2 etc.
A funetion (p acting on an argument x is always denoted with

parentheses: ~(x). We define

If 99 is explicitly stated to be bi-unique in the context, q;-1 denotes
the inverse mapping; in all other cases we define

Further we use

DEFINITION 2.1: A mapping 99 will be called bi-unique if we
have:

REMARK 2.1: A weaker notion of bi-uniqueness is given by
the condition:

If the domain of p is a, and the equality in a is stable (that is,
~~(x = y) ~ x = y for all x, y E a ), then this weaker notion
is equivalent to the stronger one.

DEFINITION 2.2: A species b is called detachable with respect
to a, or detachable in a, if b C a, and

is valid (see [3], 3.2.4 def. 2).
REMARK 2.2: This notion can be weakened in many ways;

one of the most simple is:
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However, if a is weakly detachable in this sense with respect
to b, and b with respect to c, we cannot be sure that a is weakly
detachable with respect to c; so this is not a useful notion.

We define the following relations between species:

DEFINITION 2.3:

aPb: b C a.

a Ps b : b is detachable with respect to a.

aQb : b is the image of a by some mapping.
aQsb: b is the image of a under a bi-unique mapping.
aTb : a is congruent with b, that is, we have:

x~a~~~(x~b) &#x26;x~b~~~(x~a). ([3], 3.2.4, def. 1)
aT,b: aTb and a C b (this is Brouwers notion of halfidentity

introduced in [1]).

P, Ps, Q, Q,, T, Ts will be called the basic P-Q-T-relations,
P, P.,, Q, Qs, will be called the basic P-Q-relations.

DEFINITION 2.4: A P-Q-relation is a continued relative product
of basic P-Q-relations; a P-Q-T-relation is a continued relative
product of basic P-Q-T-relations.
We want to investigate the P-Q-relations first. For these

relations we introduce a stronger notion of inclusion and identity.

DEFINITION 2.5: Suppose R is a P-Q-relation. If we have aoRan,
and this is testified by the sequence: bl C ao, çibi = ai , b2 ~a1,
~2b2 = a2,..., ggnb. = an (possibly b1 = ao, and/or ~n is the

identity), then ~ni=0ai is called a substratum of the assertion
aoRan .

DEFINITION 2.6: For P-Q-relations Rl, R2 we define R1 Cg R2
(substratum-inclusive ) by:

(a)(b)(c)(Ed)(aR1b with a substratum c ~ aR2 b with a sub-
stratum d C c ).

Ri, R2 are called substratum-identical (Ri =s R2) if R1 Cs R2
and R2 Cs RI.
REMARK 2.3: A species is defined as a property of mathematical

objects, which themselves have been or could have been defined
earlier. So in a natural way a hierarchy of types for species is
introduced ([3], 3.2.3) which can be extended to all types cor-
responding to constructive ordinals.

Predicates can be considered as properties, and are to be
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considered as completely defined only if a certain class (class
used as synonymous with species) of species is given, on the
elements of which the meaning of the predicates is defined.

(So a predicate also ought to have a type.) Some predicates,
for example equality between species, admit a "systematic
ambiguity"; for species of every type equality between them can
be defined in the same manner. The P-Q-T-relati,ons also admit
this systematic ambiguity as regards their definition.
The validity of P-Q-T-relations between certain given species

depends on the class of species to which we suppose the meaning
of the relation to be restricted in a given context, since the
definition of a relative product requires existential quantification.
As a consequence, equality between two relations of this kind

also depends on the presupposed class of species.
A substratum-identity between two relations holds on every

class of species s with the property:

Equality in general holds between two relations on every class
of species with adequate properties (depending on the proof of
the equality). E.g. in lemma 2.4 a class of species with the prop-
erties

is certainly adequate.

REMARK 2.4: We have : I~Ps~P; I~Qs~Q; leT, C T;
QQs = Q; PPs=P; TTs=T.
NOTATION 2.1: Rp, R’P, ... resp. Ro, R’Q, ... will be used to

denote either P or P,, resp. Q or Q, (e.g., aRQb can denote either
aQb or aQsb).
We now proceed with four lemmas.

PROOF: De Iongh has already demonstrated in [1] PQP = PQ;
in fact the proof shows that we have PQ P = s PQ. We generalize
his argument. Suppose a1 C a, ~a1 = b1, b C bl. Then we have
cp-1b C a1 C a.

If a1 is detachable with respect to a, b with respect to b1,
then also ~-1b is detachable with respect to a, since:
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So ~-1b is detachable with respect to a, and the first part of the
lemma is established. The second line is proved in the following
way:

LEMMA 2.2: PsQ C, QP.
PROOF: Suppose aPsQd, demonstrated by al C a, q;a1 = d.

Define ~’ by:

Then we can write d as

So we have aQPd with substratum a~ ~a1.

LEMMA 2.3:

PROOF: Suppose aPsQb;
Define ~’ by:

Then we have:

If 99 is one-to-one then so is ~’.

LEMMA 2.4: PQ C QPQ,.
PROOF: Suppose aPQb, al C a, ~a1 = b. (~ only defined on a).

Now we define successively:

Since ç is defined on al only, we can proceed:
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and define ~’ by: ~’(03C8(x)) = r(x).
So qq’a3 = b. We have to show gi is a one-to-one mapping:

These lemmas may be combined in the following theorem:

THEOREM 2.5: a) Scheme I shows all possible P-Q-relations with
respect to substrate-identity.

b) Scheme II shows all possible P-Q-relations.
(The dashed arrows in scheme I are inclusions which have not

been proved with respect to substratum-inclusion).
PROOF:

Scheme 1
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Scheme II

a) Scheme I is the result of the application of the lemmas 2.1
and 2.2. After application of lemma 2.1 all one- and two-factor
relative products remain, and further QPsQs, PsQsP, Q.PQ,,,
PsQP, QPsQsP, PsQPQs.
Lemma 2.2 implies:

b) Application of lemma 2.3 results in:

QsPs = PsQs, P.Q = QPs = QPsQs and PsQsP = QsPsP = Q,P.
Lemma 2.4 implies PQ = QPQs.
We are able to show, by means of some examples, that the

inclusions, denoted by dashed arrows and numbered I, ..., V in
scheme I cannot be strengthened to substratum-inclusions.
To describe these and other counterexamples we introduce a

standard problem for which no solution is known. 

NOTATION 2.2: {1, 2, ..., n} = fi, 0 = 0. The species of natural
numbers will be denoted by 03C9, the species of real numbers by S2.
We introduce the predicate 03A0kn(m), k, n, m ~ 03C9. 03A0kn(m) ~ m

is the number of the last decimal of the nth sequence of ten
consecutive sevens in the decimal notation for ,."k. Further we

define "floating" numbers rk in the following manner:
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Example 2.1: Refutation of II and III in scheme I.

These inclusions can be disproved simultaneously by refuting
PsQs C, QPB. We consider:

A subspecies al of a i s defined by:

a, is detachable with respect to a. We define a mapping 99 on a1:

We put ~a1 = b.
99 is a bi-unique mapping from a, onto b. So we have aPsQsb

with a substratum dl C d. If aQPsb is demonstrated by ~’a = b1,
b1P,b, d1 = a~ b1 C d, then we have to be sure that ~’(1) is well
defined. As long as it is unknown if (Em)03A011(m) holds, the only
element of a u b of which it is certain that it is contained in d,
is 1, so ~’(1) = 1.

Necessarily, 2 E al implies ~’(2) = 1+r1. Therefore it cannot
be proved that b is detachable with respect to b1 = ç’a.

Example 2.2: Refutation of inclusion IV in scheme I. Take
a = w, al = {n : (Em)03A01m(n)}. al is detachable with respect to a.
We define a mapping 99 by:

The substratum is equal to a u b.
If we want to show aQPsQsb, then we must construct b1, b2 ,

q/, ri’ such that ~’a = b1, b2 detachable with respect to b1,
(p"’b2 = b; ~" is a bi-unique mapping.

If we do not know a solution to our standard problem, 2n,
2n+1 E a1 is possible, while it is unknown whether n+r2n and
n+r2n+1 differ or not. So 99" can only be the identity.

There remains to be shown that aQPsb cannot be proved. We
have:

As long as our problem is completely unsolved, ~’(1) = n is
the only possibility. Since it is always possible that n-E-r2n or



102

n-f-r2n+1 belongs to b, it is impossible to show that b is a detach-
able subspecies of bl.

Example 2.3: Refutation of inclusion I in scheme I.
Take a = [0, 1] u [2, 3], al = [0, 1] C a. a1 is detachable with

respect to a.
If we take ~(x) = 3x, then çai = [0, 3] - b. So we have

aP,Q,b, with a substratum [0, 3]. If we wanted to prove aQ,,Pb
by aQ.b1, b1 Pb, a~ b1 C [0, 3], b1 has to be [0, 3] = b. But it
is impossible to prove aQsb, since the only detachable subspecies
of [o, 3] are 0 and [o, 3], as a consequence of the fan theorem
([3], 3.4.3 theorem 2).

Example 2.4 : Refutation of inclusion V in scheme I. Take
a = 2. We define al C a:

We define a mapping ~ (cpa1 = b) in the following way:

The substratum of aPQb is equal to a u b; only natural numbers
occur as elements of au b. Suppose we were able to prove aQPQ,b,
without having a solution to our standard problem, by ex-
hibiting b1, b2 such that aQb1, b1Pb2, b2Q,b with a~ b1 u b~a~ b,
or equivalently, b1 C a w b.

If 99"a = bl, the only possibilities are: b1 = {1, 2}, {1}, or {2}.
As it is always possible that b contains two elements, the only
possibility is {1, 2} = b1. So there remains to show the im-

possibility of proving aPQsb.
If aPQsb was demonstrated by aPbl , epl/b1 = b, bl is a species

of the following type:

If 1 E al is known, we have no guarantee that (2 E al v 2 e al)
is known. Therefore, the definition has to take the following
form:

This definition does not agree with the symmetry of the problem;
hence, if we only know 2 ~ a1, we cannot be sure that 2 E b1,
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so we do not know if ’Pb1 is empty or not, while b cannot be
empty.
We proceed with the treatment of the system of P-Q-T-

relations. We do not intend to give a complete system of reduc-
tions, but instead we restrict ourselves to the derivation of the
most important reductions in the system which guarantee its
finiteness.

In the next theorem we restrict ourselves to combinations
with T,, only.

c) Analogous to a), aTsa’, a’Psb ~ aPs(a f1 b), TsPs C PsTs.
Now we suppose aTsa’, ça’ = b; then cpa = b’, b’T,b. So

T, RQ C RQTs. After this, c) can be proved by induction for
every P-Q-relation R.

REMARK 2.5 : In the proof of theorem 2.6c ) we used aTb ~ 9gaTggb,
where ç is not necessarily defined on a u b. The proof of this rule
is as follows:

COROLLARY 2.6.1.: TsRTs = RTs if R is any P-Q-relation,
since RT, C T.RT,, C RT,T, RT.. This implies that the
number of relative products of P, Ps, Q, Qs and T. is finite.

THE OREM 2.7: TRT = TRTs i f R is any P-Q-relation.
PROOF: Since TP = PT, we may restrict ourselves to the

possibilities R = RQ, Ps, P ,RQ .
a) Suppose aTRQTb, i.e. aTa’, ~a’ = b’, b’Tb ~ (b’ n b)T,b,

~-1[b’~ b]Tsa. So T RQT = TRQT,.
b) Suppose aTPsRQTb, i.e. aTa’, a’P.a", 92a" = b’,

b’Tb ~ (b’ n b)Tsb, ~-1[b’~ b] C a" =&#x3E; aT((a’-a") u ~-1[b’~ b]);
((a’-a") u ~-1[b’~ b])Ps~-1[b’~ b], since
x E (a’-a") u cp-1[b’ n b] ~ x E a’ -a" v x E p-1[b’ n b].
If x E a’ - a", then x 0 ~-1[b’~ b].
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Consequently, TPsRQT = TPsRQTs. In the case that (p is

the identical mapping we have TPsT = TPsTs.

COROLLARY 2.7.1 : There are only finitely many P-Q-T-relations.

REMARK 2.6: We could have introduced a specialization of
the relation aPb : aT,.b, defined by: aTrb ~ bTsa. Every relation
aTb can be written as aTf’T,b (because aTf’(anb), (a n b)Tsb)
or as aTsTrb (because aTs(a u b), (a u b)Tf’b). Consequently
TsTr = TrTs.

DEFINITION 2.7: Suppose R to be a P-Q-T-relation and P a
predicate of species; P is said to be invariant with respect to
R, if we have:

THEOREM 2.8: R is a P-Q-T-relation, and P a predicate of
species. With every P a predicate Pl is associated by:

Pi is invariant with respect to R for every P, if and only if
RR = R.

PROOF: Suppose RR = R. This implies xePi &#x26; xRy ~
(Ez)(z E P &#x26; zRx); ~ zRRy; hence (Ez)(z E P &#x26; zRy), so y E Pl .

Conversely, let Pi be invariant with respect to R for every
P. We have to show (x)(y)(xRRy~xRy). Take P to be defined
by: x~P~x=x0, and suppose xo RRyo. We obtain (Ez)
(xo Rz &#x26; zRy0); so z e Pi, yo E Pl . Therefore we have xoRyo
according to the definition.

COROLLARY 2.8.1: If R is a P-Q-T-relation, composed of basic
P-Q-T-relations RI, R2,... then Pi (defined as before) is R-
invariant for every P if and only if RRi = R, i = 1, 2, ... (or
stated otherwise, P1 is Ri-invariant (i = 1, 2, ... ) for every P).

3. Applications

We introduce the notion of comparison-relation by the following
definition:

DEFINITION 3.1: A comparison-relation is a relation R, such
that I C R.

REMARK 3.1: The most important examples of comparison-
relations are transitive (i.e. RR = R).
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A reflexive and transitive relation R on a species b always
induces a half-order relation (partial ordering) on a system of
equivalence classes of b. (See [3], 7.3.1, def. 1).
We divide this paragraph into different sections for the ap-

plications.

A. Cardinalities.

DEFINITION 3.2: The cardinal number of a species a is a predicate
k(a); x e k(a) - aQ,x.
To obtain a good analogue to the corresponding classical

notions of "~" and equality for cardinal numbers we define:

DEFINITION 3.3: A cardinality-relation R is reflexive, transitive,
Q,R = R and RQs = R.

Of the P-Q-relations of scheme II, Qs, Q, JP,Ç,, PQB, P.Ql PQ
fulfil these requirements.

In [1] Brouwer has considered (Qs (equivalence, German:
equivalent), Q (denoted by ~, German: überdeckt), P,Q, (in the
special case of the notion "zählbar"), PQs (denoted by ~) and
PQ (denoted by ~, German: überlagert). Brouwer also considers
notions denoted by ~ (German: superponiert) and ~ (German:
übergeordnet), corresponding to QTs and PQTB.

Scheme III

The six P-Q-cardinality-relations are all different; in [2]
counterexamples to the inclusions PsQ C Q, PQ C PsQ, PsQs C Q.
and Q C Q, are presented. PQ C PQs cannot be proved as is
shown by example 2.4. We complete the counterexamples by:

Example 3.1: PQs~Q and PQs~PsQs are not provable.
Take b C 00, b = {n : -i (Em)03A0n1(m)}. Ç, is represented by the
identity, so 03C9PQsb.
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We do not know if b contains an element or not, so roQb cannot
be proved.

In the same manner 03C9PsQsb cannot be proved, because this
requires the existence of a method which produces the elements
of b, if there are any, and no such method is known.

B. P-Q-T-notions o f f initeness.
DEFINITION 3.4: Suppose R to be a comparison-relation. The

predicate [R] is defined by:

Especially, [Q,,] represents the notion of finiteness. If R is a

P-Q-(T)-relation, then [R] is a P-Q-(T)-notion of finiteness.
Without restriction we may suppose QsR = R.

Scheme IV
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REMARK 3.2: A detachable subspecies of a finite species is a
finite species.
We discuss all P-Q-notions of finiteness, but as far as other

P-Q-T-notions of finiteness are concerned, we restrict ourselves
to the most important ones.
Scheme IV contains all the P-Q-T-notions of finiteness which

we want to discuss.

THEOREM 3.1: Scheme IV contains all P-Q-notions of finiteness
with their intersections.

PROOF: By using remark 3.3 and supposing R to satisfy
QsR = R, we obtain from scheme II the following notions of
finiteness: [Q,], [Q], [QP], [PQ], [PQs] and [Q.,P]. Since we
have:

a discrete and a e [Q] + a e [Qs]

(a species is called discrete if for every pair x, y of its elements
x = y v x~y holds) only [PQ,j n [QP] does not necessarily
coincide with a P-Q-notion of finiteness.

REMARK 3.3: If we require substrate-equivalence instead of
equivalence, the set of P-Q-notions of finiteness is only enlarged
by [QPQ.].

REMARK 3.4: [Qs], [Q], [Q,,P], [QP], [PQ] have already been
considered by J. J. de Iongh. The only new notion is [PQs] as
is shown by example 3.2, 3.3.

Example 3.2 : [PQs] is not contained in [QP].
Take a = 2, b = {x : (x = 1 &#x26; (Ex)1I)(x)) v x = 2}. We define

a mapping p by:

Therefore aPQ,c. If we suppose aQPc, then (Ex)03A011(x) v ~ (Ex)
03A011(x) could be decided, and in the first case, d could be determined;
but no decision method is known.

Example 3.3: [QP] is not contained in [PQ,] and [Q].
Take a = 3. We define cp by: 99(l) = 1, ~(2) = 1+r1, cp(3) = 3;

cpa = b. We define c C b by:

It follows from example 2.4 that [PQ] is not contained in

[PQs] or [QP]. Other counterexamples to show the difference
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between P-Q-notions of finiteness are easily found and have
already been given by de Iongh.
De Iongh has given an example of a species from [QsTs],

not belonging to [PQ], with unstable equality. Here we present
counterexamples within S2.

Example 8.4 : [QT,] is not contained in [PQ], [Q,T,J.

r,, a floating number, has already been defined; if

We introduce a species c:

For every i &#x3E; 3 we have:

but we cannot prove si = ri v si = r2 ~ si = 0. So ce [PQ],
c e [QsTs] cannot be proved.

Example 3.5 : [PQT,] is not contained in [QTsJ, [PQ].
We modify example 3.4 by defining a species d:

The reasoning is along the same lines as in the preceding example.
If we restrict ourselves to subspecies of the natural numbers,

scheme IV is much simplified, the result being scheme V.

Scheme V

This is shown with the aid of the following theorem:

PROOF: Suppose nQsPTsa. Without essential restriction we may
suppose: nPTsa. For natural numbers we have: (m)(m~n v n  m).
If b C n, bTsa, we get: m~n~m~n, m&#x3E;n~m~b, m~b ~
m 0 a, hence a C n.
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COROLLARY 3.2.1: Subspecies of natural numbers are always
discrete; using this together with theorem 3.2 we obtain scheme V
from scheme IV.

C. Predicates o f countability.
DEFINITION 3.5: If R is a comparison-relation, R&#x3E; is the

predicate defined by:

If QsR = R, and R a P-Q-, respectively a P-Q-T-relation, then
R&#x3E; is called a P-Q-, respectively a P-Q-T-predicate of coun-
tability or countability-predicate.

REMARK 3.5: To a certain extent the countability-predicates
have already been introduced by Brouwer in [1]; Brouwer’s
countability-predicates have been studied extensively by Heyting
in [2]. We restrict ourselves to P-Q-countability-predicates.

THEOREM 3.3: Scheme VI contains all P-Q-countability-predicates
and their intersections.

Scheme VI
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PROOF: The P-Q-countability-predicates of scheme VI are

obtained by taking the relations R of scheme II which satisfy
QeR = R. The following intersections have to be considered:

We now extend a theorem of [2] to:

In fact, suppose roQa", a" = {~(1), ~(2), ...}, ail P ,a, then
we construct a’:

and we get 03C9PsQsa. This reduces b), f), to a) and c), d) to QsPs&#x3E;.
The difference between many countability-predicates of scheme

VI can be demonstrated easily by means of counterexamples, as
is done in [2].

In [2] the following countability-predicates and intersections
of these predicates are shown to be different: PQTs&#x3E; (Dutch:
uittelbaar, German: auszählbar), QTs&#x3E; (Dutch: doortelbaar,
German: durchzâhlbar), PQ&#x3E; (Dutch: overtelbaar, German:
überzählbar), PQ&#x3E;~ QTs&#x3E;, Q&#x3E; (Dutch: opsombaar, German:
aufzâhlbar), PQs&#x3E; (Dutch: aftelbaar, German: abzählbar),
PQs&#x3E;~ QTs&#x3E;, PsQs&#x3E; (Dutch: telbaar, German: zählbar),
Q.p,) n Q&#x3E;.
The countability-predicates can be used to refine the P-Q-T-

notions of finiteness; we demonstrate this in a few examples.

REMARK 3.6: If we define: x e [0] ~ x = 0, we have:

Example 3.6 : [QP] is not contained in [QPI ~ Q&#x3E;.
Compare

ti e [QP]~ Q&#x3E;, since we can define a mapping 9’:
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We are not able to construct such a mapping from W onto t2.

Example 3.7: [QT,] is not contained in [QT,,] n Q&#x3E;. This is
demonstrated by a modification of example 3.4. A species e is
given by the following definition:

c is the species defined in example 3.4. Since it is unknown
whether e contains an element or not, e e Q&#x3E; cannot be proved.

D. Notions of in f inity. 
DEFINITION 3.6: If R is a comparison-relation, a predicate {R}

is defined by:

If RQ, = R, and R a P-Q- or a P-Q-T-relation, R is called a
P-Q or a P-Q-T-notion of infinity.
THEOREM 3.4: Scheme VII contains all P-Q-notions of infinity.

Scheme VII

PROOF: If R is a P-Q-notion of infinity, then we may suppose
RQs = R. This is the case for R = Qs, Q, PsQs, PsQ, PQs, PQ.
Now {PsQ} is always equivalent to {Q} as is seen by the following
argument:

Suppose aPsQ03C9, so al C a, q;a1 = 00; then we define ~’ by:
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In the same manner we prove: {PsQs} C {Q}.
REMARK 3.7: {PsQs}, respectively {PQs} correspond to Brou-

wers notions "reduzierbar unendlich", respectively "unendlich"
(see also [4], 3.2.5).
We demonstrate that {Q} is a new notion by two examples.

Example 3.8: {PQs} is not contained in {Q}.
The segment [0, 1] cannot be mapped onto 00; in fact, [0, 1]

may be represented by a fan (finitary spread, see [3], 3.1); a
mapping onto ro would have assigned a natural number to every
element of the fan, and so [0, 1] would have been split up into
denumerably many detachable subspecies, each of which contains
at least one element. This is impossible because of the fan-
theorem ; compare [3], 3.4.3, th. 2.

Example 3.9: {Q} is not contained in {PsQs}.
The union of continua, v = ~~n=1 [n, n+1 2] can be mapped

onto 00, by taking 99(x) = n for x e [n, n+1 2]; v cannot belong
to {PsQs}, since this would require a proper subspecies of a
continuum with at least one element to be detachable in this

continuum.

THEOREM 8.5 : a e {PQ} ~ a ~ [Q].
PROOF: Suppose a e {PQ} n [Q]. Then a = {b1, ..., b.1,

bl, ..., bn not necessarily different. There are also xl, ..., xn+1,
such that ~(xi) = i, xi e a ; so all Xi are different; hence we obtain
a contradiction, and a 0 [Q].
We finish this paragraph by pointing out some interesting

conclusions from corollary 2.8.1. [PQ], PQ&#x3E;, [PQT.J, PQTs&#x3E;
are invariant with respect to P, Q; the last two predicates also
with respect to T. It is easy to see that the union of two species
from respectively [PQ], PQ&#x3E;, [PQT,,], PQTs&#x3E; again belongs
to [PQ] etc.
{PQ} is invariant with respect to union with an arbitrary

species.

4. Other notions of finiteness

DEFINITION 4.1: (Brouwer, see [3] 3.4.4) A species is called

bounded in number by n (in short: bounded by n), if b cannot
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contain more than n different elements; in other words, if b does
not contain a finite subspecies with n+1 elements. If b is bounded
by n for a certain n, b is said to be bounded in number.

DEFINITION 4.2: (de Iongh, [4]) A species b is said to be de-
termined in number (by n), if b is bounded by n, and contains
finite subspecies with n elements.

NOTATION 4.1: If x is a species, we use the notation:

x is bounded in number « az e [N].

Now we are able to prove:

THEOREM 4.1: a) [N] is invariant with respect to PQT.
b) x is determined in number « x e [Q,T,J.

PROOF: In [4] de Iongh proved the invariance of [N] with
respect to P and Q so the invariance with respect to T remains
to be proved.
Suppose aTb, with a bounded by n. For arbitrary species c

we introduce the predicate Pn(c), saying that c contains at
least n different elements:

So we have ~Pn+1(a).
Suppose Pn+1(b). This implies the existence of n+1 different

elements bo, ..., bn e b; hence

we get:

hence

and this is equivalent to ï ï P n+1 (a). A contradiction arises, so
~Pn+1 (b ) and he[N].
To prove b) of our theorem, we suppose a to be determined in

number by n, aPb, b = (bi, ..., bn}, i ~ j ~ bi ~ bi. We have:
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A contradiction is the result, hence

Therefore, bT,a, so a~[QsTs].

REMARK 4.1: In [4] de Iongh also proved [Q,,]" to be invariant
with respect to PQ; for species with a stable equality he proved
[N] C [Qs]".

THEOREM 4.2: If a species b with stable equality is bounded
by 1, then b E [PQ].

PROOF: Take as a subspecies of {1}:

If p e b, we take 99(l) = p, ç is unique since

THEOREM 4.3: Suppose a is a species bounded by n. I f there
is a partial ordering for the elements o f a, zvhich fulfils the con-
dition :

then a e [PQT].

PROOF: Define b C n in the following manner:

with:

Now we are mapping b onto c:

We have to show this mapping to be unique.
For this reason we suppose:
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This is equivalent to:

Thus we get:

As a result we have:

From our supposition 1 (x  x’ ) &#x26; 1 (x’  x ) ~ x = x’ follows
the stability of the equality, hence p = p’.
Next we have to show aTc. aPc is trivial, so we only have to

prove: x~a~~~x~c.
For sake of convenience we introduce:

Suppose x e a, x 0 c. We obtain

Finally,

Thus,

Since a is bounded in number, we have also:

Tn+1 contradicts Hn(x), hence also ~~H0n(x).
Therefore, x~a~~~x~c, q.e.d..
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