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Ideals and filters 1

by

C. E. Aull

Introduction

It is known that a filter is a proper dual ideal in the Boolean

ring of all subsets of a set. See Kelley [3,83]. In this paper filters,
ideals in semigroups, and ideals in rings are discussed and related
to each other. In this connection the chief unifying concept will
be the f -ideal (filter motivated ideal).
DEFINITION 1. An ideal A is an f -ideal in a commutative semi-

group S i f for a, b E A, there exists c E A such that cx = a and

cy = b have solutions in S. Il S itself is an f -ideal, then S will be
called an f -semigroup.

All semigroups and rings are commutative. It will be proved
that the filters are identical with the f-ideals of the semigroup of
all non-null subsets of a set with the operation of set union; an
f-ideal in a semi-group which is an ideal of another semigroup is
also an f -ideal of the latter semigroup; a cancellation semigroup
has an identity iff all its principal ideals are f -ideals; an f-ideal.
in the semigroup under multiplication of a ring is always an ideal
in the ring; and if a semigroup or ring ideal is an f -ideal with a
finite number of generators, then the semigroup or ring ideal is a
principal ideal. Finally it will be proved that the semigroup ideals
in a ring are identical with the ring ideals iff the semigroup ideals
form a linearly ordered set under set inclusion. This latter section
is related to work by Aubert [1].

Notation

The notation for filters, semigroups, rings is from Kelley [3],
Clifford and Preston [2], and McCoy [4] respectively unless other-
wise noted. All semigroup and rings are commutative. When the
semigroup in a ring is referred to, it will mean the semigroup of the

1 Part of the research done at Kent State University.



80

multiplication operation of the ring. ab will always mean a is
multiplied by b in either the semigroup or the ring. A B will mean
all products ab such that a e A and b e B. In these terms A is an
ideal in a semigroup S if A S C A. If S were a ring, in addition
a-b e A in order for A to be an ideal of the ring. The semigroup
ideal generated by a set G is G u GS and if the S has an identity
it is simply GS. If R is a ring, the ring ideal generated by
g ... g consists of all elements of the form 03A3mi=1(nigi+rigi)
where (n, E l, ri e R ). If the elements of an ideal can be expressed
in the above form, the ideal will be said to have a finite number of
generators. In case R has an identity the elements of the ideal
can be expressed in the form 03A3mi=1rigi. If there exists a single
element that generates a semigroup or ring ideal, the ideal is called
a principal semigroup or ring ideal respectively. The term identity
will refer to the identity of the semigroup or the multiplicative
identity or unity of the ring; the additive identity of the ring will
be called the zero of the ring.

f-semigroups and filters

THEOREM 1. Let /7 be the semigroup o f all non-null subsets of a
given set X, under the operation o f set union. Then a sub f amily o f
/7 is a filter i f f it is an f -ideal.

PROOF : Since for a filter F, F u S e F for F ~ F and S ~J,
F is an ideal in /7. Let F1,F2~F. Since (F1 n F2 ) u FI = F,
and (F1 n F2 ) u F2 = F2, F is an f -ideal in /7. Conversely,
let W be an f -ideal in /7. For A e.91 and S e /7, A u S e A. For
A, B ~ A, there exists C ~A such that C u X = A and C u Y =
B have solutions in S. C C A and C C B, so C C A n B and
Cu (A~B)=A~B.SoA~B~A. Since C~A, A n B 0,
so A is a filter.
Not every ideal in /7 is a filter.

EXAMPLE 1. Any ideal in /7 generated by two disjoint sets A and
B is clearly not a filter.

Properties of f-ideals

Not every ideal in the semigroup of integers under multiplication
is an f -ideal.
EXAMPLE 2. The ideal consisting o f all multiples o f either 2 or 3

is not an f -ideal.
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It is possible for an ideal A to be an ideal in a semigroup T,
which is in turn an ideal of a semigroup S and yet A, may not be
an ideal in S.

EXAMPLE 3. Let S consist o f the integers, T the even integers and
A the integers congruent to 0(mod 8) and 4.
A is an ideal in T, in fact a principal ideal in T, but A is not an

ideal in S.
However for A an f-ideal, the above situation can not happen.
THEOREM 2. Let T be an ideal of a commutative semigroup S and

let A be an f -ideal in T, then A is an f -ideal in S.

PROOF. Let a E A and s~S. There exists a’ and t, a’ E A, t E T
such that a’t = a. Set t’ = ts. Since t’ E T, then as = a’ts = a’t’ =
a". Clearly a" E A. So A is an ideal in S and the equations given in
definition 1 have solutions in T; so they have solutions in S. Hence
A is an f-ideal in S.

All, some or none of the ideals of a commutative semigroup may
be f-ideals.
EXAMPLE 4. Let S consist of the non-negative reals under addition.

All the ideals are f-ideals.
EXAMPLE 5. Let S consist o f the positive reals under addition.

Ideals of the form x &#x3E; a f or fixed a E S are f -ideals, but ideals of
the form x &#x3E; a are not f -ideals.
EXAMPLE 6. Let S consist o f the even integers, excluding zero,

under multiplication. No ideal is an f-ideal.
EXAMPLE 7. Let S consist of the positive reals with ab = max(a, b).

Every ideal is an f -ideal but unlike Example 4, there is no identity
for S.
The next three theorems throw some light on these examples.
THEOREM 3. Every ideal in a commutative semigroup S is an

f -ideal i f f at least one o f the equations ax = b or by = a have
solutions for every a, b E S.

PROOF: Let A be an ideal in S satisfying the condition of the
theorem. Let a, b e A. Clearly either a or b is the c of the definition
1. So A is an f -ideal. Conversely let every ideal be an f -ideal. If
the condition is not satisfied there exist two elements a and b

(possibly identical) such that neither ax = b or by = a have
solutions. Consider the ideal generated by a and b. There must
exist c E A such that cs = a and ct = b have solutions in S.
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Since c E A, either az = c or bw = c have solutions. Then either
ax = b has a solution zs or by = a has a solution wt.
Examples 4 and 7 illustrate this theorem. In example 5, bx - a

does not have a solution for b h a, for any a E S, so the principal
ideals are not f-ideals.
THEOREM 4. A principal ideal A in a commutative semigroup S

is an f -ideal i f f there exists t E S such that for b E A, bt = b where
t is independent of b.

PROOF : Let A be generated by a. If A is an f-ideal, there exists
c E A, x E S such that cx = a. Also there exists y E S such that
ay = c. Set t = xy; at = a. Let b E A ; b = as for some s e S.
bt = ast = ats = as = b, so the condition of the theorem is

satisfied. Clearly if the condition is satisfied, a generator of the
principal ideal will serve as the c of definition 1, and A will be an
f-ideal.
COROLLARY 4. A commutative cancellation semigroup has an

identity i f f every principal ideal is an f -ideal.
THEOREM 5. For a, b E S, S a commutative 1-semigroup, let ax = b

have at most a finite number o f solutions. Then all the principal
ideals o f S are f -ideals i f f S has an identity.
PROOF. By Theorem 4, if S has an identity the principal ideals

are f -ideals. If every principal ideal is an f-ideal, for a E S, ax = a
has a solution by Theorem 4. Let n(a) denote the number of
solutions of ax = a. Let k be the minimum value taken on by
n(a). k ~ 1. Assume k &#x3E; 1. Then for some a there exists k solu-
tions. xl , x2, ...xk of ax = a. Any solution of xmy = xm,
m = 1, 2, ..., k is a solution of ax = a for ay = axm y = axm = a.
If x1y = x1 has k solutions, x2y = x2 can have at most k - 1
solutions since x1x2 = xl , contrary to k being the minimum value
of n(a). So k = 1. Hence there exists b E S such that bx = b has
a unique solution which will be designated as e. We proceed to
show that e is an identity for S. Let a E S. There exists c E S,
such that ex = a and cy = b have solutions x, y E S. cz = c has
a solution f. b f = cy f = c f y = cy = b so f = e; ae = cxe = cex =
cx = a; so e is an identity.

Clearly in any commutative semigroup with identity the
principal ideals are f -ideals. In Example 7, there is no identity
but the equations have an infinite number of solutions for
b = a. On the other hand in Example 5, there is no identity
and there are at most a finite number of solutions of ax = b for



83

each a and b, but none of the principal ideals are f-ideals. Example
6 is a cancellation semigroup without identity and without f-ideals.
Example 2 shows an ideal in a cancellation semigroup with

identity that is not an f-ideal. Clearly this ideal is not a principal
ideal. The next theorem clarifies the relation between principal
and f-ideals.
THEOREM 6. Let A be an f-ideal with a finite number of generators.

Then A is principal ideal.

PROOF : Let a,, a2l ..., a. be the n generators of A and assume
n &#x3E; 1. There exists c E A such that ex, = al, and cx2 = a2 have
solutions in S. Then c, a3l ... an generates S. Hence one may
show by mathematical induction that A is a principal ideal.
However an f-ideal may have an infinite number of generators.
EXAMPLE 8. Let e be the filter on an in f inite set X such that

Fe e7 if the complement of F is finite. By theorem 1, F is an
f -ideal in J, the family of all non-null subsets o f X.

f-ideals and rings

It can be easily shown that an f-ideal in the semigroup of a
ring under the ring multiplication is an ideal in the ring but a
stronger result can be proved.
THEOREM 7. Let R be imbedded in a commutative ring R’. Let

A be an f-ideal in the semigroup of R’ such that A C R. Then A
is a ring ideal in R.

PROOF: Let a, b E A. There exists c E A such that cx = a and

cy = b have solutions x, y E R’. So c(x-y) = a-b, and hence
a-b E A and since A is also a semigroup ideal of R, A is a ring
ideal of R.
A ring ideal may not be an f-ideal.
EXAMPLE 9. Let R be the ring of even integers and R’ the ring of

integers. No ring ideal o f R except the ideal consisting of 0 is an
f -ideal, but in R’ every ring ideal is an f -ideal.

Analogous to Theorem 6, we have the following theorem.

TAEOREM 8. Let an ideal A in a commutative R ring have a
f inite number of generators, Il A is an f -ideal, A is a principal
ideal in R.
Because of the similarity to the proof of Theorem 6, we omit the

proof.
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It might be noted that in commutative rings without identity,
the principal semigroup ideals may not be the principal ring ideals.
The semigroup ideal A in example 3 is a principal semigroup

ideal in T but is not an f-ideal. On the other hand the integers
congruent to 0 modulo 4 are a principal ring ideal of T the even
integers, but are not a principal semigroup ideal. Considered as a
semigroup ideal, it requires an infinite number of generators.
However if ax = a has a solution, both semigroup and ring ideals
generated by a are given by aR.

Ideals in semigroups and rings

A ring ideal is always a semigroup ideal. Theorem 7 gives a
sufficient condition for a semigroup ideal to be a ring ideal in a
commutative ring. Here necessary and sufficient conditions are
given for all the semigroup ideals to be ring ideals.

THEOREM 9. In a commutative ring R of order other than 2, the
following are equivalent.

(a) The semigroup ideals are linearly ordered by inclusion.
(b) Every semigroup ideal is a ring ideal.
(c) Every semigroup ideal is an f-ideal.
(d) For a, b e R either ax = b or by = a have solutions in R.

PROOF: From Theorem 3, (c) and (d) are equivalent, and from
theorem 7, (b) follows from (c). We proceed to show that (b) ~ (a).
Let A and B be two ideals such that neither A C B or B C A.
Then there exist elements a, b e R such that a e A, a 0 B,
b e B, b rt A. A u B is a semigroup ideal but not a ring ideal.
For if a-b EAu B, a-b e A or a-b e B. Then b e A or a e B.
Either one is a contradiction so the semigroup ideals are linearly
ordered.

(a) ~ (d) for a ~ b either A(a) C A(b) or A(b) C A(a) so that
either a is in the principal ideal of b or b is in the principal ideal
of a. Hence by = a or ax = b have solutions in R for a ~ b.
We wish to show that ax = a has solutions for rings not of

order 2. Clearly ax = a has a solution in the ring containing one
element. Let R contain at least three elements. Let a be an
element. If a = 0, ax = a has a solution. Let a ~ 0 and let
b =1= a and b ~ 0. If A(b) C A(a) and A(a-b) C A(a), aw = b and
az = a-b have solutions. So aw+az = a and then ax = a has a
solution. Since bx = awz = azw = aw = b, bx = b has a solution.
By interchanging letters ax = a has a solution when A (a ) C A (b )
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and A(a-b) C A(b). If A(a) C A(a-b) and A(b) C A(a-b),
(a-b)y = a and (a-b)z = b have solutions so (a-b)x = a-b
has a solution and it follows that ax = a, and the theorem is

proved.
(a) and (b) are equivalent to each other in any ring, but (c)

and (d) do not necessarily follow from them, the sole exception
being the ring of order two such that all products are zero. The
equivalence of (a), (b) and (d) for commutative rings with identity
was shown by Aubert [1,54].

In condition (a) of the theorem one can not replace semigroup
ideal by ring ideal.

EXAMPLE 10. Let R consist o f the subring o f the integers modulo
8 consisting o f 2, 4, 6 and 0.
The only proper ring ideal consists of the elements 4 and 0,

so these ideals are linearly ordered. But there are two additional
proper semigroup ideals consisting of 2, 4, and 0 and 4, 6, and 0
respectively.
However the following theorem is true.

THEOREM 10. Let the ring ideals o f a commutative ring R be
linearly ordered by inclusion and let ax = a have a solution f or
each a. Then the semigroup ideals and the ring ideals of R are
identical.

PROOF: Let A be a semigroup ideal. Let a, b e A. Either a e A [b]
the ring ideal generated by b or b e A [a]. Either a-b e A [b] C A
or a-b e A[a] C A, since A(a) = A[a] and A(b) = A [b].

COROLLARY 10. Let the ring ideals o f a commutative ring R with
identity be linearly ordered by inclusion, then the semigroup ideals
are identical with the ring ideals.
The ideals in a field are trivially linearly ordered. The ideals in

the rings of integers modulo px are also linearly ordered. The
example below shows a ring where the semigroup ideals are

linearly ordered and there is an infinite number of distinct ideals.

EXAMPLE 11. From the ring o f rationals, delete f raetions of the
form a/b, (a, b ) = 1 such that b is even.
The ideals are all principal ideals generated by elements of the

form 2k, k = 0, 1, 2, ....
It can be shown that, if all the semigroup ideals are principal

ideals, then the ideals are linearly ordered. For a discussion of
the theorem and a restricted converse, see Aubert [1,44]. However
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the ring of integers is an example where all the ring ideals are
principal ideals, but are not linearly ordered.
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