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Fundamental notions in the theory
of seminearrings

by

Willy G. van Hoorn

and

B. van Rootselaar

1. Introduction

As far as the authors know, there does not exist a theory of
algebraic systems which combine the vices of semirings and
nearrings, i.e. of systems with addition and multiplication that
lack subtraction and one distributive law.
Such systems were introduced in [6] (cf. also [7]) under the

name of seminearring (Fasthalbring). In [6] however only a very
special type of seminearrings was considered and the question
arose whether it is possible to develop a more general theory of
seminearrings. In this paper we lay down a number of notions
and some results which make clear that indeed it is possible to
develop such a theory, extending known theories of nearrings
and semirings. A further development of the theory of semi-
nearrings as presented in this paper will be contained in the
forthcoming thesis of the first author. The theory of seminearrings
has several applications in other domains of mathematics and it is
natural that more systems will turn up, that can be subsumed
under the theory of seminearrings. We return to these applica-
tions on another occasion.

2. Seminearrings and S-semigroups

DEFINITION 1: A seminearring is a system (S, +,.) such that

1. (S, +) is a semigroup with unit 0.
2. (S,. ) is a semigroup with zero 0.
3. x(y+z) = xy+xz for all x, y, z in S.



66

DEFINITION 2: A morphism o f a seminearring S into a semi-
nearring S’ is a mapping ~ such that

for all x, y e S.
~S C S’ is a seminearring with ~(0) as unit of (~S, +) and zero
of (~S,.). The element ~(0) may be different from the zero of S’.
The kernel of a seminearring morphism is called ideal.
Any morphism ~ of a seminearring gives rise in a natural way

to a factor structure, which again is a seminearring by introducing
the following two-sidedly stable equivalence:

and mapping every element onto its equivalence class. This factor
seminearring will be denoted by S/~.
DEFINITION 3: An S-semigroup is a semigroup (0393, +) with

unit cv, f or which there is a seminearring S and a mapping
r X S ~ 0393, (oc, x) - 03B1x, such that for all oc e rand x, y e S :

REMARK 1: In x+y the sign+ denotes addition in S, and in
03B1x-03B1y it denotes addition in r (ax and ocy are elements of r).
For any S-semigroup f we have 03C9x = ro for all x e S, viz.

cux = (03C90)x = 03C9(0x) = 03C90 = co.

DEFINITION 4: An S-subsemigroup L1 o f an S-semigroup r is
a subsemigroup for which 0394S C L1.

REMARK 2: We conform to the convention that a subsemi-

group is a non-void set, therefore an S-subsemigroup has a unit,
notably co (the unit of T).
DEFINITION 5: An S-morphism of the S-semigroup 0393 is a

morphism cp of r into an S- semigroup r’ such that ~(03B1x) = ~(03B1)x
for all 03B1 ~ 0393 and x ~ S.
An important, though simple, observation is that any S-mor-

phism ~: 0393~0393’ maps co onto co’ (the unit of F’), viz.

~(03C9) == ~(03C90) = ~(03C9)0 == Co’.

DEFINITION 6: The complete preimage of ~(03C9) under the S-

morphisms ~: T - ri is called an S-kernel of r.
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Obviously if (S, +,.) is a seminearring, (S, +) is an S-semi-
group. The S-kernels o f the S-semigroup (S, +) are called right
ideals o f S. Any S-semigroup F contains the two trivial S-kernels
{03C9} and r; the first one being the kernel of the identity mapping
of 0393 and the second one the kernel of the null-morphism.

Since an S-morphism of ris a morphism of rit follows that the
S-kernels of 0393 are normal subsemigroups of T (cf. e.g. [5], p. 278).
Observe that normal subsemigroups of semigroups with unit
contain that unit. It may further be noted that S-kernels are S-

subsemigroups. For if L1 Cris S-kernel, an S-morphism § exists
with kernel L1. Then ~(03B4x) = ~(03B4)x = 03C9’x = co’ for all x e S and
ô e L1, hence 03B4x e d, so JS C L1.

DEFINITION 7: A right admissible morphism of the S-semigroup
7’ is a morphism ~ o f 7’ such that for all ex, p e 0393 and x e S from
~(03B1) = ~(03B2) follows ~(03B1x) = ~(03B2x).
THEOREM 1: Il 4 is the kernel of the right admissible morphism

of the S-semigroup F then

forall 03B1, 03B2 ~ 0393, 03B4 ~ 0394 andxeS.

PROOF. Evidently ~(03B1+03B4+03B2) = cP(oc+P) for all oc, fi e rand
03B4 ~ 0394, hence by right admissibility

for all 03B1, 03B2 ~ 0393, 03B4~0394 and x ~ S.

A description of S-kernels of 0393 in terms of right admissible
morphisms is contained in the following.
THEOREM 2: The S-kernels of the S-semigroup r are the kernels

of right admissible morphisms o f r.

PROOF. If L1 is kernel of the S-morphism ~, then ~ is right ad-
missible morphism of F with kernel L1, for if ~(03B1) = ~(03B2) then
~(03B1x) = ~(03B1)x = ~(03B2)x = ~(03B2x) for all x ES. Conversely if L1 is
kernel of a right admissible morphism ~ of 0393 then the definition
~(03B1)·x = ~(03B1x) turns ~ into an S-morphism of 0393 with kernel L1.

In the following we use the transitive closure r"0394 of the two-
sidedly stable reflexive and symmetric relation ra associated with
a normal subsemigroup 0394 of the semigroup 0393 (with unit) defined
by

a ~ p (r LJ) if and only if 03B1, 03B2 e {03BE+0394+~}
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for some e and ~, being elements of F (cf. e.g. [5], p. 41 and 279
where this relation is introduced for arbitrary semigroups).
The morphism corresponding to r"0394 will be denoted by ÂA.

Aj is the greatest common right divisor of the morphisms ~ with
d C Ker(~) (cf. e.g. [5], p. 279).

DEFINITION 8: A normal subsemigroup d o f the S-semigroup r
is said to have property Q i f the condition

holds.

THEOREM 3: The normal subsemigroup d of the S-semigroup r
has property Q i f and only i f the morphism 03BB0394 is right admissible.

PROOF. If 03BB0394 is right admissible then d has property Q by
theorem 1. Conversely suppose L1 has property Q. The morphism
03BB0394 has kernel 0394.
Suppose Â¿j(oc) = 03BB0394(03B2), i.e. oc "-1 03B2(r"0394), then there exist

YI = 03B1, 03B32,..., 03B3p, 03B3p+1 = 03B2, such that

Hence there exist Pi’ ai E 0393 and 03B4i1, 03B4i2 E d such that

and

So for all x ~ S:

and

Then by property Q it follows

and

Hence

from which

which means that 03BB0394 is right admissible.
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COROLLARY 1 : 1 f the normal subsemigroup d o f the S-semigroup
r kas property Q then L1 is S-kernel of r.
Property Q is not characteristic of S-kernels, i.e. normal sub-

semigroups d of the S-semigroup r may fail to satisfy Q(0394) and
still be kernels of S-morphisms (different from Aa ) as the fol-
lowing example shows.

EXAMPLE 1:

Let (S, +,.) be the seminearring defined by

and

If ~(S, +) is defined by

then ~ is an S-morphism of (S, +) with kernel D = {0, a}, so
D is S-kernel. However it does not have property Q, since ÂD,
defined by 03BBD(0) = 03BBD(a) = {0, a}, AD(b) = {b} and ÂD(c) =
03BBD(d) = {c, d} is not right admissible, because 03BBD(c) = 03BBD(d),
while AD(cb) = ÂD(b) = {b} ~ ÂD(db) = AD(d) = {c, d}.
On the other hand a normal subsemigroup d of an S-semigroup r,
satisfying Q(d ), may be kernel of a morphism that is not right
admissible.

EXAMPLE 2:
Let (F, +) be defined by F = (w, oc, 03B2, 03B3, 03B4} and the same

addition table as (S, +) in example 1.
Let now (S, +,.) be defined by

A product which makes (l’, +) an S-semigroup is
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L1 = {03C9, 03B1} is a normal subsemigroup of r, satisfying Q(0394), while
the morphism cP, defined by ~(03C9) = ~(03B1) = {03C9, 03B1), ~(03B2) =
~(03B3) = ~(03B4) = (fl, 03B3, 03B4} has kernel L1 and is not right admissible,
because ~(03B2) = ~(03B3) and cp(fJa) = 0394 ~ ~(03B3a) = ~(03B3) = {03B2,03B3,03B4}.
REMARK 3: If the S-semigroup T is a group and L1 C r a

normal subsemigroup, then d is a normal subgroup of r. The
relation 03B1~03B2(r"0394) then is equivalent to 03B1-03B2 ~ 0394 and Q(L1)
reduces to (03B4+03B1)x-03B1x e d for all ce ~ 0393, 03B4 e d and x e S. This is
Betsch’s condition 1.4.1 in [1] if at the same time we further

restrict S to be a nearring. In that case it reduces to Blackett’s
condition in [2] if L1 is assumed to be a normal subgroup of
(S, +). In all these cases the set of morphisms with kernel L1

reduces to a singleton.

3. Ideals

DEFINITION 9: A morphism ~ of (S, +) o f the seminearring
(S, +,.) is called left admissible if for all x, y, z E S from ~(x) = ~(y)
follows ~(zx) = ~(zy). It is called admissible if it is both left and
right admissible.

THEOREM 4: The ideals of the seminearring (S, +,.) are the

kernels of admissible morphisms o f (S, +).

PROOF. A morphism ~ of (S, +,.) is a morphism of (S, + ) with
the same kernel. If ~(x) = ~(y) then

and

hence ~ is an admissible morphism of (S, + ).
Conversely let ~ be an admissible morphism of (S, +), then a

product in ~S is defined by

Evidently ~ is a seminearring morphism.
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THEOREM 5: A normal subsemigroup D o f (S, +) o f the semi-
nearring (S, +,.) is left invariant i f and only i f 03BBD is left admissible.

PROOF. If 03BBD is left admissible then for any d e D and z e S we
have AD(zd) = 03BBD(z0) = ÂD(o), i.e. zd e D for any z e S and

de D, in other words SD C D.
Conversely let D be left invariant.

Let 03BBD(x) = 03BBD(y), Le. there exist

Hence there exist ri, Si e S and d;i , di2 E D, such that

Hence, for all z E S:

Since D is left invariant, we have

so

from which zx , zy (rD ),
i.e.

COROLLARY 2: Il D is a normal subsemigroup o f (S, +) o f the
seminearring (S, +,.) then 03BBD is admissible i f and only i f D is
left invariant and has property Q. (Cf. theorem 3.)

Beside ideals we consider weak ideals, i.e. left invariant right
ideals and strong (right) ideals, i.e. (right) ideals with property Q.

Evidently every strong (right) ideal is an (right) ideal. The
converse however is not true. In example 1 the set D = {0, a} is
an ideal, because ~ is admissible. Since ÂD is not admissible, D
does not satisfy Q(D) (corollary 2), hence D is not a strong ideal.
The following example shows that not every proper right ideal

(i.e. a right ideal which is not a weak ideal) is a strong right ideal.

EXAMPLE 3 : Let the seminearring (T, +,.) be such that (T, +)
is (S, +) from example 1 and ( T,. ) is
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D = {0, a} is right ideal (cf. the morphism ~ of example 1) and
not left invariant (e.g. ba = b 0 D).
Property Q does not hold, because ÂD is not right admissible (cf.
theorem 3).

THEOREM 6: Every ideal o f the seminearring S is a weak ideal.

PROOF. Let D be an ideal of S. Then for all d e D and x e S
we have

hence xd e D, so D is left invariant. Since ~ is admissible it is

right admissible and so D is S-kernel of (S, + ) by theorem 2.

COROLLARY 3: Since a strong ideal is an ideal with property Q
it follows from theorems 5 and 6 that the strong ideals are the
normal subsemigroups D o f (S, +) for which AD is admissible.

It is further clear that weak ideals with property Q are strong
ideals.

4. Sets of morphisms

In order to obtain further information about S-kernels and
ideals we need some facts about sets of morphisms of semigroups.
To any non-void set 0 of two-sidedly stable equivalences of

a semigroup 0393 there exist the two-sidedly stable equivalences inf
OE and sup 0, defined respectively by (03B1, 03B2) e inf 0 if and only if
(03B1, 03B2) ~ ~ for all ~ e 0 and (03B1, 03B2) e sup 0 if and only if there exist
~1,..., cP 11 in 0 and OC = 03B11, OC2’ ..., 03B1p+1 = 03B2 in F, such that
(03B1i, (Xi+1) e cPi for i = 1, ..., p (cf. e.g. [5], p. 268). Evidently
inf 0 C sup 0.

REMARK 4: In the following the same symbol will be used to
denote two-sidedly stable equivalences and there corresponding
natural morphisms. So (03B1, 03B2) ~ ~ and ~(03B1) = ~(03B2) have the same
meaning. Moreover r will be assumed to have a unit (co).

THEOREM 7: Ker(inf 0)
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PROOF. By definition of inf 0.

THEOREM 8: z Ker (~i) C Ker (sup 0) for any finite sum
03A3 Ker (~i) with CPi e 0.

PROOF. If a = a1+ ... +ap with 03B1i e Ker(~i) for i = 1, ..., p,
then

so (03B1, 03C9) e sup 0, in other words

a e Ker(sup 0).
COROLLARY 4:

Ker (inf 03A6) = ~{Ker (~); ~ e 03A6} C ~{Ker(~); ~ c- 03A6} CKer (sup 0).
THEOREM 9: The morphisms ~ o f the non-void set 03A6 have common

kernel L1 i f and only i f

PROOF. If Ker(inf 03A6) = Ker(sup 03A6) = 0394 then Ker(§) = 4
for all ~ e 0, by corollary 4.

Conversely, suppose Ker(~) = L1 for all ~ e 0.
Let a e Ker (sup 0), then ~1,...,~p in 0 and OC = 03B11, e OC2 ...,

03B1p+1 = 03C9 in 0393 exist, such that

Since (oc p w) e ~p, we have

so by

it follows

So finally we arrive at

Hence

and with corollary 4 it follows
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If K is a non-void set of normal subsemigroups of the semi-
group 0393, the class of normal subsemigroups containing all members
of K is non-void, in fact contains 0393. The non-void intersection
of this class of normal subsemigroups is called the normal sub-
semigroup generated by K and is denoted by [K]. It is the smallest
normal subsemigroup containing all members of K.

THEOREM

PROOF. Ker(sup{03BB0394; L1 e K}) is a normal subsemigroup.
From 03BB0394 ~ sup{03BB0394; L1 e K} for all d e K follows

so

and

Conversely: from

follows

so

hence

For non-void classes F of sets 0 of two-sidedly stable equiva-
lences, the following two-sidedly stable equivalences exist:

These equivalences are obviously related by

inf{inf 03A6; 03A6 e F} ~ inf{sup 03A6; 03A6 e F} ~ sup{sup 03A6; 03A6 e F}
and

inf{inf 0; 0 e F} ~ sup{inf 0; 0 e F}  sup{sup 0; 0 e F}.
We further notice the following theorems.

THEOREM 11: inf {inf 16; W e F} = inf {~ F}.
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PROOF. (03B1,03B2) e inf {inf 0; 0 e F} if and only if
(03B1, P) e inf 0 for all 03A6 e F, i.e. if and only if
(03B1, P) ~ ~ for all ç for which a 0 e F exists with ~ e 03A6,

i.e. if and only if

THEOREM 12: sup {sup 0; 0 e F} = sup {u F}.
PROOF. Suppose (03B1, 03B2) e sup {u F}. Then there exist ~1, ..., ~p

in u F and oc = OC1’ oc2 ..., 03B1p+1 = fl in 0393, such that

To any ~i, there exists a 0, such that ~i ~ 03A6i, hence by
cPi C sup 0,, we also have

so

and thus

Conversely suppose

then there exist

and

such that

By definition of sup there exist to any i = 1, ..., p morphisms
~i1, ..., ~iji in 0, and elements of r:

such that

Now the finite sequence

is connected by means of the morphisms ~ik of u F, and so
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thus

consequently

5. Sets of ideals

We are now in a position to make some more statements about
S-kernels and ideals.

Since for any class 0 of (left-, right-) admissible morphisms,
the morphisms inf 0 and sup 0 are likewise (left-, right- ) admissible
it follows by theorems 2 and 7 that the intersection of a class of
S-kernels is an S-kernel and by theorems 4 and 7 that the inter-
section of a class of ideals is an ideal. Property Q, in general, is
not preserved under intersection.
As a further application we notice:

THEOREM 13: The annihilator A(0394) o f a non-void subset L1

of the S-semigroup ris a right ideal o f S.

PROOF. Since A(0394) = ~{A(03B4); 03B4 e 4) it suffices to show that
A (ce) is S-kernel of (S, + ) for arbitrary a Er. Since 0393 is an S-

semigroup, the mapping x ~ 03B1x is a right admissible morphism
of (S, + ).
Its kernel is A(03B1), so A(03B1) is S-kernel by theorem 2.

REMARK 5: It may further be noted that the annihilator A (T)
of the S-semigroup F is left invariant, so A (r) is a weak ideal
of S.

In general the sum of two normal subsemigroups of a semigroup
r fails to be a normal subsemigroup. The same is true for right
ideals of a seminearring, as the following example shows.

EXAMPLE 4: Let (U, +,.) be the seminearring with (U, +)
equal to (S, +) of example 1 and let (U,. ) be defined by
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Then D = {0, a} and E = {0, c} are right ideals of U. However
D+E = {0, a, c, d} is not a normal subsemigroup of (U, +).

Instead the notion of generated normal subsemigroup of a set
of normal subsemigroups extends to sets of S-kernels and ideals.
For if K is a non-void set of S-kernels (ideals) then to any L1 e K
there exists a right admissible (admissible) morphism §4 with
kernel L1. Then Ker(sup cp¿j; L1 e K) is an S-kernel (ideal) which
contains all L1 e K. So the set of S-kernels (ideals) containing all
L1 e K is non-void and its non-void intersection is again an S-
kernel (ideal) which contains all L1 e K. This S-kernel (ideal) is
called the S-kernel (ideal) generated by K. In general it is not
equal to Ker(sup {~0394; L1 ~K}).
For sets of strong ideals we can assert more.

THEOREM 14: Il K is a non-void set of strong ideals of the semi-
nearring (S, +,.) then its generated normal subsemigroup [K] o f
(S, +) is a strong ideal of S.

PROOF. By theorem 10 we have

[K] =Ker(sup{03BBD;D~K})
Since all D e K are strong ideals the morphisms ZD are admissible
by corollary 3, hence

03BB[K] = sup{03BBD; D e K} (theorem 10)

is likewise admissible, so [K] is a strong ideal.

REMARK 6: Using theorem 3 instead of corollary 3 one shows in
the same way that the generated normal subsemigroup [K] of a
non-void set K of S-kernels with property Q is an S-kernel with
property Q.
With respect to the operations of intersection and generation

the class of normal subsemigroups of a semigroup, the class of
S-kernels of an S-semigroup, the class of weak ideals of a semi-
nearring and the class of ideals of a seminearring are complete
lattices.
With respect to the operation [ ], defined by

for normal subsemigroups D, E, the classes of S-kernels with
property Q and of strong ideals are complete upper semilattices
by remark 6 and theorem 14.

REMARK 7: If (F, + ) is a group, then the normal subsemigroups
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of T are normal subgroups (cf. e.g. [5], p. 278) and the operation
[0394, E] reduces to 0394+E. The same remark applies if (F, +) is an
S-group and S a nearring and a fortiori if in this case (r, +) =
(S, +) (cf. [1]).
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