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On an integral equation in diffraction theory

by

Albert E. Heins

The following remarks are intended to shed further light on
representation theorems for partial differential equations of a
special form, in particular the two-dimensional wave equation. It
has already been shown in the past decade that axially-symmetric
boundary value problems of the Dirichlet or Neumann type for
the three dimensional-wave equation for the disk or a disk between
parallel planes may be formulated as a regular integral equation
of the second kind. The advantage to such a formulation requires
no further comment. These Fredholm integral equations of the
second kind are derived from the Poisson representation for
solutions of the wave equation and the analytically continued
axis data of the Helmholtz representation. In a recent paper,
J. Boersma [1] has given a similar representation for the two
dimensional wave equation by accepting the three dimensional
representation as a guide to construct the two dimensional one.
We show here that this is again a result of the analytically
continued data of the Helmholtz representation in two dimensions
and the corresponding version of the Poisson representation
theorem.

The Poisson representation theorem [3] for the equation

has the form

where the term
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is even in y and the term

is odd in y. The symbols Jo and Il refer to the usual notation for
the regular and real Bessel functions of order zero and one respec-
tively. Furthermore, (3) in addition to satisfying the equation (1)
for ~(x, 0) e C2, reduces to ~(x, 0) when y = 0 while ~~/~y
vanishes at y = 0. On the other hand (4) vanishes at y = 0 while
its y derivative reduces to 03C8(x) at y = 0. Hence (2) describes a
regular initial-value problem with respect to the line y = 0. In
particular if ~(0, y ) vanishes for Iyl  b, (2) implies that

and

We shall make use of these remarks to provide integral equations
of the type which Boersma described.

Let us now recall that the conventional Helmholtz representa-
tion for a plane wave incident upon a strip on which a Dirichlet
condition is satisfied, that is, ~(0, y) = 0, Iyl  b is given by

where A (t ) is the discontinuity of the x derivative of ~(x, y ) on
x = 0, |y|  b. H(1)0 is the customary symbol for the Hankel
function of order zero and of the first kind, while the term
exp (ixkx+iyky) represents the incident plane wave. The boundary
condition ~(0, y) = 0, Iyl  b produces an integral equation of
the Fredholm type and of the first kind. It is our goal to show
that because of the symmetry of the strip about the line y = 0,
that another integral equation may be found, although it does
not appear to possess the simple form which was found in the
axially-symmetric case [2]. Nevertheless, as Boersma has shown,
it turns out to be useful.
We observe that (5) may be decomposed into the form

~(x, y) = ~e(x, y)+~0(x, y) where ~e(x, y) is even in y and ~0(x, y)
is odd in y. Here we have from (5) that
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and

In particular

and this is an analytic function of the complex variable z = x+iy
in the complex plane cut along the line x = 0. Indeed for

0  y  b, we have, if we take (x2+t2)1 2 to be real and positive
for x real, that (z2+t2)1 2 = (t2-y2)1 2, 0  y  t  b, x ~ 0±. On
the other hand (z2+t2)1 2 = exp (-i03C0/2)(y2-t2)1 2, 0  t  y  b

for x ~ 0+ and it is equal to exp (i03C0/2)(y2-t2)1 2, 0  t  y  b

for z - 0-. Furthermore if y  0, we have that (z2+t2)1 =
(t2_y2)1, 0  -y  t  b, z - 0:1: and it is equal to exp (i03C0/2)
(y2-t2)1 2, 0  t  -y  b, x ~ 0+ and to exp (-i03C0/2)(y2-t2)1 2,
o  t  -y  b, x ~ 0-. Hence for x ~ 0+, 0  y  b, we get
from (6a)

where B(t) = A(t)+A(-t), Io (kÂ) is the regular imaginary Bessel
function of order zero and K0(k03BB) is the MacDonald function of
order zero. For x ~ 0+, 0  -y  b, we have

Hence

If we were to repeat this calculation for x -+ 0-, Iyl  b, we would
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get the same result. Observe now that §6(iy, 0)+~e(-iy, 0) = 0
from the Poisson representation and hence we have the type of
integral equation that Boersma gave, that is

Unlike Boersma’s result, B(t) can be identified as the even part
of the normal derivative of ~ on x = 0, Iyl  b.
Now we turn to the odd component. First it is noted that

where C(t) = A(t)-A(-t). Now (7a) may be rewritten as

or

where a is a constant of integration. The constant can be evaluated
in terms of C(t) by noting that the left side of (8) vanishes when
x = 0 and hence

Now we continue (8) analytically into the domain of the complex
variable z = x+iy as we did in the even case. The new term is
the integral on the left side of (8). For 0  y  b, we have 

so that for x ~ 0+, 0  y  b, we have
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while for x ~ 0+, 0  -y  b, we have

Upon replacing -y by y in equation (10) we get

Hence upon addition of (10) and (11) we get

Now we know from the odd part of the Poisson representation
that 03C8(it)+03C8(-it) = 0 and hence we are left with the following
integral equation
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Neumann boundary conditions may be dealt with in a similar
fashion.

If instead of a plane wave term in (5), we had a term which
could not be continued into the domain of the complex variable
z = z+iy, for example a line source term, we could redefine
~(x, y) and proceed as before. Suppose that the source term is
arbitrary and has the form ~(x, y ) = ~ei(x, y)+~ei(x, y ) where
~ei(x, y) and ~ei(x, y) are the even and odd parts of ~i(x, y). Then
if we put ~(x, y)-~i(x, y) = 03A6(x, y), we have that 03A6(0, y) =
~i(0, y), |y|  b. The Poisson representation is now inhomogeneous
and may be solved as an integral equation to produce ~(iy, 0)+
~(-iy, 0) or 03C8(iy)+03C8(-iy). The analytic continuation of the
modified Helmholtz representation proceeds as before.
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