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Bounds for the solutions of Aw = P(r)f(w)
by
Vinod B. Goyal

Let A = 0%/0a?+02/0x2+. . .+ 0%/0x2 be the n-dimensional La-
place operator and let D, and S, denote the open sphere
Zi+ai+. . .4a2 <72 (r > 0)andits boundary z}-+-a3+. . .22 =12,
respectively. The aim of this paper is to find explicit bounds for
the max. w(Q) where o(Q) satisfies the differential equation

(1) Ao = P(r)f(o)
or, more generally, the differential inequality
(2) do = P(r)f(o)

where Q e Dy with R >r and P(r) is positive, monotonically
increasing and twice continuously differentiable. In theorem 1
an upper bound is obtained where P(r) is either C e or Ar®
where C,, C, and 4 are arbitrary constants, C; and A being positive
and C, non-negative. However, in 2-dimensional case, an upper
bound is given if P(r) is o where « and B are arbitrary positive
constants. In theorem 2 we find a lower bound in case P(r) is
arf and 4 is a 2-dimensional Laplace operator. Also, the behaviour
of these solutions at an isolated singularity is investigated.

THEOREM 1. Let f(w) be positive, non-decresaing, differentiable
function in (— oo, o), for which

® di
J'm‘f—(t-j ((0> —CD)

exists and
™ dt
(3) re| st
If
(G) u(r) = sup o(Q)

QeS,
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where w(Q) ranges over all functions of class C? in D, which satisfy
(2), then
(4) Clec,r (Rz_rz)z J«oo dt
nR? u(r) f(t)
provided P(r) = Cye%™ (C, > 0 and C, = 0) and

(5) Ar"(R2—rz)2 f°° dt

4nR? win 1(2)
in case P(r) = Ar™ (4 > 0). Also if A is a 2-dimensional Laplace
operator and P(r) = arf, then

B R2__,2)\2 LS

(6) ocr(Rzr)SJ‘ i

8R un 1(2)
o and B being arbitrary positive constants. The inequalities (4), (5)
and (6) are sharp.

Proor: Consider the function g = g(r) defined by

C(RP—r2)2 = g
) e -[

where C is a positive constant to be chosen later. Denoting by
one of the variables #; and differentiating with respect to 2, we have-

3 4CaP(r)(R2—r?) n 2CzP(r)(R2—r2)2 _ &s
®) B R? R? )
where the dot denotes differentiation with respect to r2. Differen-
tiating again with respect to z

ACP(r)(R2—r?) n 8Ca?P(r) 16Cx2P(r)(R*—1r?)

R? R? Re
2CP(r)(RE—r?)2 | AC?P(r)(R*—1%) g, &
e F R UL
With the help of (7) and (8), we obtain,
8 _ 8Cx® 4C(R*—1?) 16Cz2P(r)(R2—12) 4Ca?
P(rfte) R R? R*P(r) R
_CP(r)(R*—r)*f'(g) [2_ P(r)(Rz—fz)]z
R? P(r)

pz( )(2w2P(r)+P( r) f ],
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Summing over all z;, we have

4g  8Cr*  4nC(R®*—r?) 16Cr2P(r)(R2—r2)  4Cr?
Pifg B R RP() 2
LCP(r)(R*—7%)*f'(g) _ [2_ P(T)(Rz—rz)] 2
R? P(r)
2 - . © dt
— 5) (2r2P(r)+P(r)n) ) R—t) .
Using (3) it reduces to
Ag r?
O pog = )]

2C(R2—1r2)2 (2r2P(r)+nP(r) 2r:P2(r)
TR { P(r) T Pr) }

Now we consider three cases:

Case I': Choose P(r)such that P(r)— P2(r)/P(r) = O or P = C, "
where C; > 0 and C, = 0 are arbitrary constants. Then (9) reduces
to

Ag r2
CoTig) &
If, n = 2 and C = 1/4m, it follows that
Ag < Cref(g).
Since g(0) = 0 and g(r) increases to oo as r — R the proof of (4)
will follow from the following lemma:

LEMMA: Let f(t) be monotonically increasing continuous function
defined for all t. Suppose the functions g and w are subject to the
inequalities

4g < P(r)f(g)
and
Ao = P(r)f(w)
respectively, for 0 < ry <r < R.If g - o for r - R, then
0=g
forry <r <R

A proof of this lemma (for r, = 0) can be found in [8]. The
changes required to provide it for r, > 0 are obvious.
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Case I1. Assume P(r) to satisfy

P(r) 2r2P(r) )
— —n) = 0.
P(r) ( P(r)

(i) If P(r)/P(r) =0 then P = k where k is an arbitrary positive
constant. This case is implied by Case I if we choose C; = k and
C,=0.

(ii) If 2r2P(r)/P(r) —n = 0 or, P = Ar" (A being an arbitrary
positive constant) the inequality (9) becomes

Arfig) =4 ‘ - 1% ("’—2)} ‘

Again, if n = 2 and C = 1/4n, we have
Ag = Arvf(g)-

Now the proof of (5) will follow from the above lemma.

CaseIII:Choose Psuchthat2r2P(r) P(r)+nP(r) P(r)—2r2P%(r) =0
or, P = orf where « and 8 are arbitrary positive constants and
n = 2. Then (9) gives

Ag
= 8C
ar’f(g)
If C = }, it follows that
Ag < ar¥f(g).
Again, with the help of the Lemma, we get (6).

This completes the proof of theorem 1. Now, we derive the
following corollaries.

CoRrROLLARY 1. In case of a function w satisfying

2
J— g
Ao = Cevt%

which is regular in Dy,
24/nR
w§2logm-—c2r2 (n_2_2)

where C; > 0 and C, = 0 are arbitrary constants.
Indeed, setting f(t) = e’ in (4), we get, where v = u

Cl ec.r“( Rz_rz)z
4nR2

Taking logarithm on both sides

e
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2vnR
V/Cy(R?—1?)

ReMark: Nehari [2] proved that in case of a solution % of

o = 2log C,r2.

Au = e
which is regular in Dy
24/nR

where ¢(r) = sup u(Q).

QeS,
If we take C; =1 and C, = 0 the above result becomes a partic-
ular case of this corollary.

CorOLLARY 2: If w satisfies the equation
Aw = Arre?
where A is an arbitrary positive constant, it is subject to the inequality

24/nR
VAT 2 (R2—12)
At an isolated singularity of w, the behaviour of w is such that

Tm -2 =n
r—>0 10 _:_l_
gr

set f(t) = et in (5). With u = w, we obtain

Arn(R2—r2)2
@ —_—
4nR?

(10) w = 2log

e

Il

Taking logarithm
24/nR
\/Z(Rz—rz)r”/z '

o = 2log

Now (10) could be written
2

4dn 1
w_é_logm—l—nlog;.

Dividing by log 1/r and letting » — 0

im (—“’-)g n.
r—0 1
log —
r
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ReMARrk: This is a generalisation of and an improvement upon
a result of the author [1], namely, if ® = @ (@, %y, ..., 2,) is &
solution of
Aw = r2%®

which is regular for 0 < r < R, then

4(n+4)R4
© =108 )

and at an isolated singularity of w,

Im -2 \< 4
r—0 lOgl
r

CoroLLARY 8. Every solution o of
Aw = arfe?

where « and B are arbitrary positive constants and A is 2-dimensional
Laplace operator, satisfies

24/2R
Vors (R2—1r2)

o = 2log

At an isolated singularity of o

lim (—\=<g.
r—0 log—l-
r

Setting f(t) = e’ in (6), it could be proved exactly as Corollary 2.
In the next theorem we find a lower bound for the maximum
of the solutions of the differential inequality

(11) Ao = arff(w)

where A4 is a 2-dimensional Laplace operator and «, 8 are arbitrary
positive constants.

THEOREM 2. Let f(w) satisfy the conditions of theorem 1 with
(8) replaced by

, o [T
) rof G
1y

@) o(r) = sup o(Q)

QeS,
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where w(Q) ranges over all functions of class C? in D, (r* = a}+a3)
and which satisfy the inequality (11), then
“ﬁgm’"(Rl—ﬂ).
I 4
Proor: Consider the function h = h,(r) defined by
p—rt 1
4 P(r)) ., 1(t)

(12) (p>R>r)
where P(r) is positive, monotonically increasing and twice con-
tinuously differentiable. Clearly, k,(r) belongs to the class C2 in Dp
and satisfies the differential inequality (11) if P(r) = arf. Dif-
ferentiating (12) twice with respect to 2 = z;, (k = 1, 2), we obtain

13 z hz 2zP(r) [ dt
18 = 3= ~imre) ~ P J, 10
1 hy n 2xh,P(r) n h2 Fh 2P(r) (* dt

2= " jmPE T (D) T EmPE " R ), o)
__41@2_.. °°_(1t_ 8x2P(r) ”ﬂ 2wP(r). h, )
i) L (")f,.ﬂtf“ B3y J o 70 T P Fh)
Using (18) and rearranging, we get,
1 . 222P(r)

2 P()f(h) " Pr)

+ @P(r)f (k) [”2—72. P(r) 1 . 2w2sz;:P(r) o

2  P(r) 2

Summing over both a;,, we have

4 2r2P(r)
P(r)f(h) P(r)
po [0 PO TP 2B +2P) phrt
+ P (k) [ 2 P(r) 2] P(r) 2

Since /' > 0, we obtain with the help of (8")
Aah _— 2r:pp+2PP—2r2 P2 ) p2—7‘2.
P(r)f(h) — P2(r) 2
Now choose P(r) such that 2r2P(r) P(r)+2P(r)P(r)—2r:P%(r) = 0
or, P = arf where « and B are arbitrary positive constants. Hence,

(14) Ah = arbf(h).
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Consequently (G’) and (14) imply
h(r) = o(r).
Since we can take p arbitrary, close to R, we have
00 B 2__p2
(15) 4t _arf(RE—1%)
o 1(8) 4

which proves theorem 2.

CoROLLARY 4: If w salisfies the equation
0? 0*
(16) Ao = arbev (A =+ 7)
and is regular in Dr, then

1 log—————
(7) 08 B (Ri_y2) =

Moreover, at an isolated singularity of w, the behaviour of w is such
that

o A
lim [—\ = 6.
im l)_ﬂ

r—0 log -
T
Setting f(¢) = e* in (15), this could be proved exactly as Corollary 2.

Acknowledgement: The author is thankful to the referee whose
various suggestions have improved the presentation of the paper.

References

V. B. Govay,

[1] Bounds for the solutions of a certain class of non-linear Partial Differential
Equation, Ph. D. dissertation (1963), Carnegie Inst. of Tech., Pittsburgh,
U.S.A. (To be published.)

Z. NEHARI,
[2] Bounds for the solutions of a class of non-linear differential Equations, Proc.
of Amer. Math. Soc. (1963) pp. 829—836.

R. OSSERMAN,

81 O uality Au = f(u), Pacific Journal of Math. 7 (1957) pp. 1641—1647.

(Oblatum 24-10-66)

ra

Kurukshetra University
Kurukshetra, Punjab, India

rA—
———
———



