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Bounds for the solutions of 039403C9 ~ P(r)f(w)

by

Vinod B. Goyal

Let d = ~2/~x21+~2/~x22+...+~/~x2n be the n-dimensional La-
place operator and let Dr and Sr denote the open sphere
x21+x22+...+x2n  r2 (r &#x3E; 0) and its boundary x21+x22+...+x2n = r2,
respectively. The aim of this paper is to find explicit bounds for
the max. 03C9(Q) where 03C9(Q) satisfies the differential equation

or, more generally, the differential inequality

where Q E DR with R &#x3E; r and P(r) is positive, monotonically
increasing and twice continuously differentiable. In theorem 1

an upper bound is obtained where P(r) is either C1eC2r2 or A r"
where CI, C2 and A are arbitrary constants, Cl and A being positive
and C2 non-negative. However, in 2-dimensional case, an upper
bound is given if P(r) is ar" where oc and P are arbitrary positive
constants. In theorem 2 we find a lower bound in case P(r) is

ocrp and d is a 2-dimensional Laplace operator. Also, the behaviour
of these solutions at an isolated singularity is investigated.
THEOREM 1. Let f(03C9) be positive, non-decresaing, differentiable

function in ( - oo, oo ), for which

exists and

If
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where 03C9(Q) ranges over all functions of class C2 in D,. which satis f y
(2), then

provided P(r) = C1eCsrl (C1 &#x3E; 0 and C2 &#x3E; 0 ) and

in case P(r) = Ar" (A &#x3E; 0). Also if 0394 is a 2-dimensional Laplace
operator and P(r) = «rf1, then

oc and P being arbitrary positive constants. The inequalities (4), (5)
and (6) are sharp.
PROOF: Consider the function g = g(r) defined by

where C is a positive constant to be chosen later. Denoting by ar
one of the variables xk and differentiating with respect to x, we have

where the dot denotes differentiation with respect to r2. Differen-
tiating again with respect to x

With the help of (7) and (8), we obtain,
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Summing over all xk, we have

Using (3) it reduces to

Now we consider three cases:

Case I: Choose P(r) such that P(r)-P2(r)/P(r) = 0 or P = C1ecsr
where Ci &#x3E; 0 and C2 ~ 0 are arbitrary constants. Then (9) reduces
to

If, n ~ 2 and C = 1/4n, it follows that

Since g(O) = 0 and g(r) increases to oo as r ~ R the proof of (4)
will follow from the following lemma:

LEMMA: Let f(t) be monotonically increasing continuous function
defined for all t. Suppose the functions g and ro are subject to the
inequalities

and

respectively, f or 0  ro  r  R. Il g - co f or r ~ R, then

for r0  r  R.
A proof of this lemma (for ro = 0) can be found in [3]. The

changes required to provide it for ro &#x3E; 0 are obvious.
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Case II. Assume P(r) to satisfy

(i) If P(r)/P(r) = 0 then P = k where k is an arbitrary positive
constant. This case is implied by Case 1 if we choose Ci = k and
C2 = 0.

(ii) If 2r2P(r)/P(r) -n = 0 or, P = Arn (A being an arbitrary
positive constant) the inequality (9) becomes

Again, if n &#x3E; 2 and C = 1 /4n, we have

Now the proof of (5) will follow from the above lemma.

CaseIII: Choose P such that 2r2P(r) P(r)+nP(r)P(r)-2r2P2(r) = 0
or, P = ocrP where oc and fl are arbitrary positive constants and
n = 2. Then (9) gives

If C = 8 , it follows that

Again, with the help of the Lemma, we get (6).
This completes the proof of theorem 1. Now, we derive the

following corollaries.

COROLLARY 1. In case of a function w satisfying

which is regular in DR

where C1 &#x3E; 0 and C2 &#x3E; 0 are arbitrary constants.
Indeed, setting f(t) = et in (4), we get, where 03C9 = 2c

Taking logarithm on both sides
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REMARK: Nehari [2] proved that in case of a solution u of

which is regular in DR

where cp(r) = sup u(Q).
Q~Sr

If we take Ci = 1 and C2 = 0 the above result becomes a partic-
ular case of this corollary.
COROLLARY 2: Il ce satisfies the equation

where A is an arbitrary positive constant, it is mbiect to the inequality

A t an isolated singularity of ro, the behaviour of ro is such that

set f(t) = et in (5). With u = 03C9, we obtain

Taking logarithm

Now (10) could be written

Dividing by log 1/r and letting r ~ 0
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REMARK: This is a generalisation of and an improvement upon
a result of the author [1], namely, if (JJ = 03C9 (xl , ae2’ ..., xn) is a
solution of

which is regular for 0  r  R, then

and at an isolated singularity of 00,

COROLLARY 3. Every solution 03C9 of

where a and P are arbitrary positive constants and L1 is 2-dimensional
Laplace operator, satisfies

At an isolated singularity of co

Setting f(t) = et in (6), it could be proved exactly as Corollary 2.
In the next theorem we find a lower bound for the maximum

of the solutions of the differential inequality

where L1 is a 2-dimensional Laplace operator and 03B1, 03B2 are arbitrary
positive constants.

THEOREM 2. Let f(ce) satisfy the conditions o f theorem 1 with

(3) replaced by
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where 03C9(Q) ranges over all functions of class C2 in Dr (r2 = x21+x22)
and which satisfy the inequality (11), then

PROOF: Consider the function h = hP(r) defined by

where P(r) is positive, monotonically increasing and twice con-
tinuously differentiable. Clearly, hP(r) belongs to the class C2 in DR
and satisfies the differential inequality (11) if P(r) = ocril. Dif-

ferentiating (12) twice with respect to x = xk (k = 1, 2), we obtain

Using (13) and rearranging, we get,

Summing over both xk, we have

Since f’ &#x3E; 0, we obtain with the help of (3’)

Now choose P(r) such that 2r2P(r)P(r)+2P(r)P(r)-2r2P2(r) = 0
or, P = 03B1r03B2 where a and f3 are arbitrary positive constants. Hence,
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Consequently (G’ ) and (14) imply

Since we can take p arbitrary, close to R, we have

which proves theorem 2.

COROLLARY 4: If ro satisfies the equation

and is regular in Dr, then

Moreover, at an isolated singularity o f 00, the behaviour o f 00 is such
that

Setting f(t) = el in (15), this could be proved exactly as Corollary 2.
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