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Notation systems and recursive ordered fields 1

by

Yiannis N. Moschovakis

Introduction

The field of real numbers may be introduced in one of two ways.
In the so-called "constructive" or "genetic" method [6, p. 26],
one defines the real numbers directly from the rational numbers
as infinite decimals, Dedekind cuts, Cauchy sequences, nested
interval sequences or some other similar objects. In the "axio-
matic" or "postulational" method, on the other hand, one simply
takes the real numbers to be any system of objects which satisfies
the axioms for a "complete ordered field". (If we postulate
"Cauchy-completeness" rather than "order-completeness", we
must also require the field to be archimedean [4, Ch. II, Sec.
s-io].)
These two methods do not contradict each other, but are in

fact complementary. The Dedekind construction furnishes an
existence proof for the axiomatic approach. Similarly, the axio-
matic characterization provides a certain justification for the
seemingly arbitrary choice of any particular construction; for
we can show that any two complete ordered fields are isomorphic
[4, Ch. II, Sec. 9-10].
In each of the above-mentioned genetic approaches to the theory

of real numbers, essential use is made of the concept of an arbi-
trary sequence of rational numbers. Turing in [20] first attempted
to constructivize the theory by restricting the functions that
appear in the definition through decimal expansions to be "com-
putable", or equivalently [6, Ch. XIII] "general recursive". Here
the general recursive functions are assumed to comprise all in-

1 This paper is Part 1 of the author’s Ph. D. Thesis at the University of Wisconsin
written under the direction of Prof. S. C. Kleene. Part of the material appeared in
[11], written under the direction of Dr. D. Kreider (now at Dartmouth Collège),
and was presented at Prof. H. Rogers’ seminar in logic at MIT in the summer of
1960. 1 wish to express my sincerest appreciation to all three above-named persons
for their help and encouragement.



41

tuitively effectively computable functions, in accordance with

"Church’s thesis" [6, Ch.’s XII, XIII]. Thus Turing calls a real
number a in the unit interval [0, 1] computable, if there is a

general recursive function f(x) such that 0 ~ f(x)  9 for each

natural number x and

Turing’s definition has been extended, in the obvious way to
real numbers outside the interval [0, 1], and his basic idea of
restricting the functions (or sets) in the classical définition to be
recursive has been applied to the other genetic approaches, i.e.

Dedekind cuts, Cauchy sequences, etc. [18]. R. M. Robinson first
observed in [19] that the constructive versions of these ap-

proaches all lead, as classically, to the same set of real numbers.
This set of recursive real numbers was shown by H. G. Rice [18]
to be a denumerable subfield of the classical real number which
becomes algebraically closed on the adjunction of the imaginary
unit v’ -1. Moreover, the field operations are "computable" on
this subfield, under any of several definitions of computability
of functions of (recursive) real arguments (see Lemma 4 below).

In this paper we develop a constructive version of the axiomatic
approach to the theory of real numbers. We shall give suitable
constructive definitions of the relevant classical concepts, and
prove for the recursive real numbers uniqueness theorems similar
to the classical characterizations of the real numbers. Our method,
we believe, provides a general tool for constructivizing various
classical axiomatic theories (cf. our forthcoming [12]). Since it is
this method rather than the specif ic results that interests us, we
shall at many points digress from the main argument to illustrate
other applications.
A constructive theory of fields has been developed in Frôhlich

and Shepherdson [3] and Rabin [17], along the lines of Van der
Waerden’s work on "explicitly given fields" [21, Sec. 42]. The
approach in these papers is algebraic and has proved powerful
in studying the connection between algebra and computability
theory. Our definitions may be viewed as generalizations of those
of Frôhlich-Shepherdson and Rabin, necessitated by the fact that
the field of recursive real numbers is not a "computable ordered
field" (see § 4, below, for a precise statement). In an effort to
make this paper as self-contained as possible, we shall present
the definitions of Rabin at the appropriate places and compare
them to ours.
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For the theory of recursive real numbers we shall refer whenever
possible to Rice’s [18], which gives a concise exposition of most
of the results we need. For recursive function theory, we assume
familiarity with Kleene’s [6]; our notation and terminology will
be those of [6], unless otherwise specified.

1. Notation systems

It is easy to show that there exist primitive recursive functions
sign (x), num (x) and den (x), with sign (x) = 0 or 1, such that
the mapping z - rx given by

is a one-to-one correspondence of the set N of natural numbers
0, 1, ... onto the set Q of fractions in lowest terms [8, p. 396,
5, § 3]. Utilizing this correspondence, we can associate with each
real number oc at least one number-theoretic function f(x) such
that, for all x and y,

and

Conversely, any number-theoretic function f(x) satisfying (1.2)
determines exactly one real number oc defined by (1.3).
Here we obtain the real numbers as limits of certain Cauchy

sequences of rational numbers.
The natural way to constructivize this approach to real numbers

is by restricting the function f(x) to be general recursive. Thus a
real number oc is recursive if there is a general recursive function
f(x) satisfying (1.2) and (1.3). See [18] for references and alter-
native definitions.

By the normal form theorem [6, §§ 58, 63], for each partial
recursive function f(x1, ..., xn) (where we take n &#x3E; 1), there is
a natural number f (called a Gôdel number of f(xl, ..., xn))
such that

Here U(y) is a particular primitive recursive function and for each
n, Tn(f, xl , ..., xn, y ) is a particular primitive recursive predicate.
The complete equality - [6, pp. 327-328] is replacable by = if
f(x1, ..., xn) is general recursive.
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In (1.4) we anticipated a convention which we now state. We
shall use single letters or combinations of letters in Roman type
as names for number-theoretic functions, e.g. f(x), g(x, y),
sign (x). If a function thus named is proved or assumed to be
(partial) recursive, its name in italic type will denote some Gôdel
number of it in the sense of (1.4), e.g. f, g, sign.

If the general recursive function f(x) with Gôdel number f
determines the recursive real number « in the sense of (1.2) and
(1.3), we call f an R-index of a and write a = f1..,.
The set R of natural numbers which are R-indices of recursive

real numbers is characterized by

Each element f of R determines one real number 03B1f. This cor-

respondence, however, is not one-to-one, since different Gôdel
numbers may represent the same function and different functions
may determine the same real number. We thus have a natural

equivalence relation on R,

which we can express without reference to real numbers by

If we want to develop the theory of recursive real numbers
independently of the classical theory, we replace the real number
03B1f (for f ~ R) by the equivalence class of f in R under ’R; we
denote this equivalence class by IR or [fJR. From this point of
view, the essential object of study or recursive analysis is the
set R (or some other set playing a similar rôle) with the equivalence
relation ~R on it.
The ordered pair (R, ~R) forms in a certain sense a system

of notations for the recursive real numbers. We abstract from this

example a general concept of a "notation system".
DEFINITION 1. A notation system is an ordered pair T = ( T, -T)

where T is a set of natural numbers and ~T is an equivalence
relation on T.

For x E T, eor [x]T shall be the equivalence class under ~T
of x in T ; x will be called a T -index of ài". We shall always take
x ~T y to be false unless both x and y are members of T.
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We mentioned in the introduction that the field operations are
"computable" on the set of recursive real numbers. One way in
which this can be made precise in the case of addition is as follows
(see Lemma 4): there is a partial (in fact, primitive) recursive
function f+(x, y) such that, for all x, y e R, f+(x, y) e R and

If a definition of addition of real numbers is presupposed, (1.7)
asserts that it is a computable operation on the recursive reals;
i.e. we have an algorithm f+ which, when supplied with R-indices
x, y of recursive real numbers, furnishes an R-index f+(x, y ) of
their sum. Alternatively, (1.7) with a suitable f+ can be con-
sidered as the definition of addition of recursive real numbers.

In order to abstract from this example a general concept of a
"recursive operator" from one notation system into another, we
introduce some convenient notations.
We shall use Greek letters oc, fl, y as variables over equivalence

classes of notation systems. If x is an equivalence class of
T = (T, ~T), we write oc E T and we call x an element of T. We
are thus viewing T dually as an ordered pair and as the collection
of its equivalence classes.

If F(ocl, ..., oc,,) is a partial function defined for some n-tuples
of elements of some set (n ~ 1), we abbreviate "F(03B11, ..., 03B1n)
is defined" by "F(ocl, ..., an)~".
DEFINITION 2. Let T = ( T, ~T), S = (S, ~S) be notation

systems and let F(al, .. , .an) be a function or operator defined
on n-tuples of elements of T and taking elements of S as values.
Then F(ocl, ..., oc,,,) is récursive (an n-ary recursive operator from
T into S), if there is a partial recursive function f(x1, ..., xn)
such that, whenever al , ..., a n are T-indices of oc,, Cln

respectively, then f(a1, ..., an).J., f(a1, ..., an) E S and

We say then that f (xl , ..., xn) determines F(03B11, ..., CXn) (or
delines F(03B11, ..., cxn) recursively), and we call any Gôdel number
/ of f(x1, ..., xn) an index of F (oc,, ..., ocn ) (as a recursive operator
on n variables from T into S).
To illustrate these definitions, we consider some specif ic

examples of notation systems that have been used in the literature.
The simplest example of a notation system is the set N of

natural numbers with identity as the equivalence relation,



45

N = (N, Àzy x=y). Here the recursive operators are the general
recursive functions.
A more interesting example is the usual notation system for

the general recursive functions. We define

The notation system F = ( F, ~F) gives us one way of referring
to general recursive functions; an F-index of a general recursive
function ce is a Gôdel number of oc in the sense of (1.4).
An example of a computable (binary) operation on general

recursive functions is pointwise addition, i.e. the operation which
assigns to two functions f(x) and g(x) the sum function f(x)+g(x).
We see from the formula

that pointwise addition is a recursive operator. (Here the + on
the right is ordinary number addition, and the  is that of [6,
Th. XXIII].)
The recursive operators from F into N have been called

(numerical-valued) effective operations by Myhill-Shepherdson [15]
and Kreisel-Lacombe-Schoenfield [9]. It is shown im [9, Th. 1
and § 3, Remark 1] that they are exactly all restrictions to F of
the partial recursive functionals (in the sense of Kleene [6, § 63])
whose domain contains F.2
Another example of a notation system is 0 = (0, Àzy |x| = |y+|),

where 0 - is the set of ordinal notations of Kleene [7] and, for
x e 0, |x| is the ordinal that x represents. Several recursive

operators from 0 into 0 have been studied in the theory of
constructive ordinals; for example, we see from the formula

that addition of constructive ordinals is a (binary) recursive
operator [7, (XVI)].

2. Recursive groups

The concepts of notation system and recursive operator that
we introduced in the preceding section allow a natural con-

1 Actually a stronger theorem is proved in [9]. In [12] we shall give a further
generalization of this Kreisel-Lacombe-Schoenfield result in what appears to be
its natural setting.
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structivization of several classical axiomatic theories. In this
section we treat briefly, as an example, the case of groups.
DEFINITION 3. A recursive group is a notation system

G = (G, ~G) together with two recursive operators 03B1 · 03B2 and 03B1-1

(binary and unary respectively) from G into G which satisfy the
classical group axioms.

In order to show that every countable group is (classically)
isomorphic to a recursive group we need a simple lemma, which
will also be useful later.

Let A be a set of natural numbers and let e be a set of (pos-
sibly partial) number-theoretic functions. We define inductively
the set AF by the following three clauses.

(2.1.c) a e A’ only as required by (2.1.a) and (2.1.b).

Clearly AF is the smallest set containing A and closed under
the operations of F; we call AF the functional closure of A by F.
For each natural number e, let W. be the domain of the partial

recursive function {e}(x); thus

Now Wo, Wi, ... is an enumeration (with repetitions) of all
recursively enumerable sets (including the empty set; cf. [6,
Th.’s XIV, XVIII, XIX]).
LEMMA 1. For each m, let e. be the set o f partial recursive

functions {{z}(x1, ..., xn ) : 2z3n E Wm}. There is a primitive
recursive function fc(e, m) such that, f or each e, and m,

In particular, the functional closure o f a recursively enumerable set
by a finite set o f partial recursive functions is recursively enumerable.

PROOF. We first define a function g(e, m, t) so that, for fixed
e and m, the domain of g(e, m, t) is the union of We and the set
of numbers obtainable from We by using once an operation of
Fm. Thus g(e, m, t) is to be undefined, unless
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To see that g(e, m, t) can be taken to be partial recursive, we
use [6, p. 287 (22)] to rewrite {x}((x)1, ..., (x)n ~ t as

then, upon advancing the existential quantifiers (including those
in We) and contracting them (by [6, p. 285 (17)]), the condition
of definition of g(e, m, t) assume the form (Ey)R(e, m, t, y)
with a (primitive) recursive R. Now we take

Next we define f(k, e, m) by the recursion

where g is a Gôdel number of g. For each k &#x3E; 1, f(k, e, m) is
a Gôdel number of a function with domain the set of numbers
obtainable from members of We by ~ k uses of functions of Fm.
Now let h(e, m, t) ~ 03BCy[(y)0 &#x3E; 0 &#x26; Tl(f«y)o, e, m), t, (y),)] and
fc(e, m) = At h(e, m, t).

THEOREM 1. Every countable group is isomorphic to a recursive
group whose set o f indices consists o f all the natural numbers.

PROOF. Let so, 91, ... be an enumeration of the given group,
and denote the group operations by si - s, and si l. We associate
with each element si of the group the natural number 7i. Let
A be the (recursive) set of numbers of the form 7’, and let F be
the finite set of functions fl(i, i) = 3’51, f2(i) = 21. By Lemma 1,
the set AF is recursively enumerable; it is clearly infinité. Let
f(x) be a general recursive function which enumerates AF without
repetitions.
We define a function ~(x) from the set G of all natural numbers

into the given group by induction on the form of definition of AF:

On G we define an équivalence relation ~G by

It is now easy to verify that the functions f-1(fl(f(x), f(y))) and
f-1(Q(f(z))) determine recursive operators on G = (G, ~G)
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which satisfy the group axioms, and that ~(x) induces in a

natural way an isomorphism of this recursive group with the
given group.
Theorem 1 shows that the concept of a recursive group is as

wide as that of a classical countable group to within a classical

isomorphism. We cannot expect to enrich the algebraic structure
of groups by imposing the restriction of recursiveness. Two

comments, however, are relevant here.
First, a recursive group is endowed with a specif ic recursive

structure. We call two recursive groups GI and G2 recursively
isomorphic, if there is a recursive operator F : G1 ~ G2 which is
a classical isomorphism from GI onto G2 and whose inverse
F-1 : G2 ~ G1 is also a recursive operator. In a constructive
theory it is natural to identify two recursive groups only if they
are recursively isomorphic, and to study those properties of a
given group that are related to and can be expressed in terms
of the given recursive structure on the group, e.g. "recursive sub-
groups", "recursive automorphisms" etc. It is easy to construct
examples of recursive groups that are classically, but not recur-
sively, isomorphic.
A second and more fundamental restriction to the applicability

of Theorem 1 is that until now we have imposed no constructivity
restrictions on the set T and the equivalence relation ~T of a
notation system. It is clear that from the constructive point of
view one should require the predicates x E T and x ~T y to be
"constructively definable" in some sense. We plan to discuss this
problem in a paper which is now in preparation.
Rabin in [17] imposes this latter restriction in a very strong

form by requiring the set of indices G to be recursive and the
equivalence relation ~G to be simply identity, x G y = x = y.
(Because of this he does not need to postulate the computability
of the inverse operation, which follows from the computability
of multiplication.)
Another difference in Rabin’s approach is that he considers

abstract classical groups rather than specif ic recursive represen-
tations of them. A classical group 0393 is computable (in the sense
of Rabin), if there is a recursive set G and a one-to-one function
i ~ s, from G onto 7" such that the number-theoretic function

f(i, j) defined by the formula

is general recursive. The inverse of the function i - s, is called
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an admissible indexing of r. The recursive group (in our sense)
that G = (G, 03BBxy x = y ) forms with f(i, j) and the corresponding
inverse operation is called a recursive realization of r.

Let us call a notation system discrete if its equivalence relation
is simply identity. Any computable group is then isomorphic to
a discrete recursive group, namely any recursive realization of it.

LEMMA 2. A finitely generated discrete recursive group is com-
putable.
We shall omit the proof since the lemma is very similar to

Rabin’s [17, Th. 3]. The idea is that in this case the set of indices
G must be the functional closure of a set of generators by the
finite set of group operations and is thus, by Lemma 1, recursively
enumerable. We obtain a recursive realization of the group by
enumerating G with a general recursive function, as in the proof
of Theorem 1.

Rabin constructs in [17, § 1.5] a finitely generated group
which is not computable. By Lemma 2 this group cannot be
isomorphic to any discrete recursive group.
Theorem 1 shows that the generality we allow for the predicate

x E G is unnecessary for the classical aspects of the theory of
recursive groups. Every countable group is isomorphic to a

recursive group G, where G is recursively enumerable. This is
not the case with the equivalence relation G; if we insist that
it be simply identity, we shall exclude from consideration some
finitely generated groups.

3. Recursive fields

Let us try to define recursive fields after the pattern of Defini-
tion 1. We have to be careful in handling the multiplicative
inverse function, which in the case of fields is undefined at 0.
There are various ways in which partial recursive operators may
be defined on notation systems. We prefer a definition which,
by analogy with the case of partial recursive functions, places
some restriction on the domain.

DEFINITION 4. Let T = (T, ~T), S = ( S, s) be notation

systems and let F(03B11, ..., oc.) be a partial function or operator
defined on some n-tuples of elements of T and taking elements
of S as values. Then F(al, ..., xn) is partial recursive (an n-ary
partial recursive operator from T into S), if there is a partial
recursive function f(x1, ..., xn) such that, whenever a,, ..., an
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are T-indices of al, ..., oc. respectively, then

and

We say then that f(x1, ..., xn) determines F(03B11, ..., exn)’ and we
call any Gôdel number f of f(x1, ..., xn) an index of F(03B11, ..., 03B1n)
(as a partial recursive operator on n variables from T into S).

Intuitively, a partial operator F(ot) from T into S is partial
recursive if there is an algorithm which, when supplied with any
T-index a of ce, terminates if and only if F(03B1) ~ and in that case
produces an S-index of F(ex).

DEFINITION 5. A recursive field is a notation system K = (K, ~K),
together with recursive operators 03B1 + 03B2, -03B1, 03B1  03B2 and a partial
recursive operator 03B1-1 whose domain is all of K except one element
(to be called 0), which satisfy the classical field axioms.
We shall follow the algebraic practice of indicating the field

operations by the symbols +, -, X, -1 in all fields. When there
is a possibility of confusion we shall use superscripts +K, 2013 K

etc. Similarly for the additive and multiplicative identities 0
and 1, or 0K and 1 K.
The requirement that ce-1 be a partial recursive operator

prohibits division by 0 in a very strong sense; the multiplicative
inverse algorithm will not terminate if supplied with an index
of 0. Because of this we cannot show that every countable field
is isomorphic to a recursive field after the trivial fashion of
Theorem 1. We shall only give an outline of this proof, which is
a routine formalization of Van der Waerden’s arguments in

[21, § 42].

THEOREM 2. Every countable field is isomorphic to a discrete
recursive field.

PROOF. Let r be the given field. We choose a (possibly finite)
sequence 81, s2, ... of elements of P such that the subfields of
0393 defined by

To = the prime field of 0393,
0393n+1 = 0393n(sn+1) = the smallest subfield of T containing both
rn and sn+1,
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form a strictly increasing (0393n  rn+1), possibly finite, sequence
of fields whose union is F.
The plan of the proof is to define a strictly increasing sequence

of sets Ko Ç K1 Ç , ... such that with suitabIe operations each
Kn will be a discrete recursive field isomorphic to r n. Then
K = U,,K. will be a discrete recursive field isomorphic to 0393.

(Though each Kn will be recursive, K will not in general be recur-
sive.)
To start the inductive definition, we find a recursive set Ko,

and a one-to-one function ~0 from Ko onto .ho, such that

if x E Ko and x ~ 0, 1, then x is of the form 2 - 3y (y ~ 0),

Ko with suitable operations is a discrete recursive field
isomorphic to Fo by ~0,

If F has prime characteristic p, Fo is finite and the construction
of Ko is trivial. If r has characteristic 0, Po is isomorphic to the
rational numbers. In this case we define Ko using a suitable
indexing of the rational numbers and the function r(x) of (1.1).
Assume now that we have defined Ko, ..., Kn such that

each Ki, with suitable operations, is a recursive field

isomorphic to ri by some ~i : Ki -+ Fi,
the isomorphism ~i : Ki ~ 0393i is the restriction of

~i+1 : Ki+1 ~ ri+l to Ki, for 0 ~ i ~ n-1.

The additional properties that the sets Ki have will become ap-
parent from the construction of Kn+1.·
Except for the trivial possibility that the union of ho, ..., hn

is already the whole of T, there are two cases.

CASE 1. 17.,, is an algebraic extension of 0393n. In this case, there
is a polynomial

with coefficients in 0393n, irreducible in rn, which has sn+1 as a
root. 0393n+1 is isomorphic to the field of polynomials
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with coefficients in rn, with the ordinary polynomial operations
performed modulo P(03BE).

’V!e can represent a polynomial by the sequences of its coef-
ficients. Since the coefficients here are in the field Fn’ we may
use the natural numbers in Kn that correspond to these coef-
ficients by ~n. To represent a finite sequence of numbers

xo, ..., xn by a single number we use Kleene’s

where po, pi , ... is the sequence of prime numbers with po = 2.
Let to, ..., tx E Kn be such that (i)0~i~k~(ti) = t,. Let

We extend ~n(x) to the members of Kn+1-Kn by

where x, x0, ..., xk-1 satisfy the second disjunct of the right side
of (3.6 ).

CASE 2. Fn+l is a transcendental extension of F’n. In this case
the field 0393n+1 is isomorphic to the field of rational functions over
0393n. Each rational function can be represented uniquely as the
quotient P(03BE)/Q(03BE) of two polynomials, if we agree that the

leading coefficient of Q(E) is 1 and that P(03BE) and Q(03BE) are relatively
prime. Using the same method of indexing as before, we define

(3.7) x e K,.+, = x E Kn v [x is of the form
n+2, 1, x0, ..., xk&#x3E;, y0,..., y,.», where

(i)0~i~k xi ~ Kn &#x26; xk ~ 0 &#x26; (j)0~j~myj ~ Kn &#x26; ym = 1 &#x26;

k-E-m &#x3E; 0, and the polynomials ~n(x0)+~n(x1)03BE+ ... +
~n(xk)03BEk and ~n(yo)+~n(y1)03BE+ ... +~n(ym-1)03BEm-1+03BEm are
relatively prime over 7B].

The condition k+m &#x3E; 0 prevents us from re-indexing an element
of hn inKn+1 as a quotient of its index in Kn by 1. The isomorphism
~n+1(x) is defined in the obvious way.

It remains to show that each K n is a recursive set and a recursive
field under the operations of rn transferred by the isomorphism.
We can do this inductively following the scheme suggested by
Van der Waerden.
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In Case 1, the members of Kn+i represent polynomials with
coefficients in Kn . We perform the field operations by first

operating with the polynomials in the usual way and then reducing
the result modulo the defining irreducible pôlynomial of the ex-
tension. It is clear from [21, Sec. 32] that this can be done ef-
fectively if we know the defining polynomial. On the other hand,
because of our indexing, we can find effectively from any x E Kn+1
the defining polynomial of the extension by looking at (x)1.

In Case 2, the elements of Kn+1 represent rational functions
over K n which we can add, subtract, multiply or divide ef-

fectively in the usual fashion, if the field operations are effective
on Kn . The fact that we can always reduce the result to the
quotient of two relatively prime polynomials follows from [21,
Sec. 18]. It is shown there (essentially) that the Euclidean al-
gorithm for polynomials over a discrete recursive field is recursive.
The same remarks apply to the inductive proof that K n is a

recursive set. We shall not present the details of these computa-
tions, which add nothing to Van der Waerden’s intuitive ar-
gument.
To show that K = U nKn is a recursive field, we only need

notice that, for all x,

Thus, given x, y E K, wé can operate on them with the operations
Of Kmax[(x)0,(v)0]-1.

It is clear that in most situations the set K will not be recursive,
or even recursively enumerable. For each n, let Un be the index
of the element e of l’n in Kn (here e represents either a polynomial
or a rational function over 0393n-1, depending on whether rn is an
algebraic or transcendental extension of 0393n-1). The function
1p(n)=(un)1 gives us a certain measure of the degree of unsol-
vability of K. In particular, if 1p(n) is recursive, then K is recursively
enumerable. 1p(n) clearly depends on the initial choice of the

sequence sl, s2, ... that we made in the proof. It might be
interesting to study in what way the different 1p(n)’s that are
possible for a given field determine the "non-constructivity" of
the field.

REMARK. Let To be the prime field of T, L1 the algebraic closure
of the extension of 03930 by countably many indeterminates. Rabin’s
[17, Th. 7] implies that L1 is isomorphic to a discrete recursive
field. Since 0393 is imbeddable in L1, r is itself isomorphic to a
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discrete recursive field. (This argument was suggested to us by
Rabin). Our much longer elementary proof defines, in effect, a
canonical imbedding of 0393 into 4.
Rabin in [17] calls a field computable, if it is isomorphic to a

discrete recursive field K = (K, Àzy z = y ) with K recursive.
Using the next lemma we shall construct a countable field which
is not isomorphic to any recursive field K = (K, ~K) with K
recursively enumerable.

LEMMA 3. For each n ~ 0, let a n = pn, where po, p1, ... is
the sequence o f primes. Let F-1 be the field o f rational numbers.
For each n ~ 0, let l’n = 0393n-1(an) = the smallest subfield o f the
real numbers containing ao, ..., an. For each n, let 0394n = F-1 (a,,, ...,
an-l’ an+1, an+2, ... ) = the smallest subfield o f the real numbers
containing the square root of every prime except (perhaps) Pn.

(a) I f m  k, then ak 0 0393m.
(b) For every n, an ~ 0394n.

PROOF. We shall prove (a) by contradiction. Let k be the
smallest number with the property ak E 0393k-1, and for that k
let m be the smallest number such that ak E 0393m.

It is easy to verify that, for distinct prime numbers qo,..., qn,
the equation

has no rational solution in e.
Since for every n, an is irrational, m &#x3E; 0. Since the equation

Fm = F.-j contradicts the choice of m, Fm is an extension of
degree two over 0393m-1, and hence ak E Fm implies

If a e 0, we can square (3.9) and solve for am ,

But (3.10) contradicts the choice of k. So a = 0, and

Let mi be the smallest number such that p E Fmi. By (3.8)
o ::;: 1nl  m, and by an argument similar to the above
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If (Xl =1= 0, we can solve for am 1 as in (3.10) and contradict the
choice of k; thus 03B11 = 0 and

Applying (3.8) again and continuing in the same fashion, we
reach a contradiction in at most m steps.
To prove (b), we notice that an ~ 0394n implies that for some

where 03B2 ~ 0 and oc, P E 0393-1 (ao, ..., a.-,, an+1, ..., am-1). By
(a), n  m; solving (3.14) for am , we contradict (a).
We can now define in the following way a field which is -not

isomorphic to any recursive field K = (K, ~K) with K recursively
enumerable.
Let A be any set of natural numbers such that the predicate

x e A is not expressible in the form (u)(Ev)R(u, v, x) with
R(u, v, x) recursive; for example we may take

Let xo, xl, ... be some enumeration of A, and define

By Part (b) of the lemma,

(3.16 ) x e A = ax e F ~ the polynomial 03BE2-px has a root in r,

and on taking negations

Now assume that 0393 is isomorphic to some recursive field
K = (K, ~K), with K recursively enumerable,

Let g+(u, v), g-(u), gx(u, v ) and g-i(u) be partial recursive func-
tions which determine the field operations of K, let ko and k1
be K-indices of the 0 and the 1 of K.
We can enumerate effectively the "K-natural numbers" of any

recursive field K by means of the recursive function
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The equivalence (3.17) can now be stated as

Using the fact that the multiplicative inverse function is a partial
recursive operator undefined at 0,

This last equivalence implies that x o A is expressible in the
form (u)(Ev)R(u, v, x), with R(u, v, x) recursive, which contradicts
our assumption about A.

It is clear how this counterexample can be modified (by
raising the degree of unsolvability of x e A ) to produce fields
that cannot be isomorphic to any recursive field K = (K, ~K)
with a specified degree of unsolvability for u e K. These counter-
examples make strong use of our requirement that â 1 be a
partial recursive operator undefined at 0. If we had placed no
restriction on the behaviour of the algorithm g-,(u) for input an
index of 0, we could prove by the method of Theorem 1 that any
countable field is isomorphic to a recursive field (in this sense)
K = (K, ~K) with K recursively enumerable.
Here again the comments following Theorem 1 are relevant.

Moreover, the representation of a given field in the fashion

outlined in the proof of Theorem 2 is usually very hard and void
of implication. This is the case, in particular, for recursive ordered
fields which are of special interest to us.

LEMMA 4. The notation system R = (R, ~R) for the recursive
real numbers is a recursive field under the usual operations.
We shall omit an explicit construction of the partial recursive

functions that determine the field operations. The idea of the
proof is that the field operations are computable on the rational
numbers, and that the proofs of the classical theorems

(where * can be +, -, X or ) are constructive (see [18, Th. 4]
and [5, § 3 Satz 7, § 6 Satz 3]).

ln the sequel f+(x, y), f_(x), f(x, y) and f-1(x) will be specific
partial recursive functions that determine the field operations as
recursive operators on R. (In fact we may take the first three to be
primitive recursive, and f_i(z) to be the restriction of a primitive
recursive function to a recursively enumerable set.)
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4. Recursive ordered fields

One of the fundamental properties of the field of real numbers
is that it is an ordered field; in fact it contains an isomorphic
copy of every archimedean ordered field. In this section we shall
prove the corresponding statement about "recursive ordered
fields".

Let us first note in what sense the ordering a  03B2 is constructive
on the notation system R.

LEMMA 5. There is a partial recursive function less (x, y) such
that, f or any R-indices a and b o f recursive real numbers a and fl,

PROOF. We first verify that r(x)-r(y) &#x3E; 2-z+l is a primitive
recursive predicate of x, y, z, and then set

(This lemma is essentially equivalent to Rice’s [18, Th. 1].)
Thus we have an algorithm which, when applied to any R-

indices of two recursive real numbers ce and 03B2, terminates if and
only if ce  fl. This does not give us a decision procedure for the
predicate a  fl; in fact no such decision procedure exists (see
Lemma 9). Nevertheless predicated with this property on R
resemble in many ways recursively enumerable predicates of
natural numbers. We shall state the definitions for an arbitrary
notatiQn system.

DEFINITION 6. (a) A predicate P(03B11, ..., an ) defined on n-tuples
of elements of a notation system T is listable (on T), if there is a
partial recursive function f(x1, ..., xn) such that, for every n-
tuple al, ..., an of T-indices of oc,, ... oc. respectively,

We say then that f(x1, ..., xn) determines P(03B11, ..., oc.) and we
call any Gôdel number f of f(x1, ..., xn) an index of P(03B11, ..., 03B1n)
(as a listable predicate of n variables on T).

(b) P(03B11, ..., 03B1n) is recursive (on T) if both it and its negation
are listable on T.

By a routine construction, we can establish:

LEMMA 6. (a) A predicate P(03B11, ..., 03B1n) is listable on T i f and
only i f the set of n-tuples of elements of T on which it is true is the
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domain o f some partial recursive operator from T into N =

(N, 03BBxy x = y).
(b) A predicate P(XI’ ..., 03B1n) is recursive on T if and only if its

characteristic operator

from T into N is recursive.

DEFINITION 7. A listable (linear, irreflexive) ordering of a nota-
tion system T is a predicate 03B1  03B2 listable on T which satisfies
the classical axioms for a linear, irreflexive ordering, i.e. for all

03B1, 03B2, 03B3 ~ T, 03B1 ~ 03B2 ~ 03B1  03B2 v 03B2  03B1 and 03B1  03B2 &#x26; 03B2  03B3 ~ 03B1  03B3.
DEFINITION 8. A recursive ordered field (ROF) is a recursive

field K together with a listable ordering 03B1  03B2 of K such that,
for all ce, f3, y e K,

A K-rational number of a ROF is any element of the prime
field of K. We call K archimedean if it has no elements greater
than all the K-rational numbers.

It is clear that R forms an archimedean ROF with the usual

ordering.
THEOREM 3. Let K be an archimedean ROF. There is a recursive

operator F : K - R which is a one-to-one order-preserving iso-
morphism o f K with a subfield o f R.

PROOF. The usual proof of the corresponding classical result
is constructive and goes through in our case. We shall outline
some of the details.
Let g+(u, v), g-(u), gx(u, v) and g-,(u) be partial recursive

functions which determine the field operations on K, let ko and
k, be K-indices of the 0 and the 1 of K. We capture the "K-
natural numbers" using the recursive function nK(x) defined by
(3.19.a) and (3.19.b). If nx is the equivalence class of nK(X) in
K, we can show as a consequence of the other properties (4.3.a)
and (4.3.b) that

To capture the K-rational numbers, we define the recursive
function



59

If pf is the equivalence class of pK(x) in K, we can show as a
consequence of (4.4) and the properties of the function r(x) that

and that the funetion ~(rx) = Px is an isomorphism of the field
of rational numbers with the prime field of K.
An element of a linearly ordered set is, of course, completely

determined by its position in the ordering relative to any subset
"dense in the ordering". Since K is archimedean, the K-rational
numbers form such a set. Since the ordering is listable, we can
effectively determine the position of any element of K relative
to the K-rational numbers and then find the corresponding
element of R using the functions 03C1K(x) and r(x). This is the idea
behind the formula below.
Let lessK(u, v) be a partial recursive function with Gôdel

number lessK which determines the listable ordering of K. Let

It is easy to verify that f(u) determines a recursive operator

from K into R, and that this operator is the required order-
preserving isomorphic imbedding.
COROLLARY 3.1. (a) A countable field o f real numbers is order-

isomorphic to some RO F i f and only i f all its elements are recursive
real numbers.

(b) There are countable ordered fields which are not isomorphic
to any ROF.

PROOF. Let R1 be a denumerable subfield of the real number
.9 order-isomorphic to a ROF K by G : é9i - K. Then K
is necessarily archimedean. If F : K - R is the recursive im-
bedding of K into the field of recursive real numbers supplied
by the theorem, the composite mapping F o G : .91 ~ R is an order-
preserving isomorphism of R1 into R. Since it is easy to verify
that the only order-preserving isomorphism of one subfield of à
into another is the identity, 91 must be contained in R.
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To prove (b), we choose a countable field R2 of real numbers
which contains a square root of every positive member of itself,
and which is strictly larger than R. Any field isomorphism
H : fJt2 - é9 is order-preserving, since for a &#x3E; 0,

Thus 92 cannot be isomorphic to any ROF; for then it would
be isomorphic to a subfield of R and thus order-isomorphic to a
proper subfield of itself, which is impossible.
DEFINITION 9. A set A of elements of a notation system

T = (T, -qr ) is recursively enumerable (on T), if there is a recur-
sively enumerable set We such that

and, for all oc E T,

We say then that We determines A and we call e an index of A
(as a recursively enumerable subset of T). If T itself (as the set
of its equivalence classes) is recursively enumerable, we call T a
recursively enumerable notation system.

It is easy to verify (as in the proof of Theorem 1) that a group
is computable if and only if it is isomorphic to a recursively enu-
merable discrete recursive group. Similarly, a field is computable
if and only if it is isomorphic to a recursively enumerable discrete
recursive field. By analogy we call a countable ordered field

computable if it is isomorphic to a recursively enumerable discrete
ROF.

In order to show that the recursive real numbers do not form
a computable ordered field, we need the following constructive
version of Cantor’s theorem on the non-enumerability of the set
of real numbers.

LEMMA 7. There is a primitive recursive function tr(e) such that,
if W8 C R, then tr(e) e Rand [tr(e)]R does not belong to the recur-
sively enumerable set of elements o f R determined by W8, i.e.

In particular, R is not a recursively enumerable notation system.
We could give an elementary proof of this lemma by translating

Cantor’s diagonal argument into the formalism of recursive
functions. (A convenient way of doing this is outlined in [2, p. 28]. )
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A complete proof of a more general theorem will be given in
our [12].
Now assume that R is isomorphic to a ROF K = (K, ~K),

where K is recursively enumerable. The natural imbedding
F : K - R must be onto R, since R has no non-trivial auto-

morphisms. If f (u ) determines F(03B1), the set A = f(K) is recursively
enumerable and determines R as a recursively enumerable notation
system, contradicting Lemma 7. In particular, R is not a com-
putable ordered field. (Dudley’s [2, pp. 28-29] is referring to
this result, if we understand it correctly. )

5. Recursive completeness

Two recursive fields KI and K2 are recursively isomorphic, if
there is a recursive operator F : Ki - K2 which is a classical

isomorphism and whose inverse F-1 : K2 -+ KI is also a recursive
operator; F, in this case, is a recursive isomorphism. If K, and
K2 are ROF’s, we further require F to be order-preserving.
We saw that for every archimedean ROF there is a natural

recursive imbedding F : K ~ R which is an order-preserving
isomorphism of K with a subfield of R. Two questions arise
naturally:

(A) Under what conditions is F onto R, so that K is classically
isomorphic to R?

(B) Under what conditions is F a recursive isomorphism, so
that K is recursively isomorphic to R?
The answers we shall give to (A) will give a characterization

of thé set of recursive real numbers; the answers to (B) will
further characterize the particular notation system R.
The corresponding classical problem is solved by requiring the

given ordered field to be complete, either order-complete or Cauchy-
complete. We shall constructivize these concepts and prove similar
results.

DEFINITION 10. A sequence 03B10, 03B11, ... of elements of a notation

system T is recursive, if there is a general recursive function f(x)
such that, for all x, 03B1x = [f(x)]T. We say then that f(x) determines
the sequence, and we call any Gôdel number f of f(x) an index
of the sequence.
For a fixed archimedean ROF K, let 2-1 be the K-rational

number that corresponds to 2-t, i.e.
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DEFINITION 11. (a) A sequence 03B10, 03B11, ... of elements of an

archimedean ROF K is recursively Cauchy, if there is a general
recursive function g(t) such that, for all X, y, t,

We then call g(t) a recursive Cauchy criterion for 03B10, 03B11, ...,

and we call any Gôdel number g of g(t ) an r. c. index of 03B10, oc,, ....
(b) If oco, al, ... is a sequence of elements of an archimedean

ROF, limx~~ ax = ?, if for every t, there is an m such that, for
all x,

(c) An archimedean ROF is weakly recursively complete, if every
recursive recursively Cauchy sequence of elements of K has a
limit.

(d) An archimedean ROF K is (strongly) recursively complete,
if there is a partial recursive function cK( f, g) (a completeness
function for K) such that, if f is an index of a recursive sequence
of elements of K with r.c. index g, then cK(f, g)~, cK(f, g) eK and
limx~~ [f(x)] = [cK(f, g)]K_

LEMMA 8 (Rice’s [18, Th. 5]). R is recursively complete.

PROOF.

THEOREM 4. Let K be an archimedean ROF. Il K is weakly
recursively complete, then the natural imbedding F : K - R is onto
R, so that K is classically isomorphic to R. I f K is recursively com-
plete, then F : K ~ R is a recursive isomorphism.

PROOF. A recursive real number xR is the limit of the recursive

recursively Cauchy sequences of rational numbers r({x}(0)),
r({x}(1)), .... The corresponding sequence 03C1K{x}(0), 03C1K{X}(1), ... of
elements of K is recursive and recursively Cauchy. If K is

weakly recursively complete, this sequence must converge to

some a E K; we may easily verify that F(x) = iK.
For the second statement we need to find a K-index of this «

recursively. We can do this by setting

It is now easy to verify that g(x) determines a recursive operator
G : R ~ K which is the inverse of F : K ~ R.

Classically an ordered field is order-complete, if every non-void
bounded subset of it has a least upper bound. We have some
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difficulty in constructivizing this concept because of the following
fact, which Markov [10, Th. 8.1] credits to some E. M. Levinson. 3

LEMMA 9. No non-trivial predicate P(03B1) defined on the recursive
real numbers is recursive on R. 4
The result of Lemma 9 generalizes trivially by induction to

predicates of n variables. In particular, R cannot be ordered by
a recursive predicate.
A set A of elements of a notation system is listable (recursive),

if the corresponding predicate 03B1 ~ A is listable (recursive).
LEMMA 10. Let K be an archimedean ROF. Il every non-void

recursive subset o f K has a least upper bound, then the natural
imbedding F : K - R is onto Rand K is isomorphic to R. I n

particular, this is true i f K has no recursive subsets.

PROOF. By contradiction. Assume that the recursive real number
oeo is not in the range of F(03B1). The subset {03B1 E K : F(ex)  oeo) of
K is then recursive and has no least upper bound.

This result is weaker than the corresponding Theorem 4 in the
approach through Cauchy sequences, since we cannot in general
prove that F(03B1) has a recursive inverse. Requiring the passage
to the least upper bound of a non-void, bounded recursive set to
be effective will not remedy the situation, since in general K will
not have any recursive subsets. We could get around this dif-
ficulty by restricting attention to sets of K-rational numbers, or
by giving a weaker definition of recursiveness for subsets of K.
We prefer an alternative approach, which we have found useful
in similar situations.
The position of an element in a linearly ordered set completely

characterizes the element; no other member of the set has exactly
the same order relation to every member of the set. Classically,
this is a trivial observation. The constructive version of this

property of linear orderings is not trivial.

DEFINITION 12. Let T be a notation system listably ordered by
a - P. We say that a  03B2 describes T, if there is a partial recursive
function (a description function) de(f) such that, if for all x E T
and some a E T,

3 The proof outlined by Markov depends on some rather deep properties of
recursive real functions, i.e. recursive operators from R into R. Lemma 9 follows
almost trivially from [12, Th. 2].

4 Turing [20, § 10 (v)] proves that every recursive subset of R which defines
a Dedekind eut has a least upper bound, apparently unaware of the fact that no
such subsets of R exist.
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then de(f)~, de( f ) e T and [de(f)]T = a.
Intuitively, T is described by its ordering if, from the knowledge

of the position of an element in the ordering, we can effectively
find an index of the element.

LEMMA 11. R is described by its natural ordering.

PROOF. Let p(x) = pR(x), and set

LEMMA 12. Let K be an archimedean ROF described by its ordering
03B1  03B2 and such that the natural imbedding F : K ~ R is onto R.
Then F has a recursive inverse, and thus K is recursively isomorphic
to R.

PROOF. Let deK(f) be a description function for K, f(x) a function
with Gôdel number f which determines the operator F : K ~ R,
and less (x, y) a partial recursive function with Gôdel number
less which determines the listable ordering on R (Lemma 5). We
can easily verify that, for every a e R and a e 03B1,

We combine Lemmas 10 and 12:

THEOREM 5. Up to recursive isomorphism, R is the only ar-chimedean RO F which has no recursive subsets and is described by
its ordering.
From our point of view, this theorem gives a better characteriza-

tion of R than Theorem 4, since it avoids all topological as-
sumptions. This possibility of substituting constructivity as-

sumptions for topological axioms is not an isolated peculiarity
of this situation, but rather a general rule. In our [14] we plan
to discuss the relation between the topological and the recursive
structure on a notation system. We show there that on every
notation system there is a natural (recursive) topology, which in
most cases of interest coincides with the topology we would
naturally put on the notation system from structural considera-
tions. A notation system with no recursive subsets is "connected"
in this topology.
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6. Notation systems for the recursive real numbers

We initially chose the notation system R to represent the
recursive real numbers, because its definition was a natural
constructivization of the classical introduction of real numbers
as Cauchy sequences of rational numbers. We next define notation
systems Rd and Rd, which similarly constructivize the approaches
to real numbers through decimal expansions and Dedekind cuts
respectively (for F, cf. (1.9 ) ).

LEMMA 13. (a) There is a primitive recursive function fd(x) such
that: Il x e Rd, then fd(x) e R, and

Moreover, f or every recursive real number oc, there is an x E Rd
such that oc = [fd(x)]R.

(b) There is a primitive recursive function fdc(x) such that: If
x e Rd,, then fdc(x) e R, and for all u

Moreover, for every recursive real number oc, there is an x E Rd,,
such that ex = [fdc(x)]R.

PROOF. For an explicit construction of fd(x) and fdc(x), see

[2, Ch. 3]. The second statements of both (a) and (b) are con-
sequences of Robinson’s equivalence theorem [19, 18].
We define equivalence relations on the sets Rd and Rd, by

Now fd(x) determines a recursive operator Fd(03B1) which maps
Rd = ( Rd , "’Rd) one-to-one onto R; likewise, fdc(x) determines
a recursive operator Fdc(03B1) which maps Rdc = (RdC’ ~Rdc)
one-to-one onto R. We show that neither of these recursive

operators has a recursive inverse.
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LEMMA 14. (a) There is no partial recursive function f(x) such
that, for every x E R, f(x)~, f(x) e Rd and

(b) Similarly, with Rd,, fdc in place ol Rd, fd.

PROOF. To prove (a) by contradiction, assume that f(x) is a
partial recursive function, with Gôdel number f, such that if
x e R, then f(x)~, f(x) e Rd and i’ = [fd(f(x))]R. Let

where s ~ s(m) ~ 03BCu[T1(f, m, (u)o) &#x26; T1((U((u)0)2, 1, (U),) 1 -
By Kleene’s second recursion theorem [6, § 66], there is a

number m such that, for all t, g(m, t) ~ {m}(t). Then by the
definition of g(m, t), m e R, and thus by assumption f(m)~ and
(f(m»)2 e F, which together imply that s N s(m).J.. Thus for
t ~ s, one of the last two clauses in the definition of g(m, t) must
apply, and hence mR =1=- J. CASE 1: mR  1 2. Then {(f(m))2}(1) ~ 4.
Thus, since {(f(m))2}(1) = U«’8)1)1 the second clause of the

definition of g(m, t) applies for t ~ s, so faR &#x3E; il contradicting
the case hypothesis. CASE 2: rn R &#x3E; J. Similarly.
The proof of (b) is similar. (Another proof of this lemma

is given in [2, Ch. 8].
Lemma 14 asserts that the notation systems Rd and Rd, are

"stronger" than R. From an Rd-index of a recursive real number
we can effectively find an R-index of the real number, but not
inversely. We shall prove that neither of these notation systems
is a recursive field under the ordinary operations on real numbers.
A set A of recursive real numbers is additively generating, if

there is a recursive function h(x) (an additively generating function
for A) such that, if x e R, then h(z) = u, v) where u, v e R,
isR, vR e A and iR = uR+vR (for u, v), cf. (S.5»).

Intuitively, A is additively generating, if every recursive real
number can be effectively written as the sum of two members
of A.

LEMMA 15. The complement o f a recursively enumerable subset o f
R is additively generating.
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PROOF. This is a direct consequence of Lemmas 1 and 7.

Let f+(x, y) and f_(x), with Gôdel numbers t. and f_, be as in
Lemma 4, and choose m so that Wm = {f+, 2&#x3E;, f-, 1&#x3E;}. Let
A be a recursively enumerable subset of R, determined by W 8.
Let

and set h(x) = u, v), where

If x E R, the set Wfc(t h1(x, t), m) is a subset of R, since it is the
functional closure of We u (z) by the functions f+ and f_. Thus it
determines a certain recursively enumerable set B of elements
of R. By Lemma 7, u ~ R and ÜR ,p B; in particular, ÜR ,p A, and
there is no recursive real number e E A such that ùR = iR_E.
Thus vR = XR-ÜR ,p A and the proof is complete.
A set A of elements of a notation system T = (T, ~T) defines

in a natural way a notation system (A, ""’A)’ where

In accordance with the remarks preceding Definition 2, we use
the same symbol A for this natural sub-notation system o f T
de f ined by A.
A (not neqessarily recursive) operator from T into S is recursive

on the subset A o f T, if it coincides on A with a recursive operator
from the- natural sub-notation system of T defined by A into S.

LEMMA 16. Let K be a recursive group, and let G(03B1) be an

operator from R onto K which is an isomorphism of the abelian
group of recursive real numbers with K. If G(a) is recursive on
some additively generating subset of R, then it is a recursive operator.
PROOF. Let A C R have generating function h(x), let gA(x)

determine G(03B1) as a recursive operator from A into K, and let
g+(u, v) determine addition on K. G(03B1) is determined from R
into K by

THEOREM 6. (a) Addition of real numbers is not a recursive
operator on either Rd or Rd,; in particular neither o f these notation
systems is a recursive field under the ordinary operations on real
numbers.
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(b) Let A be a subset o f R, and define the notation system
RA = ( RA , ~RA) by
(6.8.a) RA = {(x, y) : x ~ R &#x26; [[xR ~ A &#x26; y = 0] v [xR ~ A &#x26; y = 1]]},
(6.8.b) x~RA y ~ x ~ RA &#x26; y ~ RA &#x26; (x)0~R (y )o .
The function fRA(x) = (x)0 determines a recursive operator FRA(03B1)
which is one-to-one on RA onto R. Il either A or its complement is
additively generating, then addition o f real numbers is not a recursive
operator on RA.

PROOF. To prove (a), we first show by an elementary construc-
tion that the inverses of Fd(03B1) and Fdc(03B1) are both recursive on
the set of irrational recursive real numbers. This set is additively
generating by Lemma 15. Thus, if Rd and Rd, were recursive
groups, Lemma 16 would imply that Fd(03B1) and Fdc(03B1) have
recursive inverses, contradicting Lemma 14. (b) follows directly
from Lemmas 14 and 16. (Another proof of (a) is in [2, Ch. 4
Th. 1].)
Theorem 6 shows that the most obvious attempts to construct

a recursive ordered field K which is classically but not recursively
isomorphic to R fail. In particular, we cannot force an additively
generating subset A of R to be recursive and still retain the

computability of addition.
We showed that the complement of a recursively enumerabie

set is additively generating. Actually Part (b) of the theorem
covers many interesting cases besides the recursively enumerable
sets. Instead of "additively generating" sets we can define sets
generating with respect to (any function) F(03B11, ... oc.) and prove
the analog of Lemma 16 in the same way. If F(03B11, ... oc,,) is

expressible in terms of the field operations and A is generating
with respect to F(03B11, ..., oc.), then RA (as defined by (6.8.a)
and (6.8.b)) cannot be a recursive field. It can be shown ([13,
Th. 1]) that any listable subset A of R is generating with respect
to the function F(03B1, 03B2) = (03B1-03B10)/(03B2-03B10) where ao E A. Thus the
notation system RA cannot be a recursive field if A is listable.

THEOREM 7. There is an archimedean ROF K which is classically
but not recursively isomorphic to R.

PROOF. Let uo, ul, ... be an enumeration without repetitions
of some immune set 1,6 and let vo, vl, ... be an enumeration of

5 A set of natural numbers is immune if it is infinite and has no infinite recursively
enumerable subsets. See [16] for the construction of some immune sets (as com-
plements of simple sets), or [1] where the concept is isolated and studied.
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some subset Ro of R which contains at least one R-index of
every recursive real number. Let E be the functional closure of

the set {u0, vo), u1, v1&#x3E;, ...} by the set of functions {5x7v, 11x,
13x17v, 19x}. Using the recursion theorem, we can define a partial
recursive function f(x) such that, for all x and y,

We define K by

We can easily show, by induction on the form of definition of
K, that if x E K then f(x) E R. This induces an equivalence relation
on K,

The function f(x) determines a one-to-one recursive operator
F(ot) from K = (K, ~K) onto R. The functions g+(x, y) = 5:1:7f1,
g_(x) = llx and g (x, y) = 13x17v determine recursive operators
from K into K, and the function g-1(x) ~ 19x+0 · f-1(f(x))
determines a partial recursive operator from K into K, with which
K is a recursive field, isomorphic to R by F(03B1). The ordering
03B1  03B2 = F(«)  F(03B2) makes K into a ROF, order-isomorphic
to R by F(a).
We- want to show that K is not recursively isomorphic to R.

Since R has no non-trivial automorphisms, it is enough for this
purpose to verify that F(03B1) does not have a recursive inverse.
For each x e E we define a finite subset S(x) of the immune

set I by the inductive clauses,

We can easily verify that, for every recursively enumerable
subset We of E, the set S(We) = ~x~W. S(x) is recursively
enumerable. Since it is a subset of the immune set I, it must be
finite.

Let A be a recursively enumerable subset of K, determined by
We C K C E. If un1, ..., Un are the finitely many members of
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S(We), A is contained in the subfield of K generated by
{[un1, vn1&#x3E;]K, ..., [unk, vnk&#x3E;]K}. Thus, F(A) is contained in
the field of recursive real numbers generated by {vnn1, ..., vRnk}.

If F(03B1) has a recursive inverse, then for each recursively
enumerable subset B of R, the set A = F-1(B) is recursively
enumerable in K. For if g(x) determines F-1(03B1) and Wm determines
B, then the recursively enumerable set g(Wm) determines A on K.
By the preceding remarks it will suffice to exhibit a recursively
enumerable subset of R which is not contained in any subfield
of R generated by finitely many elements. Using a routine con-
struction and Lemma 6, we can show that the set {p0, p1,...}
has this property.

BIBLIOGRAPHY

J. C. DEKKER

[1] Maximal dual ideals in Boolean algebras, Pacific J. Math. vol. 8 (1958) pp.
732014101.

R. M. DUDLEY

[2] Computable real functions, Honors Thesis, Harvard University, 1959.

A. FRÖHLICH and J. C. SHEPHERDSON

[8] Effective procedures in field theory, Philos. Trans. Roy. Soc. London, ser. A,
vol. 248 (1955-56) pp. 4072014482.

L. M. GRAVES

[4] The theory of functions of real variables, New York-Toronto-London (McGraw-
Hill) 1946, second edition 1956.

D. KLAUA

[5] Konstruktive Analysis, Berlin (Veb. Deutscher Verlag der Wissenschaften)
1961.

S. C. KLEENE

[6] Introduction to metamathematics, Amsterdam (North Holland), Groningen
(Noordhoff), New York and Toronto (Van Nostrand) 1952.

[7] On the form of predicates in the theory of constructive ordinals (second paper),
Amer. J. Math. vol. 77 (1955) pp. 405-428.

S. C. KLEENE and E. L. POST

[8] The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. vol.
59 (1954) pp. 3792014407.

G. KREISEL, D. LACOMBE and J. R. SCHOENFIELD
[9] Partial recursive functionals and effective operations, Constructivity in mathematics

Amsterdam (North Holland), 1959, pp. 290-297.

A. A. MARKOV

[10] The continuity of constructive functions (russian), Uspehi Mat. Nauk vol. 61
(1954) pp. 226-230.



71

Y. N. MOSCHOVAKIS

[11] Recursive analysis, S. M. Thesis, Mass. Inst. of Tech. June 1960.
[12] Recursive metric spaces, to appear in Fund. Math.

[13] A note on listable orderings and subsets of R, to appear.
[14] Recursive topologies, in preparation.

J. MYHILL and J. C. SHEPHERDSON

[15] Effective operations on partial recursive functions, Z. Math. Logik Grundlagen
Math. vol. 1 (1955) pp. 3102014317.

E. L. POST

[16] Recursively enumerable sets of positive integers and their decision problems,
Bull. Amer. Math. Soc. vol. 50 (1944) pp. 284-316.

M. O. RABIN

[17] Computable algebra, general theory and theory of computable fields, Trans. Amer.
Math. Soc. vol. 95 (1960) pp. 341-360.

H. G. RICE

[18] Recursive real numbers, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 784-791.

R. M. ROBINSON

[19] Review of R. Péter’s Rekursive Funktionen, J. Symb. Logic vol. 16 p. 280.

A. M. TURING

[20] On computable real numbers with an application to the Entscheidungsproblem,
Proc. London Math. Soc. vol. 42 (1937) pp. 230-265.

B. L. VAN DER WAERDEN

[21] Modern algebra, vol. I, New York (Ungar), 1949.

(Oblatum 4-2-63). University of Wisconsin
Madison, Wis


