
COMPOSITIO MATHEMATICA

P. K. SUNDARARAJAN
On the derivative of a G-function whose argument
is a power of the variable
Compositio Mathematica, tome 17 (1965-1966), p. 286-290
<http://www.numdam.org/item?id=CM_1965-1966__17__286_0>

© Foundation Compositio Mathematica, 1965-1966, tous droits réser-
vés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1965-1966__17__286_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


286

On the derivative of a G-function
whose argument is a power of the variable

by

P. K. Sundararajan

1

In this paper we have established some formulae on the
N-th order derivative of Glnpq(03B2xr|ajbs). The Mellin-Barnes type
integral [2. p. 207] which we have employed is

where an empty product is interpreted as 1, 0 ~ l ~ q, 0  n  p
and the path L of integration runs from -i oo to +i~ so that
all the poles of T(b,-s), j = 1, 2, ... l are to the right and all
the poles of F(1 -aj+ s), j = 1, 2,... n to the left of L. The
formula is valid for p + q  2(1+n) and 1 arg x  (l + n - 1 2p - 1 2q)03C0.
a; - bA =1= 1, t2, ... for j = 1, ..., n and h = 1, ..., l. In the for-
mulae (2.1), (2.2), (3.1), (4.1), (4.8)-(4.5) the conditions men-
tioned as (1.1) are tacitly supposed to be fulfilled. Although the
well known technique is employed, the final result depends on
the fact that in the formula

z, z+1/m, x+2/m, ... are in Arithmetical Progression. The other
formulae used are
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2

The first formula to be proved is

provided r  n and the parameters al, a2, ... a, are in A.P. with
common difference -1/r.
PROOF:

Using (1.1) the L.H.S. of (2.1)

using (1.4) and (1.2) we get

provided r  n and the parameters al, a2, ... a, are in A.P. with
common difference -1 /r.

Putting N = 1 and s = 1 /x we get

where ai , a2, ... ar are in A.P. with common difference -1/r.
Putting r = 1 in (2.1) a result of Bhise [1] follows.
Putting r = 1 in (2.2) we get a known result (2. p. 210].
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The second formula to be established is

provided r  1 and the parameters bl, b2, ... br are in A.P. with
common difference 1/r.

This formula can be derived from (2.1) by using the well-known
property

Putting N = 1 in (3.1) we get

where bl, b2, ... br are in A.P. with common difference 1/r.
Putting r = 1 in (3.1) and (3.2) two results of Bhise [1] follow.

4

The third formula sought to be established is

provided p-r+1 &#x3E; n and the parameters ap-r+1, ... ap are

in A.P. with common difference 1/r.

PROOF: Using (1.1) the L.H.S. of (4.1) becomes
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Using (1.3) and (1.2) we get after little simplification (4.2) to be

The fourth formula is

provided q - r + 1 &#x3E; l and the parameters bq_,,+l... bq are in

A.P. with common difference -1/r.
The proof can be adduced on lines similar to (4.1).
Putting N = 1 and x = 1/x in (4.2) we get

Putting N = 1 in (4.3) we get

1 wish to express my thanks to Dr. V. K. Varma for suggesting
the problem and for his help and guidance in the preparation
of this paper.
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