Compositio Mathematica

P. K. Sundararajan

On the derivative of a G-function whose argument is a power of the variable

Compositio Mathematica, tome 17 (1965-1966), p. 286-290
http://www.numdam.org/item?id=CM_1965-1966__17__286_0
© Foundation Compositio Mathematica, 1965-1966, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

On the derivative of a G-function whose argument is a power of the variable

by
P. K. Sundararajan

1

In this paper we have established some formulae on the N-th order derivative of $G_{p q}^{2 n}\left(\left.\beta x^{r}\right|_{b s} ^{a j}\right)$. The Mellin-Barnes type integral [2. p. 207] which we have employed is
(1.1) $G_{p q}^{l n}\left(x \left\lvert\, \begin{array}{l}a_{1} \ldots a_{p} \\ b_{1} \ldots b_{q}\end{array}\right.\right)=\frac{1}{2 \pi i} \int \frac{\prod_{j=1}^{i} \Gamma\left(b_{j}-s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+s\right)}{\prod_{j=l+1}^{q} \Gamma\left(1-b_{j}+s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-s\right)} x^{s} d s$
where an empty product is interpreted as $1,0 \leqq l \leqq q, 0 \leqq n \leqq p$ and the path L of integration runs from $-i \infty$ to $+i \infty$ so that all the poles of $\Gamma\left(b_{j}-s\right), j=1,2, \ldots l$ are to the right and all the poles of $\Gamma\left(1-a_{j}+s\right), j=1,2, \ldots n$ to the left of L. The formula is valid for $p+q<2(1+n)$ and $|\arg x|<\left(l+n-\frac{1}{2} p-\frac{1}{2} q\right) \pi$. $a_{j}-b_{h} \neq 1,2, \ldots$ for $j=1, \ldots, n$ and $h=1, \ldots, l$. In the formulae (2.1), (2.2), (3.1), (4.1), (4.3)-(4.5) the conditions mentioned as (1.1) are tacitly supposed to be fulfilled. Although the well known technique is employed, the final result depends on the fact that in the formula

$$
\begin{equation*}
\Gamma(m z)=(2 \pi)^{(1-m) / 2} m^{m z-\frac{1}{2}} \prod_{R=0}^{m-1} \Gamma\left(z+\frac{R}{m}\right) \quad m=2,3 \ldots \tag{1.2}
\end{equation*}
$$

$z, z+1 / m, x+2 / m, \ldots$ are in Arithmetical Progression. The other formulae used are

$$
\begin{align*}
& z(z-1) \ldots(z-\overline{N-1})=\frac{\Gamma(z+1)}{\Gamma(z-\overline{N-1})}, \tag{1.3}\\
& z(z+1) \ldots(z+N-1)=\frac{\Gamma(z+N)}{\Gamma(z)} .
\end{align*}
$$

2

The first formula to be proved is

$$
\begin{align*}
& \frac{d^{N}}{d x^{N}} x^{r\left(a_{1}-1\right)} G_{p q}^{l n}\left(\frac{\beta}{x^{r}} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1} \ldots . b_{q}
\end{array}\right.\right) \tag{2.1}\\
& \quad=(-n)^{N} x^{r\left(a_{1}-1\right)-N} G_{p q}^{\ln }\left(\frac{\beta}{x^{r}} \left\lvert\, \begin{array}{l}
a_{1}-N / r, \ldots a_{r}-N / r, a_{r+1}, \ldots a_{p} \\
b_{1} \ldots b_{q}
\end{array}\right.\right.
\end{align*}
$$

provided $r<n$ and the parameters $a_{1}, a_{2}, \ldots a_{r}$ are in A.P. with common difference $-1 / r$.

Proof:
Using (1.1) the L.H.S. of (2.1)

$$
\begin{aligned}
=\frac{1}{2 \pi i} \int_{L} \frac{\prod_{j=1}^{j} \Gamma\left(b_{j}-s\right) \prod_{j=r+1}^{n} \Gamma\left(1-a_{j}+s\right)}{\prod_{j=l}^{q} \Gamma\left(1-b_{j}+s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-s\right)} \\
\cdot \beta^{s} \prod_{j=1}^{r} \Gamma\left(1-a_{j}+s\right) \frac{d^{N}}{d x^{N}} x^{\left(a_{1}-1-s\right)} d s
\end{aligned}
$$

using (1.4) and (1.2) we get
$=(-r)^{N} x^{r\left(a_{1}-1\right)-N}$
$\frac{1}{2 \pi i} \int_{L} \frac{\prod_{j=1}^{l} \Gamma\left(b_{j}-s\right) \prod_{j=1}^{r} \Gamma\left(1-\overline{a_{j}-N} / r+s\right) \prod_{j=r+1}^{n} \Gamma\left(1-a_{j}+s\right)}{\prod_{j=l+1}^{q} \Gamma\left(1-b_{j}+s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-s\right)}\left(\frac{\beta}{x^{r}}\right)^{s} d s$
$=(-r)^{N} x^{\left(a_{1}-1\right)-N} G_{p q}^{l n}\left(\frac{\beta}{x^{r}} \left\lvert\, \begin{array}{l}a_{1}-N / r, \ldots a_{r}-N / r, a_{r+1}, \ldots a_{p} \\ b_{1} \ldots b_{q}\end{array}\right.\right)$
provided $r<n$ and the parameters $a_{1}, a_{2}, \ldots a_{r}$ are in A.P. with common difference $-1 / r$.

Putting $N=1$ and $s=1 / x$ we get
$x \frac{d}{d x} G_{p q}^{l n}\left(\beta x^{r}\binom{a_{1} \ldots a_{p}}{b_{1} \ldots b_{q}}=r G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}a_{1}-1 / r, \ldots a_{r}-1 / r, a_{r+1}, \ldots a_{p} \\ b_{1} \ldots b_{q}\end{array}\right.\right)\right.$
$+r\left(a_{1}-1\right) G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{ll}a_{1} \ldots & a_{p} \\ b_{1} \ldots & b_{q}\end{array}\right.\right)$
where $a_{1}, a_{2}, \ldots a_{r}$ are in A.P. with common difference $-1 / r$. Putting $r=1$ in (2.1) a result of Bhise [1] follows.
Putting $r=1$ in (2.2) we get a known result (2. p. 210].

3

The second formula to be established is

$$
\begin{align*}
& \frac{d^{N}}{d x^{N}} x^{-r b_{1}} G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1} \ldots . b_{q}
\end{array}\right.\right) \\
& \quad=(-r)^{N} x^{-r b_{1}-N} G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1}+N / r, \ldots b_{r}+N / r, b_{r+1}, \ldots b_{q}
\end{array}\right.\right) \tag{3.1}
\end{align*}
$$

provided $r<l$ and the parameters $b_{1}, b_{2}, \ldots b_{r}$ are in A.P. with common difference $1 / r$.

This formula can be derived from (2.1) by using the well-known property

$$
G_{p q}^{l n}\left(\begin{array}{l}
x \\
a_{j} \\
b_{s}
\end{array}\right)=G_{a p}^{n l}\left(\frac{1}{x} \left\lvert\, \begin{array}{l}
1-b_{s} \\
1-a_{j}
\end{array}\right.\right) .
$$

Putting $N=1$ in (3.1) we get

$$
\begin{align*}
& x \frac{d}{d x} G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1} \ldots . b_{q}
\end{array}\right.\right)=r b_{1} G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1} \ldots . b_{q}
\end{array}\right.\right) \tag{3.2}\\
& -r G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1}+1 / r, \ldots b_{r}+1 / r, b_{r+1} \ldots b_{q}
\end{array}\right.\right)
\end{align*}
$$

where $b_{1}, b_{2}, \ldots b_{r}$ are in A.P. with common difference $1 / r$. Putting $r=1$ in (3.1) and (3.2) two results of Bhise [1] follow.

The third formula sought to be established is

$$
\begin{align*}
& \frac{d^{N}}{d x^{N}} x^{r\left(a_{p-r+1}-1 / r\right)} G_{p q}^{l n}\left(\frac{\beta}{x^{r}} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1} \ldots
\end{array}\right.\right) \tag{4.1}\\
& =r^{N} x^{r\left(a_{p-r+1}-1 / r\right)-N} G_{p q}^{l n}\left(\frac{\beta}{x^{r}} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p-r}, a_{p-r+1}-N / r, \ldots a_{p}-N / r \\
b_{1} \ldots b_{q}
\end{array}\right.\right.
\end{align*}
$$

provided $p-r+1>n$ and the parameters $a_{p-r+1}, \ldots a_{p}$ are in A.P. with common difference $1 / r$.

Proof: Using (1.1) the L.H.S. of (4.1) becomes

$$
\begin{array}{r}
=\frac{1}{2 \pi i} \int_{L} \frac{\prod_{j=1}^{l} \Gamma\left(b_{j}-s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+s\right)}{\prod_{j=1}^{q} \Gamma\left(1-b_{j}+s\right) \prod_{j=n+1}^{p-r} \Gamma\left(a_{j}-s\right) \prod_{j=p-r+1}^{p} \Gamma\left(a_{j}-s\right)} \\
\cdot \beta^{s} \frac{d^{N}}{d x^{N}} x^{r\left(a_{p-r+1}-1 / r-s\right)} d s . \tag{4.2}
\end{array}
$$

Using (1.3) and (1.2) we get after little simplification (4.2) to be

$$
=r^{N} x^{r\left(a_{p-r+1}-1 / r\right)-N} G_{p q}^{\ln }\left(\frac{\beta}{x^{r}} \left\lvert\, \begin{array}{l}
a_{1}, ., a_{p-r}, a_{p-r+1}-N / r, \ldots, a_{p}-N / r \\
b_{1} \ldots b_{q}
\end{array}\right.\right)
$$

The fourth formula is

$$
\begin{align*}
& \frac{d^{N}}{d x^{N}} x^{-r\left(b_{q-r+1}+1 / r-1\right)} G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1} \ldots b_{q}
\end{array}\right.\right) \\
& =r^{N} x^{-r\left(b_{q-r+1}+1 / r-1\right)} G_{p r}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1} \ldots b_{q-r}, b_{q-r+1+N / r} \ldots b_{q+N / r}
\end{array}\right.\right) \tag{4.3}
\end{align*}
$$

provided $q-r+1>l$ and the parameters $b_{q-r+1} \ldots b_{q}$ are in A.P. with common difference $-1 / r$.

The proof can be adduced on lines similar to (4.1).
Putting $N=1$ and $x=1 / x$ in (4.2) we get

$$
\begin{align*}
& x \frac{d}{d x} G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1} \ldots b_{q}
\end{array}\right.\right)=r\left(a_{p-r+1}-\frac{1}{r}\right) G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1} \ldots b_{q}
\end{array}\right.\right) \tag{4.4}\\
& -r G_{p q}^{\ln }\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p-r}, a_{p-r+1}-1 / r, \ldots a_{p}-1 / r \\
b_{1} \ldots b_{q}
\end{array}\right.\right.
\end{align*}
$$

Putting $N=1$ in (4.3) we get

$$
\begin{align*}
& x \frac{d}{d x} G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1} \ldots b_{q}
\end{array}\right.\right) \\
& \quad= r G_{p q}^{\ln }\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
\left.b_{1} \ldots b_{a-r}, b_{q-r+1}+1 / r, \ldots b_{q}+1 / r\right) \\
\\
\\
\\
\quad+r\left(b_{a-r+1}+\frac{1}{r}-1\right) G_{p q}^{l n}\left(\beta x^{r} \left\lvert\, \begin{array}{l}
a_{1} \ldots a_{p} \\
b_{1} \ldots b_{q}
\end{array}\right.\right) .
\end{array} .\right.\right. \tag{4.5}
\end{align*}
$$

I wish to express my thanks to Dr. V. K. Varma for suggesting the problem and for his help and guidance in the preparation of this paper.

REFERENCES

Bhise, V. M.,
[1] Proc. Nat. Acad. of Sc. (Ind.) 32, A 349—354 (1962).
Erdelyi, A.,
[2] Higher Trans. Functions, Vol. I (McGraw-Hill) (1953).

Department of Mathematics,
S.F.S. College,
(Oblatum 1-6-64). Nagpur.

