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On shifting iterated convolutions I
by
A. J. Stam

1. Introduction

Throughout this paper P, Q, R, with or without indices, denote
probability measures on the Borel sets of the real line, PQ denotes
the convolution of P and Q and P" the n'® iterated convolution
of P. So U,P", where U, is the probability measure degenerate
at a, is the n'® convolution of P, shifted to the right over a
distance a.

The problem considered in this paper is to describe the set L,
of those values a for which
(1.1) lim ||P*—U,P"|| = 0.

n->00
Here [|M]], for any finite signed measure M, is the total variation
of M. It is well known that, for any two finite signed measures
M and N,

(1.2) [IM+N|| = [IM][+]IN]l,
(1.8) IMN|| = |IM]] 1INl

MN denoting convolution as before.

In section 5 we consider the following property, weaker than

(1.1):

(1.4) lim ||P"Q—U,P"Q|| =0

for every absolutely continuous Q. This holds for every a if P
is not a lattice distribution.

Our main results on (1.1) are the following. The limit in (1.1)
always exists and is either 0 or 2. The set L, is the real line if
and only if P* for some n has an absolutely continuous component.
If P is purely discrete, L, is the additive group generated by the
set of differences of those y for which P({y}) > o.

For the case that every P* is purely singular, the author only
found examples of a countable L, and an uncountable L,.
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[2] On shifting iterated convolutions I 269

The restriction to probability measures is essential. If || P|| < 1,
the problem is trivial since then lim,,,[|P*|=0. If P is a
measure with P(—o0, +00) > 1, we may expect L, = {0},
since for probability measures the convergence in (1.1) and (1.4),
if present, is of order n-1 (see lemma 6 below).

2. Preliminary results

LemMMA 1. The set of all a for which
(2.1) lim ||P"R—U,P"R|| = 0,
is an additive group.

Proor. The additivity is immediate by (1.2). Moreover, if
(2.1) holds for a, the same is true for —a.

LemMA 2. The sequence | P"R—U,P"R||,n=1,2,..., is non-
increasing.

Proor. The assertion follows from (1.8) since ||P|| = 1.

LemMMA 8. Let Q be any probability measure on the real line.
Then ||Q—U Q|| < 2 if and only if there exist probability measures
Qo and Q, and real numbers a, f with « >0, § =0, a4+ =1,
such that

(2.2) Q= “(‘}UO‘F%Ua)Qo“‘ﬁQl-
Proor. That (2.2) is sufficient follows from the inequality

1Q—U,Ql| = |13aUsQo+B01—32U2.Q0—BU 0|
< fatBtiatp=1+p<2.
To prove necessity, let A, B be a Hahn decomposition of (— oo,

-+ 00) with respect to Q—U,Q. (Halmos [1], § 29). Then for every
Borel set E we have, putting R &£ U,Q:

Q(E) = My(E)+My(E), R(E)= My(E)+M(E),
with
M,(E) £ Q(AE)—R(AE),
M,(E) £ R(BE)—Q(BE),
M(E) & Q(BE)+R(AE).

By definition of a Hahn decomposition, M; and M, are (non-
negative) measures. The measure M, does not vanish, since this
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would imply Q(B) = R(4) = 0 in contradiction with the as-
sumption ||Q—R|| < 2.

From Q= M,+M, and Q=U_,R=U_M,4+U_,M, it
follows that

Q = %Uo+%U,,)U_,Mo+%(M1+U_,,Mz).

Since M,, M,, M, are measures and M, does not vanish, (2.2)
holds with Q, = U_,M,/[||M,|| and Q, either vanishing or equal to
(M1+U—GM2)/”M1+M2”'

Lemma 4. If P = PP, and lim,,  ||P{R—U,P;R|| =0,
then
lim |[|[P"R—U,P"R|| = 0.

71— 00

Proor. Since ||P,|| =1, the lemma follows immediately by
(1.8) and the relation

P*"R—U,P"R = P3(P{R—U,PiR).
LEMMA 5. For some m let
(2.8) Pm = oaP,+BP,,

with P, and P, probability measures and «, B constants with o > 0,
B =0, a+p =1. If P, satisfies (2.1), the same 1s true for P.
In fact, we have

(2.4) lim ||P*"R—U,P"R|| < lim ||P{R—U,P{R||.

Proor. By lemma 2, with Q & pPm
lim ||[P*R—U,P"R|| = lim ||Q"R—U,Q"R||.

n-»00 7-» 00

Since the case § =0 is trivial, we assume « < 1.
By (1.2) and (1.8)

IQ°R—ULQ"Rl| = || 3 (})a*f*~*PP*(R—U, )|
< 3 (1)ap| PIR—PLU.RI.

Now lim,_, ., ||PsR—P*U,R|| exists, so by the Toeplitz theorem
(Loéve [2], § 16.8, p. 238) the relation (2.4) follows.

Lemma 5 will be fundamental in our proofs. If (2.8) holds, we
will say that P™ contains P,.
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LemMA 6. Let P = LU,+3U,,,. Then, for n — oo,
(2.5) ||P*—U,P"|| ~ en-1.

Proor. Since P" is a binomial distribution concentrated in the
points nb+-ka, k=0, 1,...,n,

(1= (2) )

1P TPl = () 2"+ 3

k=1
_ A (Y gena [ 2
—n+1k§o(k)2 k 2 l
4 e
= mjlwldBn+1(w) = 2(”+1)_*f|y|d3n+1(%y\/n+l),

where B,, is the distribution function of the binomial distribution
b(4, m) centered at zero. Since B,(3y4/n) converges completely
to the distribution function of N(0, 1) and has second moment
bounded with respect to m», we have (see Loéve [2], § 11.4)

lim ([y1dB,,,(dyVat1) = (2n) f Iyl exp (—3y2)dy,

n—->o0

which concludes the proof.

3. The set L,

In this section we consider the set L, of those a for which (1.1)
holds.

THEOREM 1. The-value of lim, ,  ||P*"—U,P"|| s either 0 or 2.

Proor. Obviously the limit is in [0, 2]. If it is not 2, then for
some n
[|1P"—U, P|| <2,

and P" by lemmma 8 contains a probability measure of the form
(3Uy+3U,)Qo. So by applying lemma 6, 4 and 5 respectively,
we see that lim,  ||P*—U,P"| = 0.

THEOREM 2. The set L, is the real line if and only if P™ for
some n has an absolutely continuous component.

Proor. Sufficiency: If P is absolutely continuous with density
p(z), then

lim ||P—U,P|| = lim | [p(z)—p(xz—a)|dz = O,

a-0 a—0
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so that ||[P—U,P|| < 2 if a € (—¢, €) for some & > 0. Therefore
Ly, D (—¢, &) by lemma 2 and theorem 1. It follows from lemma 1
that L, = (— o0, + o).

If P" has an absolutely continuous component, the assertion
L, = (—o0, +) follows from lemma 5 and what has been
shown above. Necessity: Let Q be any absolutely continuous
probability measure with density g¢(y). Then 4,, B, being a
Hahn decomposition for P*"—QP", we have

||P*—QP"| = P(4,)—QP"(4,)+QP"B,)—P"(B,)
81)  =[q@){P"(4,)—U,P™(4,)+U,P"B,)—P"(B,)}dy
<2 [ g)|P"—U,P"ldy.

Here ||P"—U,P"|| is a Borel function of y. This is seen by the
following relation, F(z) being the distribution function of P=:
N-1

[|P*—U,P"| = sup 21 [F(byy1)—F(biyy—y)—F(b;)+F(b;—y)l,

where the supremum is taken over N = 2, 8, ... and rational
by, . . ., by, since F(z) is continuous from the left.

By our assumption and the Lebesgue dominated convergence
theorem the right hand side of (8.1) tends to zero for n — 0. So
||P*—QP*"|| < 2 for n = n, and, since QP" is absolutely con-
tinuous, P" for n = n, must have an absolutely continuous
component.

THEOREM 8. If P is purely discrete, L, is the additive group
generated by the difference set of the set J of all those x with P({z}) > 0.

Proor. Let J = {c;, ¢y, . . .}. Then P* is restricted to the set
of all 2z of the form
z=2cy,
E=1
where some or all 7, may be equal. In order that ||P*—U P"|| <2
for some n, it is necessary that
n n n
a =k§'105,“‘k§'101, =k§'1(ci,,—cf,)
for some %y, g, «« «s Uy J15 25 + « = Jn» Which shows that L, is a
subset of the additive group generated by the c¢,—c,.

On the other hand, if 2 € J, y € J, the measure P contains
the measure 3U,+3U,, so that z—y e L, by lemma 6 and lemma
5. So by lemma 1 the additive group generated by the ¢;—c¢,
is a subset of L,.
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THEOREM 4. The set L, is an F,.

Proor. If P is purely discrete, L, is a countable set by theorem
8. Assume, then, that P has a nondiscrete component. Writing
D,, C, for the discrete and nondiscrete component of P*, we have

[ 1P*=U,P|—|IC,—U,C,ll |
(8.2) = [|P"—UP"—(C,—U,C,)ll
= [|D,—U,D,|| = 2||D,|| = 2||D,l|",
with ||D,|| < 1. Let
V) & |IC,—U,C,ll, n=12..., —o<z< 0.
By (8.2) and theorem 1

Li=U{e:V.e) S 1)

n=n,

Here n, is chosen so that 2 ||D,||™ < 1, say. Let G,(y) denote
the distribution function of C,. Then

N-1
(83) V() = SHPE‘I 1Ga(bis1)—Ga(biss—2) =G (b)) +G,(bi—2)],

where the supremum is taken over N =2,8,...and b;, b,, . . ., by:

Vuaz) =supV,,(z), —o<z<o n=1L12..,

where the V,  (z) are of the form occurring in (8.3). The V,, ()
are continuous functions of 2. So the sets {z:V, ,(z) <1} are
closed, and

L=UN{&:V,ae) <1}

is an F,.

4. Examples of singular distributions

If P*is purely singular for every n, the problem of characterizing
the set L, is still open. Here we present two examples of purely
singular P", n =1, 2, ..., where L, is countable and where L,
has the power of the continuum, respectively.

Ezample 1. For P we take the probability distribution of the
random variable

o0
(4.1) z ¥ S, 8"
n=1
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where the z, are independent nonnegative integer valued random
variables. Moreover it is assumed that there exist natural numbers
n, and m such that the @, for & = n, have the same distribution
restricted to {0, 1,..., m} with P{z, =4} >0,7=0,1,...,m.

As shown by (4.1), the range of z is an uncountable set W and
for every ce W we have P{x = c} = 0. So P cannot have a
discrete component and the same then is true for all P". It will
be shown below, from the conditions on P stated above, that
[|P—U,P|| = 2, except for countably many a. But then this
must hold also for every P*, since, as is easily seen, P* is of the
same type as P. So L, is a countable set. By theorem 2 no P*
can have an absolutely continuous component, so every P* is
purely singular.

To prove our assertion on ||P—U_,P|| we show that

P{x+ae W} =0,

which implies mutual singularity of P and U,P, for all but
countably many a. It is no restriction to assume a = 0. Let

& 2
a=>Ya,8",
n=1
where the a, are chosen so that
(4.2) a, < 8"'-(n-1)* — gan-1, n=238,...

The event {z+a € W} implies the existence of (random) integers
by, by, . . . such that

(4'3) z (an+wn)3—”‘ = z bn 3—”"
n=1 n=1
(4.4) 0=b, =m, n=mn

It will be shown that (4.8) and (4.4), for all but countably many a,
imply the occurrence of a sequence of events {z, € A}, with
<7 <... and Pz, €ed} <1, k=1,2,..., from which
follows, by the independence and equidistribution of the z, for
n =n,, that Plz+ae W} = 0.

First we note that there is n, such that for n = n; the carry c,
from the n'® to the (n—1)™® place in the addition in (4.8) is at
most 1.

We now distinguish the following cases:

a. There is an infinite sequence »; < », < ... such that

1=a, =8 1-m—2, k=1,".....
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Since for v, = max (ny, n,)
a, +a, +C1py, <8l 24mt1 < 81

¢,, = 0 for », = max (ny, n,), and for (4.8) and (4.4) to hold we
must have

ka_'l_ a'vk+cl+vk é m,

implying #,, < m—1 and we may take 4 = {0, 1,...,m—1}

b. There is ng; such that a,=0 or a, = 8**1—m—1 for
n = ng.

b1. All but a finite number of the a, are zero. The corresponding
a form a countable set.

b2. There is n, with a, = 82" 1—m—1 for n = n,. To satisfy
(4.8) and (4.4) we must have ¢, > 0 for n = max (n,, n,), so

wn+an+cn+l g 321:-1’
@, = 8"1_1—q,,

which by (4.2) implies 2, = 1 for infinitely many n, except if
a, = 82"-1—1 for all but a finite number of n. But the set of a
satisfying the latter condition is countable.

b8. The sets of n with @, = 0 and with a, = 8*"1—m—1 are
both infinite. Then we may select a sequence »;, < v, < ... with

a, = 8" 1—m—1, a,, =0, k=12...
To satisfy (4.8) and (4.4) we must have ¢, >0, k=1,2,...,
or, since ¢;,, = 0 for k = k,,
z, +a, = 87, k =k,
which by (4.2) implies the events {z, =1}, k = k.
Ezample 2. This example is taken from a paper by Wiener and

Young [4], section 7. Let n,, n,, . . . be an increasing sequence of
natural numbers, such that

(o]
(4.5) > npt < oo,
k=1

and consider the expansion of e (0, 1):
m, my mg

(4.6) r=—t+ + +...
ny nNy  NyNoNg

the m; being nonnegative integers with m; < n;, ambiguity
being removed by taking the terminating expansion whenever
possible. The n, are assumed even, n;, = 2r, k=1,2,.... Let
F(z) be defined by
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F)=0, <0, F)=1, z=21,

m,[2 + my[2 + my[2 +

" 17 17273

F(z) =

if every m; in (4.6) is even, and

F(w)=z‘_1/_2+?"’_2/%+...+ mn—1/2 + [mn/2]+1,
r T17g Tilgeeelpy Tifgee.Ty
if m, is the first odd m; in (4.6).

It was shown by Wiener and Young, that F(z) is the distribu-
tion function of a purely singular probability measure P and that
the set of a with ||P—U,P|| < 2 has the power of the con-
tinuum. So by our lemma 2 and theorem 1 the set L, for this P
has the power of the continuum. For the sake of our example we
only have to show that P* for every n is purely singular. To
this end we note that F is the distribution function of the random
variable

oo
(4.7) z = kzlw,, (nymy ... my),

where the z; are independent and
(48) Plo,=4}=1r" 1=0,2,..,m—2 k=12...

Clearly P* for every n is a convergent infinite convolution of
discrete distributions. By a theorem of Wintner, [5], p. 89, no.
148, such a distribution is of pure type. Since P is not discrete,
it is sufficient to show that P" is not purely absolutely continuous.
This will follow from the fact that

(4.9) lim sup |p(u)] > 0,

U= 00
where @(u) denotes the characteristic function of P, since, if P"
were absolutely continuous, its characteristic function ¢"(u)
would tend to zero for |u| — o by the Riemann-Lebesgue lemma.
From (4.7) and (4.8) we have

(4.10 pu) =T] pu(u), —o0 <u < oo,
k=1
with
1 1 2hiu )
4.11 u)=— ) exp{l—})»
( ) Pe(%) T ,.Z:o P (n1n2 cee My
so that

(4.12) Qe(nyny . . . mgm) =1, k=12,...,H,
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(4.18) @g(mymy . .. ngn) = 2rg,,; {1—exp (2nilng,, )}

1 raml 2mth
Prim(MaNg oo o ngH) = — > exp |———),
THim h=0 NEyy e« MHym
m=2,8,...
M
]._I2 Paim(Nyng . .. Ny )
mes
1 THig—1 Trem—1
= 3 ... 3 A(hgy by, ... hy),
7H+2 s e rH+M h’-=0 By=0
with
, M h,
Alhg, by - « - hyy) = exp (2m s ————)
m=2 Neri1 o« NHim
Now
[L—A(hg, - . ., hy)l
M h M 1
S22y ——— == ,
m=2 Nprp1 o o« NHom m=2 Tgi1 oo« MEym—y
so that
1

M M
(414) N1 —TIpaim(mans...ngn)| == 3 .
m=2 m=2 Mgy« NHim

From (4.10)—(4.14) and limg,  ng = + oo it follows that

Hm ¢(nyn, . .. ngx) = —2/nt,
H-00

which proves (4.9).

5. The relation (1.4)

For fixed probability measure P let

(5'1) D,(, Q) £ ||P"Q—UaP"QI|» n=12...,
with Q absolutely continuous,
(5.2) D(z, Q) &£ lim D, (, Q),

the limit existing by lemma 2, and
(5.8) D(z) & sup D(z, Q),

the supremum being taken over all absolutely continuous prob-
ability measures Q.

Lemma 7. D, (2, Q) and D(z, Q) are continuous functionals of
Q, uniformly in x and n, in fact
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|Dn(@, @1)—D (2, Q)] < 2|01 —Q0ll,
|D(x, Q;)—D(z, Q2)| = 2 [|Q1— Q|-
Proor. By (1.2) and (1.8)
[D,(z, Q1) —Dy(z, Q)| = || P"Q1—U, P"Qy—(P"Q,—U, P"Q,)||
S |PYQ1—Q)l|H+ U, P*(Q1—Qa)l| = 2101 — Q-

LemMMA 8. Let Q. k = 1, 2, . . ., be a sequence of probability meas-
ures with densities q,(y), k=1, 2, ..., such that

0:(y) = kqy(ky), —oo<y< o, k=12,...
Then
D(z) = sup D(z, Qy)-
Proor. By definition of D(z)
(5.4) S(z) L sup D(z, Q;) = D(z), —oo << 0.
k

For any Q we have by (1.8)
D,(z, Q0i) = D,(2, Qx)s

so, for n — oo,
(5.5) D(z, 0Q,) = D(x, Q) = S(z), k=12,...

Since Q is absolutely continuous, ||Q—QQ,|| tends to zero for
k — oo, so from (5.5) and lemma 7 it follows that D(z, Q) = S(z)
for every absolutely continuous Q, implying

(5.6) D(z) < S(z),

and the lemma follows from (5.4) and (5.6).
THEOREM 5. If P is not a lattice distribution,

(5.7) D(z) =0, —0 <2< ™.

If P is a lattice distribution with span c,

D(z) =0, x=mnec, n integer,
D(z) = 2, elsewhere.

By a lattice distribution is meant here a discrete distribution concen-
trated in a subset of {a-+nd, n integer} for some a and d, the span
being the largest value that may be taken for d.

(5.8)

Proor oF (5.7). By lemma 8 it is sufficient to prove that
(5.9) lim D, (z, Q,) = 0, k=1,2,...

71— 00
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for a suitable sequence Q;, k =1, 2, ..., of the form considered
in lemma 8. We choose Q, in such a way that it is symmetric
about zero and has finite second moment, that its density ¢,(y)
belongs to L, and its characteristic function &,(u) satisfies

(5.10) By(u) = 0, lu] = 1.
This may be accomplished by taking

¢:(y) = «(4y~sindy), —o0<y< oo,

with « a norming constant, as will be seen by applying the
Fourier inversion formula to the characteristic function of the
fourfold convolution of the uniform distribution on [—%, 1].
By lemma 5 it is no restriction to assume that P has finite
second moment. We also center P at its first moment.
For fixed k let p,(z) and r,(z) be the densities of P"Q, and
U, P"Q,, respectively. Then

D,(a, Qi) = [ Ip.(@)—r,(2)lda,
D,(a, Q) < [*, Ipa(@)—ra@)lda+2 [,  P.(@)da.

Here A is allowed to depend on n. By the inequality between
arithmetic and quadratic mean and by Chebychev’s inequality
+00 3 nd2+v2k—2
D@ Q) 5 [24 [ pute)—rae)par| +2 "0,
where d? is the variance of P and v? the variance of Q,. Since
g€ L,, also ¢, e L, and therefore p, e L,, r,€L,. So by Par-
seval’s formula

nd?*+v2k~?

(A—ap’
where ¢@(u) denotes the characteristic function of P and
P(u) = 9,(u/k) the characteristic function of Q,. Making use of

(56.10) and the inequality |#,(u)| = 1, and putting 4 = Cni, we
find for n suitably large

A [ 3
Dua, ) = [ [ ja—emelprwio,witdu +2

Cnt * , 3
D,(a, Q) < [— f ()2 |1—em12du] +8d2C2,
T

-k

Since P is not degenerate and has finite second moment, there are
£€(0,1) and B € (0, 1) such that

lp(w)? = 1—pu?,  |u| e
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Moreover, P being not a lattice distribution, there is a constant
y € [0, 1) so that

lpw)l =y, el =k
(See Lukacs [8], theorem 2.1.4). So, since also
[1—e*%)2 < a?u? < a?lu| for |u| < e,

2a2Cnt
lim sup D, (a, 0,) < 8d2C-2+lim sup[ e
» n

€ 1
f (l—ﬂuz)"udu]
)
= 8d*C—2+lim sup [f% {1—(Q1 ——ﬂe2)”+l}] : = 8d2C—2.

Since this holds for every C > 0, the proof of (5.9) is concluded.

Proor oF (5.8) That D(z) = 0 for z = nc, follows from theorem
8. That D(z) = 2 for & # nc, is seen by taking for Q the uniform
distribution on [—hA, k], with k so small that no intervals
[nc—h, nc+h] and [me+z—h, mc+z-+h], m, n integer, overlap.
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