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The asymptotic behaviour of additive functions
in algebraic number theory

by

J. P. M. de Kroon

CHAPTER 1

Introduction

§ 1. The problem

The aim of this paper is to prove some generalizations of a
theorem of Erdôs and Kac concerning the behaviour of an additive
numbertheoretic function on the natural numbers [7].
The generalizations which we shall establish concern:

1. the set of the principal integral ideals of an arbitrary algebraic
numberfield,

2. some sets of algebraic integers contained in an arbitrary but
fixed algebraic numberfield, and

3. the ring of integral elements contained in an algebraic function-
field.
We state that we shall formulate the problem in a rather general

way, but only for the case where sets of algebraic integers are
considered.

It may be noted tha,t the formulation of the two other cases
takes almost the same form.

Before formulating the problem in question, it is useful to
make some preliminary remarks with regard to certain definitions
and notations in order to make it possible to give a short and
comprehensible formulation of the problem.

Let Q be the field of the rational numbers and Z the ring of
the rational integers.

Let k and K be algebraic numberfields over Q such that
QCkCK.
Let R be the ring of integers of the field K and T the ring

of integers of k.
Let I(R) and I(T) be the sets of ideals of R and T respectively.
Ideals of I(R) are denoted by Gothic letters such as a, b etc.,

accordingly prime-ideals of I(R) are denoted by p and q.
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Prime-ideals of I(T) are denoted by p and we assume that
p ~ I(R) is a prime-ideal that lies above p ~I(T).

Further, let S be a function defined on T such that, for te T,
S(t) e R; we write: S : T - R.

Let 03C0p be the canonical operator n. : R ~ Rp = R/,p and
similarly 03C0p the canonical operator ne : T ~ Te = T/p.
Assuming now that S(t+v) ~ S(t) mod ,p, if v ~ p where p

lies above p, Sp can be uniquely defined by S. o ne = Jr, o S,
(Fig. 1).

Let vo be the number of t E Tp with Sp(t) = 0; notation:

v03BC = # {t ~ Tp|Sp(t) = 0}.

Analogously

Norm. Let NK1|K2 be the norm defined on the ideals and

integers of the numberfield Kl, relative to the numberfield K2.
We put, by définition : N = 1% KIQI and N = |Nk|Q|.
Let (r ) be the principal ideal generated by r, r E R. We have:

Nr = N(r); similarly Nt = N(t).
Let the n conjugates of an integer r E R, relative to Q, be

denoted by r(1), r (2) , r(3), ..., r(n), n being the degree of K over Q.

Height. We define the height of an algebraic integer, r E R, by:

Now, let R be the real field and : I(R) ~ R an additive number-
theoretic function with the following properties:
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The funetion  is defined on R by 1(r) = ((r)), if r e R and (r)
is the principal ideal generated by r.

Further let A : R - R and B : R - R be defined by

respectively.
Now we wish to prove theorems of the following type:

then

where

and

In chapters 3 and 4 we shall prove such theorems. In chapter 2
we shall prove an analogous theorem, applied to the set 60 of
principal ideals ~ I(R), and in chapter 5 we shall deal with the
set Fq[x] where Fq[X] is the ring of integral elements of the
. algebraie functionfield Fq(X) over the finite field of q elements.

For the sake of completeness we state here that in the last
two mentioned cases S will be the identity and "height" is

replaced by "norm" so that, instead of the condition ~t~ ~ x1/n,
we shall have Na ~ x.

§ 2. Results

In subjoined table 1 we summarize the most important cases
for which the problem formulated in § 1, has been solved in the
litterature, while in table 2 we present the cases for which we
are going to solve the problem in question.

In tables 1 and 2, Y stands for a set of integral elements and
X is a subset of Y; S is a functior : X - Y. The symbols o(.)
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TABLE 1: Known Results

TABLE 2: Results obtained in this paper

and 0(.) are used for x ~ oo. The other symbols that occur in
tables 1 and 2 have the same meaning as in § 1.

It should be noted that each time B(x) occurs in table 1, we
have: B2(X) = loglog x+O(1).
We also make the following comments:

1. Our method of proof is analogous to that of Erdôs and Kac [7].
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2. Rényi and Turàn [14] state that the result obtained by them,
with regard to 03B4(x), is best possible in the sense that O(1/B(x))
cannot be replaced by 0(1/B(x)).
Delange [6] gives still more information about the behaviour
of 03B4(x) as x tends to infinity.

3. Our results are more general than those of Rieger [15], who
was the first to consider the problem in question for the case
of an algebraic numberfield.

The results published in this paper were achieved under the
inspiring guidance of Professor Van der Blij. For this and for his
stimulating criticism, 1 wish to express my deepest gratitude.

§ 3. Preliminaries

§ 3.1. SOME BASIC RESULTS FROM ALGEBRAIC NUMBER THEORY

Let K be an algebraic numberfield of degree n over Q and,
as before, R the ring of integers of K.

It is well-known that the class-number h of the ring R is finite.
From now on algebraic integers, and thus elements of R, will be
denoted by Greek letters. Henceforth x E R and x &#x3E; 0.

We shall make use of the symbols 0(. ) and o(. ) of Landau and,
unless otherwise stated, we shall use them for x ~ 00; the constants
in these symbols are supposed to depend only on the field K.
Now we define

For every class 6 bf. ideals, we define

Further, we define for a fixed y E R

We have the following well-known formulae, (see [10]).

In (3.4) and (3.5), Â and h depend only on K. We have already
defined h and we note that Â is the residue of 03B6(s; (B) = II/Na’
at s = 1. ac-G
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Further, (see Rieger [16]),

where c is a constant, dependent only on K.
Now Landau [11] proved the following formula:

From this we prove

where C is a constant.

Hence

Now, defining 03C4(x) = C(x)-log x, we find

Since, clearly

we arrive at the required result if we put

Now, starting from 03A3Np~xs 1/Np, we have:
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Obviously

Applying (3.8), it follows that

where C’ is a real constant, and therefore

where K is a positive constant.

§ 3.2 PROBABILITY THEORY

Since, in some of the following paragraphs, we deal with
notations and arguments from probability theory, we shall now
briefly summarize some definitions and properties of this theory
as far as we need them. Consider the set I(R) of integral ideals
in K which is taken here as sample-space.
On this space we consider the a-algebra of all subsets E; on

this a-algebra is defined a completely additive, non-negative set-
function P, satisfying the condition P(I(R)) = 1.

In this case P will be defined by

if the limit exists and E C I(R).
Consequently, we could say that P(E) is the density of the

integral ideals belonging to E.
We shall also denote P(E) as: the probability that a e E.

Analogously we could consider the ring R of the algebraic integers
as the sample-space.
Then we should define the set-function P by

if the limit exists and E C R.
In each chapter we shall stipulate how the set-function P is

defined in that chapter.
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For simplicity, we now cease considering the various cases
and continue the considerations of this paragraph in terms of the
sample-space I(R) only.
We introduce the conditional probability by 

if the limit exists and E1 ~ I(R) and E2 ~ I(R). Obviously, if

P(E1 | E2) and P(E2) exist and if, moreover, P(E2) &#x3E; 0, we have

A real-valued function defined on the sample space is called
a stochastic variable or a random variable. For the sake of con-
venience we shall, for every stochastic variable 03C9 and Borelset

b, write

which is defined as the set of those ideals, a ~ I(R), for which
03C9(a) e b; analogously if mi and ro2 are random variables and b1
and b2 Borelsets:

Two stochastic variables, rol and ro2’ are said to be independent
if the following multiplicative relation is satisfied for every pair
of Borelsets bi and b2.

In direct generalization, we shall say that the 1 random variables
mi, £02’ ..., 03C9, are independent random variables if the multi-
plicative relation

is satisfied for any Borelsets bl, b2, ..., bi. If, in a sequence

(»le 03C92, ..., any set 03C91,..., 03C9 of l random variables are in-

dependent, we shall briefly say that 03C91, 03C92, ... form a sequence
of independent variables.

If û) is a stochastic variable, then clearly for every u E R it
makes sense to use the expression P(03C9(a)  u). The function
F : R - R, defined by
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is called the distribution-function of 00.

8(oot) = ~~-~ukdF(u) is called the kth moment of o,

(k ~ Z, k &#x3E; 0).
8 (ro) is called the mean and 03B5(03C92)- (03B5(03C9))2 the variance of

co, which is denoted by var. (ro). The variance is sometimes
denoted by a2; 03C3 is then called the standard deviation.
An important theorem that we shall use is the following

so-called "Central Limit Theorem", due to Liapounoff, (see
Cramèr [4]).

(2) CENTRAL LIMIT THEOREM OF LIAPOUNOFF
(referred to as (e».
Let col, ro2’ ... be independent random variables and let PI and

03C3j denote the mean and the standard deviation of col.
Suppose that the third absolute moment, oc,, of col about its mean,

de f ined by

is finite f or every i and put

If

then, uniformly in u, u E R,

where, as in § 1,

As Uspensky [17] states, this result can be improved to the
following:
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Let the same assumptions be made as in theorem (e), then, if
r is 80 large that

with

CHAPTER 2

The set éo of principal ideals

§ 4. Theorem 1

Throughout Chapter 2, 1(R) will be the sample-space and
the set-function P will be defined by

if the limit exists and E C I(R). 
The conditional probability will be defined by

if the limit exists and E1 ~ I(R) and E2 C I(R).
We recall the following definitions:

1. K is an algebraic numberfield of degree n over the rational
numberfield Q.

2. R is the ring of integers of K; Z is the ring of rational integers.
3. I(R) is the set of ideals of R; G0 is the set of the principal

ideals of R.
4. N is the absolute value of the norm defined on the ideals and

integers of R.

Let f : : I(R) ~ R be an additive number-theoretic function as
defined in § 1. Hence f satisfies the following conditions:
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and p prime-ideal,

Now, for every prime-ideal p, we define the random variable

p, by

Obviously

For every x E le we introduce the function fz, defined by

According to the definitions in the introduction (§ 1), we put

As before, 0 : R - R is defined by

We shall prove the following theorem:

THEOREM 1.

Let , x, A, B and 0 be defined by (4.5), (4.6), (4.7), (4.8) and
(4.9) respectively.

Il

then

uniformly in u ~ R, and, in fact,

uniformly in u e R.
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Proof o f theorem 1.

Now, o=0 mod p, implies a = pb.
The condition a E 60 is then equivalent to b E 6, where 6 is

one of the h classes of ideals. 6 is uniquely determined by p and
60. Further, Na  x implies Nb  x/Np, and hence

H(y; G) being defined by (3.2).
Applying formula (3.5), we find

Similarly, we can show that for every pair p, q with p ~ q,

From this it follows almost immediately that, on G0, p and pq
are independent random variables if p ~ q. Analogously, it can
be seen that the p, form a sequence of independent random
variables on 60. We note that on I(R) the pp also form a sequence
of independent random variables, but we do not require this here.

If we denote the expectation of a random variable ro on the
subset E of the sample-space, by 03B5(03C9BE), we have

1 and

Hence
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Now, since B(x) ~ oo as x ~ oo and £ |f(p)|/Np2 is convergent,
it can quite easily be verified that the conditions of the central
limit theorem (!f1’) are satisfied.

Putting
o2iw 

we conclude that

where, obviously,

Taking into account that u(exp. (--IU2» is uniformly bounded
in (-~, ~), formulae (4.10) and (4.11) follow immediately,
which completes the proof of theorem 1.

§ 5. A basic lemma

As in § 4, let K be an algebraic numberfield of degree n over
the rational numberfield Q.

Let 6 be a class of ideals.
We order the prime-ideals in such a way that Npi  Npj

if i  j.
We define.9(k, m) as the set of prime-ideals p with k  Np ~ m,

keR, mER.
By f!lJ we denote any subset of P(1, oo). As usual the function

n : R - R is defined by

In this paragraph x and y are always elements of R. We define

For convenience we introduce the following abbreviations.

Obviously M(y) = H(y; G), which has been defined by (3.2).
We shall prove the following lemma.
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BASIC LEMMA (lemma 1).
Let 03C8 : R ~ R be a function such that

and

Then

A being the residue o f

Firstly we make some comments.

Comment 1 (concerning the method of proof).
The major part of our proof will consist of applying a method,

established by Brun [1] for rational integers to the case of in-
tegral ideals of class E. Rademacher [13] used Brun’s method
in order to investigate the conjecture of Goldbach in the ring of
integers of an algebraic numberfield.
To achieve the aim of this chapter we could also use a method

developed by Buchstab [3] and applied by De Bruijn [2].
We prefer, however, Brun’s method since it does not seem

possible to generalize Buchstab’s method to the cases of chapters
3 and 4.
For completeness we mention that Lang [12] proves a formula

which is equivalent to (5.5), using the same method as De Bruijn.
Comment 2 (concerning symmetrical functions).
For every rational integer i, 1  i  t, let ai be a positive

real number such that for at least one pair i, j, 1 s i  j S t,
ai ~ ai.

Furthermore, let symmetrical functions f/j be defined by the
equality for polynomials

It can be deduced that
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It can be proved by induction that

Substituting this in (5.7), we obtain

Comment 3.

Throughout the proof of the basic lemma, let ao, a and oc,
be given such that

and let 03B2 be defined by

Obviously

From (3.8) and (3.9), it follows that

and

There exists a constant Q such that for

and all x &#x3E; k the following formulae hold.

Prool o f the basic lemma.
Let k be fixed such that, for the given oco, 03B1 and acl, (5.16)

and (5.17) hold.
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Let m E R be given and assume m &#x3E; k.
We define

Fig. 2

Further, 1 is defined by

Following the sieve-method of Eratosthenes, we have
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From this it follows that

For each term of the second sum on the right-hand side of (5.21 ),
a formula analogous to (5.21) can be deduced. Before exploring
formula (5.21) in this way, we give some definitions.

For x E R, we define

Furthermore Q : : I(R) ~ Z is defined by

We now introduce the following sets of ideals.

From (5.21) it can be proved by induction that the following
formula holds.

,u being the Môbius-function.
From formula (3.5) we conclude:

Defining

we obtain from (5.28)
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We define

which implies that (5.30) can be replaced by

If we put

we have

Further, Jj(g) and sj(g) are defined by

and

where Bj(g) is defined by

Obviously Jj(g) and sj(g) could equally have been defined by

respectively.
For convenience we define

It is clear that
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and consequently

We define 0,, and 03C4g by

and

respectively. 
We remark that, owing to (5.18), (5.19), (5.16) and (5.17),

we have

We now consider ~g+1E(g).

Combining this with (5.39), we obtain

The assumption concerning oc,, i.e. (5.10), now makes it clear that
sg+1 = sx(g)  log al  1 (if g  1) and hence, applying (5.8)
and (5.36), we can conclude that

is an alternating sum of monotonically decreasing terms since
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8-1(g) being an empty sum and therefore equal to 0. Hence

Obviously J*2g+2(g+1)  J2g+2(g+1).
Formula (5.9) can now be applied to J2g+2(g+1). Therefore

03B2 being defined in (5.11).
Substituting this result in (5.45), we obtain

Therefore

Then, by induction,.

Since we assumed al  Je, (5.10), we have

In (5.48) we used the obvious fact that 0  ~1  1. Substituting
this result in (5.32), we find

where g(03B11) has to be defined by

Using the same method by which we proved (5.28), we can prove
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where the set (1; is defined by

with

and

and

Defining

we find

where

It is clear that

Combining (5.48) and (5.56), we obtain

Taking m = y(y), it- follows that

The number of terms occurring in R’m,03B1(y) equals the number of
terms occurring in E’(l+1).

This number is obviously less than the number of terms oc-
curring in the expansion of

As 03C0(x)  f x/log x for some positive constant J, the number of
terms occurring in the sum generated by D(l) is less than
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for some positive constant f’. 
According to the special way a has been chosen, we have,

owing to (5.19), vi = v,+,  ka.
Therefore

and consequently, using formula (3.5), we conclude that therc
exists a constant d, such that

We recall that n is the degree of K over Q.
Owing to the assumption (5.4) in the formulation of the basic

lemma, we have

where C(03B1) is a positive constant dépendent on 03B1.

From (5.58) and (5.59) it then follows that

where, clearly, C*(a) is a constant dependent on 03B1.

Analogously we can deduce that

where

From (5.60) and (5.61), we conclude that
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Formula (5.62) holds for all choices of oco, ce and oc,, provided
that the conditions in formula (5.10) are satisfied.

Taking oco = 1+03B4, or = 1+26 and ?1 = 1+303B4, where ô &#x3E; 0

such that assumption (5.10) is satisfied, and letting ô - Q, we
finally obtain 

which completes the proof of the basic lemma.

§ 6. Two other lemmas

Let r : R ~ R be a function such that

For every r satisfying (6.1), we define the funetions y R - R
and 03A8 : R ~ R by

and

respectively.

Let J[x] be the set of integral ideals which have no prime-
factors other than those with a norm less than or equal to 03C8(x),

For every ideal a E I(R), we define the ideal m(a; x), by the fol-
lowing conditions:

Clearly, m(a; x) is uniquely determined by this definition.
Let the different ideals of J[x] be denoted by nl(x), n2(x),

n3(x), ... etc. 
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Let E, be the subset of principal ideals defined by

LEMMA 2.

Il Nni(x) ~ 03A8(x), then -unitonnly in i-

P being defined by (4.1) and (4.2).

Proof o f lemma 2.
If G is the inverse class of the class of ni(x), then

Using the assumption Nni(x) ~ 03A8(x), we can conclude that

Therefore the basic lemma applies, thus completing the proof
of lemma 2.

LEMMA 3.

there exists a positive constant b such that

Proof o f lemma 3.
We have

Hence

for some constant bl.
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Because of (8.7) there exists a constant b such that

Substituting (6.2) and (6.8) in (6.9), we obtain

which completes the proof of lemma 3.

§ 7. Theorem 2

We shall prove the following theorem.

THEOREM 2.
Let y be defined by (6.2).
Let f, Igc, A, B and 0 be defined cas in theorem 1.
If

then

Proof o f theorem 2.
Let

Because of the definition of m(a ; x) -see (6.5)- we have

As before, let the set Ei, be defined by

it then follows that Ei C W[x; u] or E; n W[x; u] is empty.
We define

We note that formula (7.1), which we shall prove, is equivalent to

uniformly in u.

Let 1Jf be defined by (6.3).
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We have

where

the sum being extended over those suffixes i, for which

Nnf(x) S 03A8(x), and

the sum being extended over those suffixes i, for which

Nni(x) &#x3E; 03A8(x).
From lemma 3 it follows that

satisfying conditions

Therefore

Hence, it remains to prove that

uniformly in u.

Applying lemma 2, we find

where the dash in the summation indicates that it is extended
over those suffixes i for which

We now consider subsets F, of 60, defined by

Applying theorem 1, we conclude that

uniformly in u, as x ~ oo,

where the dash again indicates that the union is extended over
those i which satisfy formula (7.10).

Since it follows from lemma 3 that
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we have

uniformly in
Further

and

Because of the stochastical independence proved in § 4 - formulae
(4.12) and (4.13) - it follows that

and therefore

where the dash still has the same meaning as in (7.12).
Combining (7.14) and (7.15), we obtain

uniformly in u,

and this, in combination with (7.9), implies that

uniformly in u,
which completes the proof of theorem 2.

§ 8. Theorem 3

In the preceding sections we have made the basis on which
we can now build the proof of the main theorem of this chapter.
THEOREM 3.

Let 1: I(R)~ R be an additive number-theoretic function, such
that
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(a · b) = l(a)+/(b) il (a, b) = (1), a ~ I(R), b el(R),
(pk) = (p) tor k e Z and k ~ 1 and p prime-ideal,
and |(p)| ~ 1.

Let A : R ~ R and B : R ~ R be defined by

and

respectively.

If
then

(8.1) lim P((a) ~ A(x)+uB(x)| a e 60 and Na ~ x) = 03A6(u)
uniformly in

P and 0 being defined by (4.2) and (4.9) respectively.

Proof o f theorem 8.
Let r : R ~ R be a function such that

Hence, r satisfies (6.1).
As before, we define y : R - R by

If pp is defined by (4.4) and 1:» by (4.6) then, for every a e I(R)
with Na ~ x, we have

Further, for a &#x3E; 1, we can find X0 such that, for x &#x3E; Xo,
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and

(8.5) and (8.6) follow easily from

Because of the assumption, 1/r(x) = 0(B(x)), (8.4), (8.5) and
(8.6) imply that

and

respectively.
Now, consider the following three sets:

Assuming u &#x3E; 0 (if u  0 the proof is analogous) we now state:
Given e &#x3E; 0, it is possible to find X1 such that, for x &#x3E; X1

and hence, owing to theorem 2

where 03B4(x) &#x3E; 0 and limx~~ 03B4(x) = 0.
Obviously

uniformly in u E R.

Similarly
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Substituting (8.9) and (8.10) in (8.8) and then letting e tend
to 0, we finally obtain

uniformly in u ~ R, which completes the proof of theorem 3.

§ 9. On the rate of convergence

The purpose of this section is to obtain information about the
rate of convergence of the final result in the preceding section.

Therefore, we must investigate the various steps which give
rise to theorem 3.

1 9.1. CONCERNING THEOREM 1

In the course of the proof of theorem 1, we obtain the following
formula, which holds under the assumptions of the theorem.

uniformly in u ~ R, as x ~ co.

1 9.2. CONCERNING THE BASIC LEMMA

Taking 03C8 as the funetior defined by (6.2), we have

We now separately consider

We are still to a certain extent free to choose the way in which

r(x) ~ 0 (as x ~ oo) and 03B11 ~ 1.

We assume that 03B4 is a function R ~ R, such that 03B4(x) &#x3E; 0

and limx~~ 03B4(x) = 0 and 1+3ô(x)  ye, (see (5.10)).
We introduce: al = 1+303B4(x),

a = 1+2ô(x) and
03B10 =- 1+03B4(x).
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Because of the definition of1(rtl)’ see (5.50) and (5.11), we have

and, therefore, it is clear that

In this case we can take instead of k in (5.15),

being some constant.

From (3.9) and (5.59), it follows that there exists a constant

co &#x3E; 0 and a value Xo e R, such that, if x &#x3E; Xo, we have

Hence

In order to make it possible to conclude that the right-handside
of this formula tends to zero, if x tends to infinity, it is clearly
necessary that there exists X1 ~ R, such that

Now, it will later become apparent that it is useful to define

r: R ~ R by

Therefore, we now define 03B4 : R ~ R by
where X2 is such that

Substituting (9.4) and (9.5) in (9.2) and (9.3) respectively, we
arrive at
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and

Hence, we may now conclude that there exists a constant c.
such that, for every x &#x3E; Xa (X. c- R),

Defining r and 03B4 in the same way, similar considerations make
it possible to show that, for some constant c4 and x &#x3E; X4, the
following also holds.

Combining (9.8) and (9.9) we finally obtain

1 9.8. CONCERNING LEMMA 2

We define 03A8* : R ~ R by

As before, let E, be defined by

nj(x) and m(a; x) being defined as in § 6.

Since

for all real values of y, the following result can be obtained.
If Nni(x)  03A8*(x), then

uniformly in i.
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This result is uniform in i, since (9.7) can be replaced in this
case by

§ 9.4. CONCERNING LEMMA 3

Let we define 03C8 by (6.2), r by (9.4) and replace P, defined
by (6.3), by 03A8*, defined by (9.11).

Let L*(z) = # {a e I(R) |Na ~ z and Nm(a ; x) &#x3E; 03A8*(x)}, then
there exists a constant b*, such that

The proof of formula (9.13) is analogous to that of (6.8).

§ 9.5. CONCERNING THEOREM 2

Using the results of the preceding paragraphs 9.1, 9.2, 9.8

and 9.4 it becomes clear that theorem 2 can be improved to:

THEOREM 2’.
Let f, x, A, B and 0 be defined as in theorem 2.
Let 1p: R ~ R be defined by 03C8(x) = xB-1 2(x).
If 

then

§ 9.6. CONCERNING THEOREM 3

Again, let r : R ~ R be defined by (9.4); hence r(x) = B-1(z)
and consequently 03C8(x) = xB-1 2(x). As proved in § 8, we have the
following three inequalities:

for some

for some

The inequality (8.4) will determine the rate of convergence.
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Substituting in (8.4), (8.5) and (8.6), r(x) = B-1 2(x) and

applying theorem 2’, we can obtain the following theorem in the
same way as we proved theorem 3.

THEOREM 3’.
Let the same assumptions be made as in theorem 3. Then

§ 10. Corollary

Let K be an algebraic numberfield over Q, having only a
finite number of units.

Let R be the ring of integers of K.
We define the probability-function P by

if the limit exists and E C R.

Analogously, we define the conditional probability by

if the limit exists and E1 C R and E2 C R.
We define ’ : R ~ R by

(10.3) f’(e) = ((03BE)), where f : I(R) ~ R is defined by (4.5)
and (e) is the principal ideal generated by e.

As there is no question of confusion, we write  instcad of f’.
If an algebraic numberfield has only a finite number of units

then the results obtained in the preceding sections, with respect
to the set of principal ideals 60, also hold with respect to the
ring R. This is a consequence of the fact that for such an algebraic
field each ideal of 60 corresponds with a finite (constant) number
of algebraic integers. As an example of such a field we mentior-
the field of gaussian numbers.

Thus we can now state the following corollary.

COROLLARY.
Let K be an algebraic numberfield over Q.
Let the number o f units in K be finite.
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Let P be defined by f ormulae (10.1) and (10.2).
Let A, B and 0 be defined as in theorem 1.

Il limx~~B(x) = oo, then

Comment.
If in this corollary, we eliminate the assumption "The number

of units in K is finite", then it no longer holds.
The difficulty which then rises is that, for f ixed x ~ R,

# {03BE ~ R| N03BE ~ x} is not finite in the case of infinity many units.
However, in the next chapter it will become apparent that it

is possible to derive analogous theorems in an arbitrary algebraic
numberfield if, in the definition of the probability-function P,
we replace the condition, N03BE ~ x, by liell ~ x1/n, ~03BE~ being
defined by liell = maxi |03BE(i)| (see § 1, height).

If the number of units is finite, then the condition x1/n,
is obviously equivalent to, N03BE ~ x.

CHAPTER 3

Sets of algebraic integers generated by polynomials
with intégral algebraic coefficients E R and
the argument running through the ring R

of integers of an algebraic numberfield

§ 11. Some introductory remarks and definitions

Let K be any algebraic numberfield of degree n relative to Q.
Let R be the ring of integers of K and I(R) the set of ideals

of R, as before.
Let G(X) be the polynomial

In this chapter R will be considered as the sample-space and
the set-function P will be defined by
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if the limit exists and E C R.
We recall that ~03BE~ is the height of 1, defined by

are the n conjugates of e.
Further

if thé limit exists and El C Rand E2 ~ R.
For each prime-ideal p e I(R) let ne be the canonical operator

and let Gp be defined by

We define

Obviously vo equals the number of mod p different solutions of

Further we define M : R ~ R and M, : R - R by

and

respectively.
Finally, we here state the following lemma.
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LEMMA 4.
Let gl(X) and g2(X) be relatively prime polynomials with integral

coetticients E R.
Then for any prime-ideal p, except possibly for a finite number

of prime-ideals, the two congruences g1(03BE) --- 0 mod p and 92(e) ~ 0
mod p have no solution in common, (03BE ~ R).

Proof o f Lemma 4.
The resultant £0 of g1(03BE) and 92(e) is a non zero integer.
Let us suppose that the two congruences gl(e) = 0 mod p and

g2(e) m 0 mod p have a common solution a.

Then:

and

where g*1(X) and g*2(X) are polynomials with integral coef-
ficients s R.

Let âÈ’* be the resultant of (e-ot)gl*(e) and (e-oc)g2* (e), then
R* ~ R mod p.
However R* is obviously zero, and consequently, R ~ 0 mod p.
Thus, we see, that prime-ideals, for which gl(e) ~ 0 mod p

and g,(e) = 0 mod p have a common solution, divide f1l.
Hence they are finite in number, which completes the proof

of lemma 4.

§ 12. Theorem 4

Let f : I(R) ~ R be defined by (4.5) and 03C1p : I(R) ~ R and
x : I(R) ~ R by (4.4) and (4.6) respectively. Throughout the
chapters 3 and 4 we make the following convention.

CONVENTION.
Whenever we introduce a function 1 : I(R) ~ R, we shall also

-implicitly or explicitly- introduce a function * : R ~ R, such
that

(e) being the principal ideal generated by E.
Since R is the sample-space, *f is a random variable.

From the definitions of 03C1p,  and x it then follows that
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and

respectively.
We define A : R ~ R and B : R ~ R by

and

respectively, vp being defined by (11.7).
We shall prove:

THEOREM 4.

Let *x, G(X), A, B and 0 be defined by (12.4), (11.1), (12.5),
(12.6) and (4.9) respectively.
If limx~~ B(x) = co, then

Proof of theorem 4.
Following the definition of P, formula (11.2), we have for any

given prime-ideal p,

Using the definitions (11.9) and (11.10), we obtain

From Rieger [16], see also formula (3.6), we have

c being a constant only dependent on the field K.
The number of prime-ideals p, for which the congruence

G(e) = 0 mod p holds for every e E R, is obviously finite.
If p is a prime-ideal such that the congruence G(1) - 0 mod p

is not true for every e e R, then the following formula holds:
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In order to prove this let ,r E Rp = R/p.
Take some eo with 03BE0 ~ 039E.

From this and from the definition of vp, formula (12.9) im-
mediately follows.

In the same way as we proved theorem 1, the proof of theorem 4
can now be completed.

§ 13. Some lemmas

LEMMA 5.

Il the polynomial G(X), defined by (11.1) is irreducible in K,
then

V. being defined by (11.7).

Proof of lemma 5.
Let K(~) be the algebraic field of degree m relative to K,

where b is a root of G(e) = 0, G being defined by (11.1) and
assumed to be irreducible in K. For convenience, we put

We recall the definition of XK 1IK., given in the introduction:

NK1/K2 is the norm defined on the ideals and integers of the
field K, relative to the field K2 .
We denote prime-ideals of K(à) by 03B2 and prime-ideals of K

by p.
From formula (3.7), preliminaries, we have

Let v(r)p, 1  r  m, be the number of prime-ideals 03B2 of degree
r relative to K, which divide p.
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Prime-ideals 03B2 of relative degree r will be denoted by 03B2(r).
Clearly

Because we have

Clearly v(r)p ~ m and hence, for r ~ 2,

is convergent, as x ~ oo.
Thus from (13.3) it can be concluded that

We recall the definition of vp, i.e. the number of mod p different
solutions of G(03BE) ~ 0 mod p, 03BE ~ R. From Dedekind [5], it

follows that v. = V(Ol as long as p does not divide the relative
difFerent of the number t9 of the field K(e).
Applying this, (13.1) follows from (13.5).

COROLLARY.
From lemmas 4 and 5 it follows that, if G(X) is the product

o f power-8 o f t different in K irreducible polynomials, formula (13.1)
becomes:

From formula (13.6) it can be deduced that also the following
two formulae hold:

where C* is a constant and

K being a positive constant.
We now state the following lemma.
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LEMMA 6.
Let r :R ~ R be such that

and let 03C8’ : R ~ R be de f ined by

Putting

then

Formulae (13.7) and (13.8) imply that the algorithm applied
in the proof of the basic lemma (§ 5), can again be applied.
Taking into account the considerations concerning the rate of
convergence in § 9.2, it can be seen that formula (18.12) holds
indeed.

Further we can prove the following lemma in the same way as
we proved lemma 3.

LEMMA 7.
Let y : R ~ R be delined by (13.10).
For every E E R, let the ideal m(e; x) be defined by

According to § 9.3, let 03A8* : R ~ R be de f ined by

Then, for some positive constant b

§ 14. Theorem 5

The preceding results now enable us to prove the following
theorem.
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THEOREM 5.

Let *, G(X), A, Band f/J be defined by (12.3), (11.1), (12.5),
(12.6) and (4.9) respectively.

If
then

Proof o f theorem 5.
In the same way as we proved formula (9.14) of theorem 2’,

we can prove

Analogously to formulae (8.4), (8.5) and (8.6), we have for every
03BE E R with 1 le 11 | S x1/n

m being the degree of G(X),

and

The inequality (14.3) will determine the rate of convergence.
If we put r(x) = B-1 2(x), then formula (14.1) immediately

follows, completing the proof of theorem 5.
We note that the constant in the 0-term of formula (14.1)

depends on the degree of G(X).
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CHAPTER 4

Sets of integers generated by polynomials
with integral algebraic coefficients and the argument

running through the ring of rational integers

§ 15. Introduction

As before, let K be an algebraic numberfield of degree n over
the rational numberfield Q, R the ring of algebraic integers of
K, I(R) the set of ideals of R and Z the ring of rational integers.

Let G(X ) be defined by (11.1) and the set-function P by (11.2)
and (11.4), R being the sample-space. In the following two sections
(§§ 16 and 17) we shall prove that for appropriate definitions
of A: R - R and B: R ~ R, theorems like theorems 4 and 5
also hold on the subset Z of R.
We shall call these theorems: theorem 6 and theorem 7

respectively.
In order to elucidate the underlying idea of this chapter we

give the following comment.
Let G(X) be an irreducible polynomial of degree m over Z.

If we consider the set of rational integers generated by this
polynomial, if the argument runs through Z, we could reason as
follows.

Let K be the splitting-field of G(X) over Q.
In K, we have: G(X ) = 03A0mi=1 (X-~i).
Studying the prime-divisors of r-~1, if r e Z, we could hope

to get information about the prime-divisors of G(r), (r e Z).
However, in this chapter it will become apparent that instead

of using properties of r-~1 to deduce properties of G(r), we
want properties of G(r) if we wish to prove the theorem of Erdôs
and Kac [6] on sets generated by r-~1 (r e Z).

In order to have some idea about the type of sets on which
we shall prove theorems like that of Erdôs and Kac in this chapter,
we consider an example.
Let K be the field of gaussian numbers; hence K = Q(i).
Let G(X ) be a polynomial over the ring of integers of K. We

have G(X) = G1(X)+iG2(X), where G1(X) and G2(X) are

polynomials over Z.
If we wish to prove the theorem of Erdôs and Kac on the set

generated by G(r) if r runs through Z, we ask for the asymptotic
behaviour of the distribution of an additive funetion 1 on the
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lattice-points in the complex plane having coordinetes G,(r)
and G,(r), r e Z, respectively.

§ 16. Theorem 6

We will dénote arbitrary positive rational prime-numbers by
p and q.
For each prime-idéal p ~ I(R) let n4’ be the canonical operator

and for each prime-number p let n, be the canonical operator

If p lies above p, then Gp : Zp ~ Rp i s defined by

Now we define 1’4J by

As before, for y E R, let

Defining hp : R ~ R by

it is clear that

where p lies above p.
We prove the following lemma.

LEMMA 8.
For each pair of prime-ideals p C Rand q C R, which lies above

a pair o f different rational prime-numbers p and q respectively
(p =1= q), the following formula holds.
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# {r ~ Z | G(r) ~ 0 mod pq and Irl ~ x}

Proot o f lemma 8.
Let ri be a solution of G(r) ~ 0 mod ,p and ri be a solution

of G(r) « 0 mod q, with r e Z. As is well-known there exists a
r e Z, which is mod pq uniquely determined such that

Hence G(r) ~ 0 mod p and G(r) = mod q, and therefore

G(r) - 0 mod pq.

From this it follows that there are mod pq, and hence also
mod pq, vyvq different solutions of

G(r) ~ 0 mod pq, r ~ Z.

This result immediately gives rise to formula (16.8).
Comment. We draza attention to the f act that, i f p = q and q,

formula (16.8) no longer holds.
Example : Let K be the field o f gaussian numbers and let tU

consider the polynomial G(X) = X-(2+i).

However, there is no rational solution o f r-(2+i) ~ 0 mod 17.

Let 1 and *f be defined on I(R) and R respectively, as in
chapter 3, § 12.

Hence

|(p)| ~ 1 for every prime-ideal p,

(é) being the principal ideal generated by e.
Further, *p,: R ~ R is defined by

For every rational prime-number p we define A, : R - R by
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Hence we have

Now from lemma 8 it follows that, with respect to the subset
Z of R the 039Bp o Gare mutually independent random variables.
We define

Let ve be defined by (16.4) and V4’Q by

Now, it becomes apparent that

and

where we denote the expectation of the stochastic variable

AJ) o G on Z by 03B5(039Bp 0 GBZ).
We now define A : R - R and B : R ~ R by

and

Without any difficulty, it can now be verified that -with

respect to the stochastic variable *x o G on Z- the conditions
of the central limit-theorem (9") are satisfied if, as before, it
is assumed that limx~~B(x) = co.

Applying (9"), we obtain:

THEOREM 6.
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Let A, B, G(X) and 0 be defined by (16.16), (16.17), (11.1),
and (4.9) respectively.
Assume i satisfies the conditions (4.3).
If limx~~B(x) = oo, then

uniformly in u e R, as x ~ 00.

§ 17. Theorem 7

The aim of this section is to prove the following theorem.

THEOREM 7.

Let *1, G(X), A, B and 0 be defined by (12.3), (11.1), (16.16),
(16.17) and (4.9) respectively.

1 f limx~~B(x) = oo, then

uniformly in u ~ R, as x ~ oo.

In order to derive this theorem from theorem 6 we require
lemmas similar to 1, 2 and 3, and a theorem on the lines of
theorem 2.
The essential point is to realize that the reasoning of the basic

lemma can again be applied.
For every rational prime-number p, we define

(17.2) vp = # {U E Zp | Gp(U) = 0 for at least one p above p}.

Firstly, for the sake of convenience, suppose that

Let

be the irreducible polynomial over Q with coefficients aj e Z,
such that J(~) = 0.

Define

Jp being defined by
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Obviously

as firstly G.,(U) = 0 ~ Jp(U) = 0 and
secondly Jp(U) = 0 ~ G.,(U) = 0 for at least one p above p.
Applying results of § 13, (formulae (13.6), (13.7) and (13.8)),

we obtain

LEMMA 9.

I G(X) is defined by (17.3) and vp by (17.2), then the following
three formulae hold.

where D is a constant,

where lJo is a positive constant.
Now suppose

is irreducible over K, af e R.
Consider then the splittingfield of G(X); this field will be

denoted by Kl.
In K1 : G(X) = 03A0mj=1 (X - ~(j)), where the ~(j) are the m con-

jugates.
Denoting prime-ideals of K by p and prime-ideals of K, by

fll we have,

for at least one 03B2 above p.
Define

’ 1 

for at least one 13 above p» 1.
Clearly, if G(X) is defined by (17.11) and P, by (17.2) -with

respect to G(X) in (17.11) we have v’p = yv.
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Hence formulae (17.8), (17.9) and (17.10) also hold, if G(X)
is defined by (17.11).

It is apparent that for these formulae, it is not essential that
the coefficient of xm in G(X) equals 1.

Therefore lemma 9 can be improved to

LEMMA 10.

If G(X) = 03B1mXm+03B1m-1Xm-1+ ... +etlX +«0 is irreducible
over K, ai e R, and i f vp = # {U e Zp 1 Gp(U) = 0 f or at lea8t one
p above p}, then

where D is a corastant,

ao being a positive constant.

Furthermore, owing to lemma 4 (§ 11), formulae analogous
to those in lemma 9 and lemma 10 (see also formulae (18.6),
(18.7) and (18.8)) can be proved for an arbitrary polynomial
G(X), which is not necessarily irreducible.
The proof of theorem 7 is now analogous to that of theorem 8,

except that we have to take some care concerning those prime-
ideals p that divide the discriminant of the field K or the dis-
criminant of the polynomial G(X).
We comment that the reasoning applied in § 9, concerning the

rate of convergence, again holds here. This completes the proof
of theorem 7.

As in the preceding chapter the 0-term of formula (17.1)
depends on the degree of G(X).

It can be noted that the theorems of this chapter also hold
if the argument of the polynomial G(X) runs through the ring
T of integers of an arbitrary algebraic numberfield Ko which is
contained in K.
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CHAPTER 5

The ring Fq[X] of polynomials
over the finite field Fq of q elements

§ 18. Introduction

The above mentioned set may be regarded as analogous to the
set of rational integers.

In the subsequent paragraphs, 19 and 20, it will become

apparent that the theorem of Erdôs and Kac [7] also holds
on the set Fq[X].
One of the most interesting aspects concerning FQ[X] is that -

as a consequence of its simple structure - the pioof of the basic
lemma (§ 5) is quite easy and straightforward in contrast to the
case of rational integers, where the proof of the basic lemma is
very tedious and complicated.

Elements of Fq[X] are denoted by a(x), b(x), etc. As is well-
known every ideal of Fq[X] is a principal ideal.
As before, integral ideals are denoted by Gothic letters such

as a, b etc. Since any ideal is a principal ideal we have a = (a(x)),
where a(x) is the generating polynomial of the principal ideal
(a(x)). To each ideal a = (a(x)) we join the polynomial a(x)
whose highest coefficient is equal to 1.

Prime-ideals are denoted by p, q, etc. or by (p(x)) , (q(x)) etc.
The set of all ideals of Fq[X] is denoted by {Fq[X]}.
We also recall some elementary definitions and properties.
The norm N : {Fq[X]} - R is defined by

(18.1) Na = the number of classes of residues mod a.

We also write: Na(x) = N(a(x)).

We define

We have

Let further
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We have

tt being the MÕbius-function.

Analogously to § 4 we introduce a set-function P on the or-algebra
of all subsets E of {Fq[X]}. P is defined by

if the limit exists and E C {Fq[X]}.
Conditional probabilities are defined in the same way as

in § 4.

§ 19. Theorem 8

Let î be a real-valued function defined on {Fq[X]}, such that

and let la:: {Fq[X]} ~ R be defined by

Now theorem 8 reads as follows.

THEOREM 8.
Let L, A, B and 0 be defined by (19.2), (19.3), (19.4) and (4.9)

respectively.
1 f B(x) = oo, then
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Proof o f theorem 8.
Define 03C1p : {Fq[X]} ~ R by

Consequently

As in chapter 2, it can be shown that the stochastic variables
03C1p are mutually independent and further

From |(p)+| ~ 1 and (18.6) it follows that

and hence

It is now apparent that all the conditions involving the central
limit theorem (L’) have been satisfied, which completes the proof.

§ 20. Lemma 11 and theorem 9

Let Hq : R ~ R be defined by

and put

Taking x E Z+ it is clear that

and
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Further, analogous to § 5, put

Using Sylvester’s principle we obtain

where the set U0 is defined by

Applying (20.3) and (20.4) we can deduce

As an immediate consequence of this we can state the following
lemma.

LEMMA 11.
Let Hq(x) and M(l(x; m) be put as in (20.1) and (20.5) re-

spectively.
Let 03C8 be a function defined on R with

Then

Without any difficulty, we can finally prove the following
theorem.

THEOREM 9.

Let , A, B and 0 be defined by (19.1), (19.3), (19.4) and (4.9)
respectively.

If limx~~ B(x) = oo, then
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