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Extremal points in summability theory
by

J. W. Baker and G. M. Petersen

1.

The main purpose of this paper is to study the norms of
regular summability methods introduced by Brudno in [4]. In this
paper, the term matrix will be reserved for regular summability
matrices. We shall be studying the summability of bounded
sequences throughout. The usual norm for the space of bounded
sequences is ~{sn}~ = sup |sn|, and the unit sphere is the set of
bounded sequences q = {sn} with ~s~  1. If A is a matrix, then
W denotes the set of bounded sequences which are summed by A,
A is called the summability field of A. If {sn} is summed by A,
A-lim sn denotes the value to which it is summed. Two matrices,
A and B, are said to be b-consistent if whenever a sequence is
summed by both matrices, it is summed to the same value by
A as by B; A is said to be b-stronger than B if we have A ~ B.
The following result relates these last two definitions, see [3]
and [7].

THEOREM 1. Il A and B are matrices with A b-stronger than B,
then A and B are b-consistent.
From this theorem it is clear that if A = B then A and B sum

exactly the same bounded sequences to the same values. In this
case we say that A and B are b-equivalent. By the summability
method, U, we mean the set of all matrices which have .saT as their
summability field.

2.

Let A be a matrix, then we have,

A(/4) is called the malrix norm of A. We may define,
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where the supremum is taken over all the bounded sequences s,
which are in the unit sphere and summed by A. If B is b-equivalent
to A, then NB = NA, so that NA is a function of the summability
field A rather than of the matrices. For this reason, for each
matrix we define the field. norm, N(A) by

Since every matrix must sum the unit sequence to unity, the
following theorem is an immediate consequence of Theorem 1.

THEOREM 2. Il A and B are matrices with A b-stronger than B,
we have,

We can also consider

where the infimum is taken over the matrices, A, which have A
as their summability field. The following fundamental theorem
is due to Brudno, [4].

THEOREM 3. For every matrix A,

If there is an A’ in U, such that

we shall say that the field norm of dis attained by the matrix A’;
otherwise, we shall say that the norm is not attained.
We shall subsequently require the following constructions and

notation. Suppose that A1, A 2, ..., A n, ... is a countable family
of matrices. Firstly, we may obtain a sequence, {03BC(k)}, of natural
numbers, 03BC(k) ~ cc, such that,

then it follows that,

Since,

it is clear that there is a sequence, {m(r)}, of natural numbers with
m(r) &#x3E; m(r-1), (r = 2, 3, ...), such that
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if m ~ m(r). Then a sequence {03BB(m)} may be selected so that
A(m) = 1, (m  m(2)), and 03BB(m) = r, (m(r) ~ m  m(r+1)).
Then,

and {03BB(m)}, 03BB(m) ~ oo satisfies,

If necessary, we may also increase the terms of {03BC(m)} so that
Â(m)  p(m), (m = 1, 2, ...), without changing the other prop-
erties of {03BC(m)}. This construction of {03BB(m)} and {03BC(m)} is -of
course possible in particular for a finite set of matrices, A1, A 2, ...,
AN.

Before proceeding further, we require two auxiliary theorems.
We first make some definitions.

DEFINITION 1. Let E be a set of bounded sequences, the set is
said to be uniformly summable to s by the matrix A, if there exists
a squence, {03B5n}, 03B5n ~ 0, such that,

for every sequence, {sn}, in E. The set is said to be uniformly
bounded if there exists an H such that ~{sn}~ s H, for every {sn}
in E.

DEFINITION 2. A sequence {sn} is eventually bounded by the
séquence {03BEn}, if there exists an N such that |sn| ~ lenl, (n ~ N).

If {03B6kn}, 03B6kn ~ 0, (k = 1, 2, ... ), is a countable set of sequences,
let m(k), (k = 1, 2,...) be the index such that,

Let {03BEn} be the sequence defined by 

then {03B6kn} is eventually bounded by {03BEn}, for each k, (k = 1, 2, ... ),
and 03BEn ~ 0.
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THEOREM 4. Let A 1’ A 2, ..., A n, ... be a countable set o f matrices,
and let {snk}, (n = 1, 2, ... ) be a countable set o f uniformly bounded
sequences, such that {snk, (n &#x3E; p) is summed to zero by Ap, (p = 1,
2, ... ). Then, there exists a set o f bounded sequences, {tnk}, (n = 1,
2, ... ) which are uni f ormly summed to zero by Ap, (p  fi, p = 1,
2, ... ), and such that,

PROOF. Let

where,

Since 03B6n,pm B. 0 (n = 1, 2, ...; p ~ n), there exists a sequence {03BEm},
Em B 0, such that {Apm(sn)} is eventually bounded by {03BEm} for each
n and each p, (n = 1, 2, ...; p  n). Therefore, there exists an
N(n) such that,

Let |s|nk ~ H, (k, n = 1, 2, ...), h(Ap) = Mp, (p = 1, 2, ...), and
let (03BB(m)) and {03BC(m)} be chosen as above. Then we have,

where 03B5m,p ~ 0, (p = 1, 2, ...). Let {v(r)} be the sequence of
indices such that Â(v(r» == ll(v(r-1», (r = 2, 3, ...), v(1) = 1.
To construct {tnk}; select q so that,

and set,

and note that |tnk| ~ Is"1, (k, n = 1, 2,...).
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i) If m s N(n), p s n, we have,

ii) If m &#x3E; y[q(q+1)/2], and p s n, we have

iii) If v{q(q-1)/2+r-1]  m S v[q(q-1)12+r], (1 S r S q),
p S n, and if Â’(r) denotes 03BB(v{q(q-1)/2+r]), we have,

iv) If N(n)  m  v{q(q-1)/2], and if Â’(O) denotes

03BB(v[q(q-1)/2]), we have,

(the first sum of the right hand side being taken as zero if 03BB’(0) ~
p(m»). This implies that,

It follows that for every m and n, (m, n = 1, 2, ...), and for p s n,
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where q is such that v[q(q-1)12]  m  v[q(q+1)/2). For fixed
p and n, 4H03B5m,p+03BEm+HMp|q converges to zero as m f 00, and
the proof is completed by observing that if n &#x3E; p, these terms
are independent of n.

DEFINITION 3. Consider the partial sums {ur} of the series

where 1/n appears in the series 2n times, the first n times with the
plus sign, the second n times with the minus sign. We shall call
the sequence {ur} the c-sequence.

It is evident that 0 ~ ur ~ 1, (r = 1, 2, ... ), and that uq(q+1)
= 0, U,92 = 1, (q = 1, 2, ...); if n, = |ur - ur+1|, then limr~~~r = 0.
Suppose that we have a countable set of matrices, Al, A2, ... ,

A n, ... , and that {03BB(m)}, {03BC(m)} and {m(r)} have been chosen as
above. Let v = {vr} be a sequence of real numbers with 0  v, s 1,
(r = 1, 2, ... ). Suppose that the set of zeroes of this sequence is
infinite so that vz(k) = 0, (k = 1, 2, ... ), say, z(k) f oo. For each
natural number r, r ~ m[z(1)], there exists q = q(r), such that,

For each r, r ~ m[z(1)], and each q(r), let I (v, r, q) denote the
interval,

Every natural number k, k &#x3E; Â(m[z(l)]), belongs to a unique
interval I(v, r, q ).

In particular, if u = {ur} is the c-sequence, then I(u, r, q) is the
interval,

and if u’ = {1- ur}, then I (u’, r, q ) is the interval,

We now state the following theorem, which is a generalization of
Theorem 4 of [2].

THEOREM 5. Let A = (am,k) be a matrix. Choose {03BB(m)}, {03BC(m)}
and {m(r)} as in the beginning o f this section. Let v = {vr} be a
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sequence as above, with O.  vr ~ 1, (r = 1, 2, ...) and limr-~
y,. = 0, where y,. = |vr - vr+1|, ( r = 2, 3, ... ). Then, i f {sqk},
(q = 1, 2, ... ) is a countable set o f uniformly bounded sequences,
uni f ormt y summed to zero by A, the bounded sequence {sk} is A
summable to zero, where,

PROOF. Let {sk} be the sequence described in the theorem,
h(A ) = M, and |sqk| ~ H, (k, q = 1, 2, ... ). Let {03B6m} be a sequence,
03B6m ~ 0, such that,

For m with Â(m) in I(v, r, q),

(the third sum to be taken as zero if Â(m(r+1)) ~ 03BC(m)).
It follows that,

and the sequence {sk} is A summable to zero.
This theorem is true in particular if v = {ur} or v = {1 - ur}. We

shall describe the operations performed in Theorem 4 as inter-
weaving the sequences {sqk}.
Now suppose that A is a matrix, and that sn = {snk}, (n = 1, 2,

... ), are sequences in the unit sphere with A -lim s" = an. Suppose
that limn~~03B1n = oc, and that the sequences {snk- 03B1n}, (n = 1,
2, ... ) are summed uniformly to zero by A. Let {t2k} be defined by

and

and

and

where is the c-sequence {ur}, and u’ the sequence, {1 -ur}.
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From Theorem 4 it follows that (t)) and (ti) are botii summed
to zero by A. Let tk = t1k + t2k, (k = 1, 2, ...), then {tk} is also

summed to zero by A, and {tk+03B1} is summed to « by A. Now if
Â(m(q2»)  03BB(m(r))  k ~ 03BB(m(r+1)) ~ 03BB(m[q(q+1)]), we have
k in I(u, r, q ) n I(u’, r, q), and

and if 03BB(m[q(q+1)])  03BB(m(r)) çk ~ 03BB(m(r+1)) ~ 03BB(m[(q+1)2]),
we have k in I(u, r, q+1) n I(u’, r, q), and,

Now the sequence {vk} defined by

and

converges to zero. Thus the sequence {sk}, defined by,

is A summable to a, further, {sk} is in the unit sphere.
Hence, we have the following:

THEOREM 6. Let A be a matrix, and suppose that {snk}, (n = 1,
2, ...) are sequences in the unit sphere with A -lims" = otn. Suppose
that limn~~03B1n oc, and that the sequences k (n = 1, 2, ...)
are summed uniformly to zero by A. Then there is a sequence in the
unit sphere, {sk}, such that A -lim sk = oc.

From this theorem we can immediately deduce the following,
which is originally due to Brudno, see [4].

THEOREM 7. Let A be a matrix. Then A sums a sequence in the
unit sphere, s, with

PROOF. By definition of N, we have sequences sn = {snk},
(n = 1, 2, ...), in the unit sphere with A -lim sn = an, and lim._ ,,.
an = N(A). After theorem 4, we may assume that these sequences
are uniformly summable by A, without altering other properties.
Theorem 6 then implies that we can construct a sequence s in the
unit sphere with

In [3], see also [7], the following has been shown.
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THEOREM 8. Let A 1, A 2, ..., AR, ... be a countable set o f regular
matrices, with An ~ An+1, (n = 1, 2, ...), then the intersection o f
their bounded convergence fields is the bounded convergence f ield o f
some matrix A.
Theorem 6 enables us to obtain more information in this direc-

tion.

THEOREM 9. Let A l, A 2, ..., An, ..., be a countable set o f regular
matrices with An ~ An+1, (n = 1, 2, ... ), then il A = ~~n=1 dR,

PROOF. From Theorem 7, we can construct sequences sn = {snk}
in the unit sphere with

Now {03B1n} is a decreasing sequence of positive numbers and bound-
ed from below by Theorem 2. Hence, mi, = oc, say. It is

clear from Theorem 4, that we may assume that for each r,

(r = 1, 2, ... ), the sequences {snk}, (n = r, r+1, ... ), are uniform-
ly summed by Ar. We may construct a sequence {sk} by using
functions 03BB(m) and ,u (m ) that are appropriate for all the matrices
Ar, (r = 1, 2,... ), (as in (3), (4) and (5)) and using the sequences
{snk}, (n = 1, 2, ... ) for an interweaving as in the proof of Theorem
6. Since only finitely many terms of {sk} are derived from the
sequences {snk}, (n  r), it is clear that as in Theorem 6, we have,

Thus y belongs to ~~n=1 W" = A, and from Theorem 1 we have
A -lim s = a. But s is in the unit sphere, hence, N(A) ~ oc. From
Theorem 2 we see that N(A) ~ limn~~N(An) = a and this
implies that N(A) = limn~~N(An) as required.

3.

We are now going to consider some results which follow from
Theorem 7.

DEFINITION 4. If A is a matrix, a sequence q in the unit sphere
is called an extremal point of d if

A -lim s = N(d).

Hence, Theorem 7 tells us that every bounded convergence
field of a matrix has at least one extremal point.
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THEOREM 10. Suppose that A is a matrix and thats is an extremal
point o f .91. Then lim supn~~ sn = 1. Further, i f N(d) &#x3E; 1, we
also have lim sn = -1. Before proceeding to the proof we
remark that the condition N(A) &#x3E; 1 is essential to obtain
lim infn~~ sn = -1, since any matrix with N(d) = 1 will sum
the unit sequence {1}, to the value 1 = N(A).
PROOF. Let s be an extremal point of A. Suppose that

lim supn~~ sn = U  1. We can f ind an no such that sn  U+
L/2, for n ~ no. Define s’ = {s’n} by

Then (81) is the unit sphere. If N(A) = N, then A-lim s’ = N+
1- U j2 &#x3E; N. This contradiction establishes the first part of the
theorem.
Now suppose that N &#x3E; 1, and that lim infn~~ Sn = L &#x3E; -1.

Let e = (L+1)/8 &#x3E; 0. We have s. ~ -1 + 403B5, if n ~ n1, say. Let

Then

Thus, {tn}, is in the unit sphere. Also,

Thi s contradiction establishes that L = -1, and the theorem is

proved.
THEOREM 11. Let A be a summability method such that N (.91) &#x3E; 1.

Il the norm 0f d is attained, there is an extremal point 0f A, {sn},
such that s, = 1, or sn = -1, (n = 1, 2, ... ).
PROOF. Without loss of generality we may assume that- A is a

matrix with h(A ) = N(A). Let s be an extremal point of W. Then
~s~ =1, A-lim s = N (A) and lim infn~~ sn = -1, lim supn~~ sn =1.
We define s’ = {s’n} by
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We shall show that lim,
h(A ) = N, so that if {tn} is in the unit sphere, then,

Suppose that

then,

However, |2sn-s’n| ~ 1, (n = 1, 2, ...), so in view of (6) we must
have,

But (6) is also applicable to s’, so we have

Hence, A sums s’ to N, and s’ is the required sequence.

4.

We now consider some examples and applications. Firstly,
it is possible that a summability method does not attain its norm.
Consider the matrix, A, which transforms the sequence {sn} into
the sequence {tn}, as follows:

If {sn} is the sequence with s4n-3 = 1 2, 84n-2 = 01 84n-1 = 1,
s4n = -1, then A sums {sn} to the value 3. Hence N(A) ~
3 &#x3E; 1, but the matrix defined by the even numbered trans-
formations is b-stronger than A and has a matrix norm 3. From
Theorems 2 and 3 we see that N(A) = 8. It is clear that no

sequence {s’n} of l’s and -1’s with lim supn~~ sn = 1, lim infn~~
sn = -1 can be summed by A. In view of Theorem 11, we con-
clude that A does not attain its norm. Further, if B is any matrix
such that fil ~ A, and N(B) &#x3E; 1, the above argument shows us
that fil cannot attain its norm. Thus A is a matrix such that no
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method weaker than J2/ which has field norm strictly greater than
unity, can attain its norm.

A slightly different example is the matrix A defined by the
transformations,

Here, N(A) = 3 and the reader can show by arguments similar
to the above that no weaker matrix attains its norm; however,
in this case h(A) = N(A).
The following result which is proved in [6], Theorem 4, is rele-

vant here. In the terminology of this paper it is as follows:

THEOREM 12. For each summability method fll, there is a method
-q,d, with N(B) = N(B0394) such that the norm o f B0394 is not attained.
We remark that, as is clear from the proof given in [6], and was

meant to be included in the statement of the theorem, the method
B0394 is b-stronger than B.

This result means that the converse of Theorem 11 is not true in

all cases. In fact, let A be a matrix which sums a sequence s = {sn}
with sn = 1 or sn = -1, (n = 1, 2, ...), to the value N(A).
Suppose that the norm of W is attained. Choose a matrix A 11 such
that N(A) = N(A0394), and such that the norm of .9111 is not

attained. Then A0394 sums s to N(A) = N(A0394). Thus every

sequence which is an extremal point for some method is an extremal
point for a method for which the norm is not attained.
We now turn to another application. We recall the following

theorem, see [8], Theorem 2.

THEOREM 13.. Let A be a matrix. Then there exists a positive
sequence {xn} such that 03A3~n=1 xn = oo, xn ~ 0, and such that a bounded
sequence {sn} is summed to zero by A i f and only if, every sequence of
the form {03BEn sn} is a member of d, where {03BEn} is bounded and

En-En-l = 0(xn).
In fact a glance at the proof shows that the sequence {xn}

which is constructed has the property that {03BEnsn} is not only
summed by A, but is summed to zero by A.
Now suppose that we have a matrix A, and a sequence s = {sn}

summed to zero by A in A, where lim supn~~ sn = a, lim infn~~
sn = P, with a &#x3E; 03B2 &#x3E; 0. Then we can find sequences {nk} and
{pk} of natural numbers, strictly increasing for which limk~~ snk = a,
limk-+oosp1c = 03B2. Suppose that oc’ &#x3E; 03B2’ &#x3E; 0, define ao = oc’/oc,
03B20 = 03B2’/03B2. We may clearly construct a sequence {03BEn}, as in Theorem
13, for which A-lim Ensn = 0,
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and also 03B10 ~ 03BEn ~ Po, (n = 1, 2,... ). Then we have

THEOREM 14. Suppose that A is a matrix, and that N(.9I) &#x3E; 1.

Then f or each a, 1  a  N(A), there exists a sequences t = {tn}
i11,.91 with A -lim t = a, lim sup,._,,,. tn = 1, lim infn....oo tn = -1 and
litil | = 1.

PROOF. Let s = {sn} be an extremal point of .91, so that A -lim
s = N(.9I) = N, lim supn~~ sn = 1, lim infn~~ sn = -1. Let

s’n = N-sn&#x3E; 0, (n = 1, 2, ...). Then lim supn~~ s’n = N + 1,
lim infn~~ s’n = N -1, A -lim sn = 0, and

As indicated above, we may find a sequence {03BEn} with A-lim
{03BEns’n} = 0, 

Now,

and

also -1 ~ tn ~ 1, (n = 1, 2, ... ). Further, A -lim tn = a, and
thus {tn} is the required sequence.
THEOREM 15. I f A is a matrix, and N(A) &#x3E; 1, then f or each a,

1  a  N(A), there exists a matrix B, with N(A) = a, and such
that A is b-stronger than B.
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PROOF. Let s = {sn} be a sequence with ~s~ = 1, lim infn~~
s. = -1, lim supn~~ sn = 1, and A -lim s = a. We may construct
two disjoint sequences of natural numbers, {nk} and {pk}, strictly
increasing, such that,

Define the matrix

and

Then,

also C-lim s = a. We may then define a matrix B = (bm,n) by
the equations,

Then we have /J4 C s/ n W. Thus, by Theorem 2, N(B) ~ N(L)
S a, but on the other hand B-lim s = a, so that ~B~ = N(B) = a,
and B is the required matrix.
As a final application, we prove the following:
THEOREM 16. Il W is a summability method, and i f the norm o f

A is attained, there is a matrix B belonging to the method, such that,
i) h(B) = N(sI),
ii) in every column of B, all the non-zero elements have the same

sign.
PROOF. We assume that h(A) = N(d), (if limm~~03A3~n=1|am,n|

= N(A) but h(A) ~ N(A), this result may be achieved by multi-
plying the rows of A by the appropriate factors). Now there is
an extremal point, s = {sn}, of A for which sn = 1 or sn = -1,
(n = 1, 2, ... ). We define the matrix B, by

This matrix clearly satisfies condition ii, also h(B) = h(A) =
N(A). Thus, we only have to verify that f1Ã = A. Let rom be the
set of indices, n, for which 8nam,n  0, (m = 1, 2, ... ). Then,
if t = {tn} is any bounded sequence,
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Hence, we have,

and,

Now,

However,

and it follows that, since

then

Hence, B sums s and

with (7) and (8), this implies that

and that A = a as required.

5.

We wish to make some brief comments on ’diagonalization’.
By this latter term, we mean the following: Suppose a = {A1,
A2, ..., A fi, ...} is a countably infinite set of matrices. In [1] and
[2], we have obtained necessary and sufficient conditions for the
existence of a matrix A, which is b-stronger than, (and b-consistent
with) every matrix in a. However, these conditions did not indicate
a method of construction of such a matrix. When we speak of a
diagonalixation we shall mean that there are sequences {n(k)},
and {p(k)}, n(k) ~ oo and p(k) l’ oo, of natural numbers so that
the n(k)th row of the matrix Ap(k) is the kth row of A. It is clear
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that in general, such a diagonalization does not give a matrix
b-stronger than every member of oc.
We recall the following definition, see [2]. If oc = {A1, A 2, ...,

An, ...} and f3 = {B1, B2, ..., Bn, ...} are countable infinite

sets of matrices, we shall say that a and f3 are b-equivalent if A n
is b-equivalent to Bn, (n = 1, 2, ... ).
The existence of a matrix A, b-stronger than all members of oc

was shown in [2] to depend on the properties of the sets of matrices
which are b-equivalent to oc.

THEOREM 17. Suppose that a is a countably in f inite set o f matrices,
and that there exists a matrix A which is b-stronger than each member
o f a. Then there exists a set o f matrices, f3, b-equivalent to ex, such that
every diagonalization Irom f3 gives a matrix b-stronger than each
member o f oc. I n f act every such diagonalization zvill be b-stronger
than A.

PROOF. Choose a sequence {03B5n}, a. &#x3E; 0, (n = 1, 2, 3, ... ) such
that

We define the matrix Bn, (n = 1, 2, ... ), by the equations,

It is clear that if A is b-stronger than An, Bn is b-equivalent to A n.
Let B be a diagonalization from 03B2, it is clear that B is b-stronger
than A and hence b-stronger than every member of oc. This com-
pletes the proof of the theorem.

This problem . has also been discussed by Brudno, [5].

6.

We close by stating two important questions which arise in
this paper.

1. We have seen that if the norm of a method is attained, there
is necessarily a sequence of l’s and -1’s summed by the method
to N(A). If the norm is not attained, is there necessarily a sequence
in the unit sphere, {sn} which is summed by the method to N(A)
and such that

We have seen of course, that if this is the case, the norm is not
attained.
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2. A question proposed by Brudno also remains. For each
method, is there necessarily a stronger method of the same norm
which attains the norm?
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