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Clans

by

Oswald Wyler *

Introduction

The set RX of real-valued functions on an abstract space X,
with addition and order defined in the usual way, i.e. "pointwise",
is a lattice ordered real vector space. We call a non-empty subset C
of this space a clan ollunctions on X if C is a sublattice of RX and
satisfies the following two conditions.

(1) If f, g are in C and f s g, then g-1 is in C.
(2) If f, g, h in C are such that g- f and h-g are in C, then

h - f is in C.
Lattice-ordered vector spaces and additive groups of real-

valued functions on X are clans of functions on X. The functions

f ~ 0 in a clan C of functions on X form a subclan of C. A class R
of subsets of X is a ring of sets, as defined in [4], if and only if
the characteristic functions of the sets in R form a clan of func-
tions on X. The last of thèse examples motivated the name "clan",
since rings of subsets of X are called "clans de parties de l’en-
semb’le X" in [3].
The examples show that the classes of functions commonly

encountered in the theory of measure and integration are clans.
In fact, a unified theory of measure and the Daniell integral has
been developed for clans of functions. An account of this theory
will be published elsewhere.

In the present paper, we develop a theory of abstract clans. An
abstract clan is, by définition, a lattice in which a binary operation,
called subtraction and subject to certain axioms, is defined.
Boolean algebras and lattice ordered groups are abstract clans.
Thus our theory of clans solves Problem 105 of Birkhoff’s Lattice
Theory (see [2], p. 233).
The f irst part of this paper ( §§ 1- 5) is concerned with the gener-

al theory of clans. We define clans, give some examples, and intro-

* This work was supported in part by Grant GP-1816 of the National Science
Foundation.
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duce addition in a clan. We show that the basic properties of
lattice-ordered groups remain valid, almost without restriction,
for clans.

In the second part of the paper (§§ 6-9), we develop the
theory of commutative clans. We show that every commutative
clan can be embedded, as a subclan, into a lattice-ordered
abelian group. In fact, we define a "free" embedding functor from
commutative clans to lattice-ordered abelian groups. In the last

section, we discuss Boolean rings and Archimedean clans.
Two unsolved problems should be signalled. First, when is a

commutative clan isomorphic to a clan of functions on an abstract
space, as defined in this Introduction? Second, can every non-
commutative clan be embedded, as a subclan, into a lattice-
ordered group, or how can the clans be characterized which can
be so embedded?
We use the notations of [2] in this paper, except that we usually

write "ordered" for "partly ordered". We denote by (m n)
the nth proposition or theorem of § m.

1. Axioms and examples

We define an abstract clan as a lattice C with a binary operation
a, called subtraction and mapping a subset E of C X C into C,
which satisfies the four axioms listed below and also Axiom C7
of § 5. We write b-a for a(a, b ), and we say that b-a is delined,
if (a, b) e 1.
The first four axioms are:
CI. For a, b in C and a s b, b-a is defined.
C2. For a, b, c in C and a u b  c, we have a s b if and only if

c-b s c-a.
C3. For a, b, c in C if b - a and c - a are defined and b s c, then

b-a ~ c-a and (c-a)-(b-a) = c-b.
C4. For a, b, p in C, if b  p and a s p-b, then there is an

element c of C such that p - c is defined, and p - c = (p - b) - a.
The following examples show that Axioms C2 -C4 are essentially

independent.
[C2] Let C be any lattice, and let or(a, b) = b for a s b.
[C3] Let C be a lattice-ordered group, and let Q(a, b) = -a

for any a, b in C.

[C4] Let C be the set of integers ~ -p, p &#x3E; 0, and let Q(a, b)
= b-a for a, b in C and a  b.
A sublattice S of a clan C is called a subclan of C if the following
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conditions are satisfied.
SI. For a, b in S and a  b, b - a is in S.
S2. For a, b, p in S, if b s p and a  p -b, then there is an

element c in S such that p - c is defined and p - c = (p-b)-a.
A mapping f : C ~ Ci of a clan C into a clan Cl is called a clan

homomorphism from C to Cl if f is a lattice homomorphism from
C to Ci and satisfies the following condition.
Ml. For a, b in C and a ~ b, f(b)-f(a)= f(b-a).
These are the definitions one expects, and subclans and clan

homomorphisms have the expected properties. We need not go
into details.
We now are ready to give some examples of abstract clans.
(1.1) A lattice-ordered group L can be made into a clan in two

ways. First, we may put 03C3(a, b ) = b - a = b + (-a) for a  b in
L, or for any a, b in L. Second, we may put Q(a, b) = (-a)+b
for a  b in L, or for any a, b in L.
C1-C4 (and also C7) are easily verified in both cases. We shall

consider the first of the two clans just defined as the clan under-
lying L, and the second clan as the dual clan of L (cf. § 4 below).

(1.2) Let .9 be a class of subsets of a set X, with inclusion as
order relation, and with subtraction defined by 03C3(A, B ) = B - A
for A, B in R and A C B. Then .9 is an abstract clan if and only
if R is a ring of sets in the usual sense.
More generally, any Boolean ring R becomes a clan if we put

03C3(a, b) = b-a for a, b in R and a ~ b.
(1.3) Clans of functions on an abstract space X, as defined in the

Introduction, are subclans of the clan RX of functions from X to R.
More generally, if C is any clan, then the set CX of functions
from X to C, with order and subtraction defined "pointwise",
is a clan.

(1.4) As a further example, we consider clans of real numbers,
with order and subtraction defined as usual.

If C ~ {0}, then C has positive elements. If C has a least positive
element d, then it is easily verified that any element of C is an
integral multiple of d, and that only the following three possibili-
ties occur:

(i) C = {0, d, 2d, ..., md} for some positive integer m.
(ii) C consists of all multiples kd, k a natural number.
(iii) C consists of all multiples kd, k any integer.
If C has no least positive element, and if a &#x3E; 0 is in C, then it is

easily seen that C is dense in the interval [0, a]. If we assume that
C is a closed set of real numbers, we have again three possibilities:
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(i) C = [0, p] for some real number p &#x3E; 0.

(ii) C = R+ consists of all non-negative real numbers.
(iii) C = R consists of all real numbers.

2. Properties of subtraction

We assume from now on that a clan C is given. Lower case
letters denote elements of C. In this and the next two sections,
we use very little of the lattice properties of C. In fact, we use
only the property that any two elements of the ordered set C
have a common upper bound.

(2.1) If b-a and c-a are defined, then b-a ~ c-a if and only
if b ~ c.

PROOF: Let a ~ b ~ c ~ t. Then (t-a)-(b-a) = t-b, and

(2.2) If a-b and a-c are defined, then a-c ~ a-b if and only
if b  c.

(2.3) If b-a and b’-a are defined, then b-a = b’-a if and
only if b = b’. If b-a and b-a’ are defined, then b-a = b-a’ if
and only if a = a’.

This follows immediately from (2.1) and (2.2)

(2.4) The equation x-x = x has a unique solution in C which
we denote by 0. This zero element of C has the following properties.
a-a = 0 for any a E C, and u-0 = u for any u e C such that
u-0 is defined.

PROOF: If x-x = x and x ~ t, then t-x = (t-x)-(x-x)
= (t-x)-x by C3, hence t-x = t by (2.3). If also y-y = y and
x u y ~ t, then t-x = t = t-y, hence z = y. For any a e C,
(a-a)-(a-a) = a-a by C3, so that a-a is a solution of the
equation x-x = x. Finally, if x-x = x and u-x is defined, then
t-u = (t-x)-(u-x) = t-(u-x) for x u u  t, by C3 and the
results already obtained, hence u-x = u by (2.3).

and Then
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c  p. If p  r, then b S r and a  r-b. For any q e C, if b S q
and a  q-b, then (q-b)-a = q-c, for the same c.

PROOF: (p-b)-a &#x3E; (p-b)-(p-b) = p-p, hence c s p, by
C3. and (2.2). The second part is obvious. For the third part, let
p ~ q ~ r. Then (r-c)-(p-c) = r-p = ((r-b)-a)-((p-b)
-a) by C3, hence (r-b)-a = r-c by (2.3). In the same way,
(q-b)-a = q-c.

3. Addition

For a, b in C such that b S p and a S p-b for some p e C,
we define ca-f-b in C by putting p-(a+b) = (p-b)-a. By C4
and (2.5), this defines a+b uniquely, independently of p. If there
is no p e C with b  p and a S p-b, then a + b is not defined in C.

In a lattice-ordered group L, we have p - (a + b) = (p-b)-a
for any a, b in L and p ~ b ~ (a+b). Thus addition in the clan
underlying L is the same as addition in L, as it should be.

Condition S2 for subclans (p. 4) can now be reformulated as
follows.

S21. For a, b in S, if a+b is defined in C and majored in S,
then a + b is in S.

(3.1) a+0 = 0+a = a for all a e C. If b-a is defined in C,
then (b-a)+a = b in C.

PROOF: (p-0)-a = p-a, for a u 0 ~ p, and (p-a)-0 =
p-a, for a S p, prove the first part. If b-a is defined in C, then
(p-a)-(b-a) = p-b for a u b s p, by C3, proving the second
part.
The second part of (3.1) shows that we could have defined clans

in terms of addition, instead of using subtraction as the basic
operation. However, the definition in terms of subtraction seems
to be more natural and simpler.

(3.2) If a-f-b and a+c are defined in C, then a+b ~ a+c if
and only if b S c. If b+a and c+a are defined in C, then b + a
S c+a if and only if b s c.

(3.3) If a-f-b and a’+b are defined in C, then a+b = a’+b
if and only if a = a’. If a-f-b and a+b’ are defined in C, then
a-f-b = a-E-b’ if and only if b = b’.

PROOF: If a-f-b and a-j-c are defined, then we can choose
p e C so that b u c s p, a s p - b, a ~ p - c, by (2.5). Then
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b  c ~ p-c  p-b « (p-c)-a  (p-b)-a ~ p- (a+c) 
p-(a+b)~a+b ~ a + c, by C2 and (2.1). The second part of
(3.2) is proved similarly, and (3.3) is an immediate corollary.

(3.4) Let a+b be defined in C. If a’  a, then a’+b is.defined.
If b’  b, then a+ b’ is defined.

PROOF: If b  p and a  p-b, then a’ ~ p-b for a’  a, and
a’+b is defined. The second part is proved similarly.

(3.5) If b + c and a+(b+c) are defined in C, then a + b and
(a+b)+c are defined in C, and (a+b)+c = a+(b+c).
PROOF: We can choose p e C such that c  p, b  p-c, and

a ~ p-(b + c). Then we have:

and (3.5) follows.
In view of (3.1), it seems natural to extend subtraction in C by

putting b-a = x whenever x-f-a = b in C. We show that axioms
C1-C4, and hence all results proved so far, remain valid, and that
addition in C is not extended, if we extend subtraction in this way.

First, if x-E-a = b &#x3E; a, then (b-a)+a = b by Ci and (3.1), so
that x = b-a. In other words, no new positive differences b-a,
a S b, are obtained by extending subtraction.
Now it is clear that addition is not extended, and that Cl,

C2, C4 remain valid, since only positive differences are used in
these axioms, and in the definition of addition. We must prove,
however, that C3 remains valid.

Suppose that e+a = b, y+a = c, and b  c. Then x ~ y by
(3.2), and y+a = c = (c-b)+b = (c-b)+(x+a) = ((c-b)+x)
+a by (3.1) and (3.5), so that y = (c-b)+x, and (c-a)-(b-a)
= y-x = c-b. This proves C3 for extended subtraction.
From now on, we shall use subtraction in C in the extended

sense. Then we have the following useful result.

(3.6) If b-a and c-b are defined in C, then c-a is defined in
C, and c-a = (c-b)+(b-a).
PROOF: If z+a = b and y+b = c, then y+(x+a) = (y+z)+a

= c by (3.5), so that c-a = (c-b)+(b-a).

4. Symmetric and commutative clans

We call a clan C symmetric if C satisfies:
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C5. For a, b in C and a s b, there is an element t of C such that
a+t = b.
A clan C is called commutative if C satisfies:
C6. For a, b in C, if a + b is defined in C, then b + a is defined in C,

and a+b = b+a.
In a symmetric clan C, we define dual subtraction a* by putting

0* (a, b) = b * a = x if a+ x = b, and leaving a* (a, b ) undefined if
the equation a+x = b does not have a solution in C.
For a lattice-ordered group L, dual substraction is defined for

any a, b in L by b * a = (-a)+ b. This example shows that C6 is
independent of the other axioms, including C5. On the other hand,
we have:

(4.1) A commutative clan C is symmetric, and b *a= b -a
whenever b - a is defined.

PROOF: a+x = b « x+a = b if C is commutative, and (b-a)
+b = a+(b-a) = b if a ~ b.

The following example shows that C5 is independent of C1-C4
and C7.

[C5] Let L be the group generated by an element e and a doubly
infinité sequence of elements ak, all of infinité order, with the
relations

for all integers h, k. Then L consists of all formal sums me+03A3~k=-~
nkak, with only a finite number of coefficients nk ~ 0. We put

if either m  m’, or m = m’ and nk  nk for the smallest integer k
such that nk n’k. This defines a linear order relation in L which is
easily seen to be compatible with addition. Thus L is a linearly
ordered group, and all the more a lattice-ordered group. Let now
C consist of all elements me+ 03A3 nkak ~ 0 of L for which m = 0
or m = 1, and nk = 0 for all integers k  0. It is easily verified
that C is a subclan of L (use S21 (p. 8) instead of S2 !). However,
ao and e are in C, and ao  e, but (-a0)+e = e - a-1 is not in C.
The following result is trivial, but useful.

(4.2) In a symmetric clan C, a+b = c ~ c - b = a ~ c * a= b.

If a statement $ about a symmetric clan C is formulated in
terms of lattice operations and subtraction, we obtain a dual



179

statement 03B2* by replacing subtraction by dual subtraction through-
out. From the formulas

it follows that dual subtraction must be replaced by subtraction,
and the order of terms in a sum reversed, when changing !p into
13*. From this, it follows that the dual statement of 03B2* is 03B2.

(4.3) A statement $ about a symmetric clan C is valid if and
only if the dual statement 03B2* is valid.

PROOF: We need only show that the dual statements Cl*-C5*
of Cl-C5 are valid. Then any proof of a statement $ becomes a
proof of 03B2* if every step of the proof is dualized.

Obviously, Cl* ra C5 and C5* ~ Cl.
If a u b S c, and if c = a+x = b+y, then a ~ b ~ a+y

 b+y = a+x ~ y ~ x. This proves C2*.
If b = a+x, c = a+y, and b s c, then x ~ y by (3.2). If

y = x+u, then c = a+ (x+u) = (a+x)+u = b+u by (3.5).
Thus u = c * b =y*x = (c * a) * (b * a). This proves C3*.

If b ~ p and a ~ p * b, let p = b+x and p * b = x = a+y.
Then p = b+(a+y) = (b+a)-f-y, so that (p * b) * a = p * (b+a).
This proves C4*, and one of the formulas displayed above.
Combining (3.5) and its dual statement, we obtain the following

strong associative law of addition for symmetric clans.

(4.4) For a, °bg c in a symmetric clan C, a+b and (a+b)+c
are defined in C if and only if b+c and a + (b + c) are defined in C,
and then (a+b)+c = a+ (b+c).
We define a symmetric subclan of a symmetric clan C as a

subclan of C which satisfies the dual condition S1* of Si as well as
S1 and S2 (see p. 17’4). Example [C5] of p. 178 shows that not
every subclan of a symmetric clan C is symmetric.
The following result shows that condition S2, for a symmetric

subclan S of a symmetric clan C, can be replaced by:
S3. For a, b, c in S, if b-a and c-b are defined in C and ele-

ments of S, then c-a is in S.

(4.5) For a sublattice S of a symmetric clan C which satisfies Si
and SI*, the four conditions S2, S3, S2*, S3*, are logically equiv-
alent.
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PROOF: If b-a and c-b are defined and in S, with a, b, c
in S, let a u b u c s t, t e S. Then (t-a)-(b-a) = t-b and
(t-b)-(c-b) = t-c = (t-a)-(c-a) are in S. Using S2 with
p = t-a, we conclude that c-a is in S. Thus S2 ~ S3.
For a, b, p in S, with b ~ p and a S p * b, we have b =

p-(p * b) and a = (p * b)-((p * b) * a). If S3 is valid for S,
then p-((p * b) * a) = b+ a is in S. Thus S3 =&#x3E; S2*.

Dually, S2* =&#x3E; S3* and S3* ~ S2.

5. Lattice properties of addition

From now on, we shall use the lattice properties of the clan C to
full extent. (5.1)-(5.3) use only axioms Cl-C4. From (5.4) on,
we use also C5 and the following axiom.

C7. For u, v in C, if u n v = 0, then u+v is defined m C.
This is obviously self-dual. The following example shows that

C7 is independent of the other axioms, including C6.
[C7] Let C = {0, a, b, c}, with 0  a ~ c and 0 ~ b S c

defining the order relation. Let x-x = 0 and x-0 = x for any
x e C, and let c-a = a and c-b = b. This satisfies C1-C4 and
C6, hence also C5, but a n b = 0 and a+b is not defined in C.

(5.1) If u=a-(anb) and v = b-(a~b), then u ~ v = 0.

PROOF: u ~ a-a = 0 and v ~ 0, hence u n v ~ 0. On the
other hand, if x ~ u n v, then x+(a n b) ~ u+(a n b ) = a,
and x+(a n b) ~ b, hence x+(a n b)  a n b, and x ~ 0.

(5.2) If a+c and b + c are defined in C, then (a+c) n (b + c)
= (a n b)+c.

PROOF: Obviously, (a n b)+c  (a+c) ~ (b+c). On the other
hand, let a = u+(a n b), b = v+(a ~ b), (a+c) n (b+c) =
z+(a n b)+c. Then z+(a n b)+c  u+(a n b)+c, hence z ~ u.
Similarly, z  v. Thus z ~ 0 by (5.1). But z ~ 0, hence z = 0.

(5.3) If a+c and b+c are defined in C, then (a ~ b)+c is
defined in C, and (a + c) u (b + c) = (a u b)+c.
PROOF: If a+c and b+c are defined, then we can choose p e C

so that p ~ c and p-c ~ a, p-c ~ b. It follows that (a u b)+c
is defined. Clearly (a+c) u (b+c) £ (a u b)+c. On the other
hand, let x ~ a+c, x &#x3E; b+c. Then x = u+(a+c) = (u+a)+c,
with u ~ 0 and u+a = x-c ~ a. Similarly, x-c ~ b. Thus
x-c ~ a ~ b, and x = (x-c)+c ~ (a u b)+c.
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From now on, we assume C5 and C7.

PROOF: Since u u v ~ u+v, we have u u v = u’+v = u+v’,
with 0 ~ u’  u, 0 ~ v’ ~ v, by CI, C5, and (3.2). If v = x+v’,
then u u v = u’ + (x + v’) = (u’+ x) + v’ = u + v’, hence u =

u’+x. Thus x  u, x  v, hence x ~ 0. But x ~ 0, hence x = 0.

PROOF: Let u = a-(a n b) and v = b-(a n b). Then u n v = 0
by (5.1), and a ~ b = (u+(a n b)) u (v+(a n b)) = (u u v)+
(a n b) = u+v+ (a~ b) = u+b, by (5.3) and (5.4). Thus u
= (a u b)-b.
We denote by C+ the set of elements a ~ 0 of C, by C° the set of

all a e C such that -a = 0-a = 0 * a is defined in C, and we put
C- = C+ n C°. For any a e C, we put a+ = a ~ 0 and a- = 0-
(a n 0) = 0 * (a n 0). These definitions are self-dual (in the sense
of § 4).

(5.7) C° is a symmetric subclan of C and a lattice-ordered group.
C+ and C- are symmetric subclans of C and closed under addition
in C. For p e C° and any a e C, a + p and p + a are defined in C.
For p e CO and q  p in C, q e C°.

PROOF: For a e C, p e C°, a-0 and 0-p are defined, so that
a-p is defined by (3.6). Replacing p by -p, a+p is defined.
Dually, a * p and p +a are defined. If also a e C°, then p * a =
- (a-p ) is defined, hence a-p in CO. Thus CO is a group. If

p ~ C0, q ~ p, then 0-p and p-q are defined, so that 0-q is
defined, and q e CO. For p, q in CO, p u q = p-(p n q) + q is in
CO by (5.5) and the preceding results. Thus CO is lattice-ordered,
and a symmetric subclan of C. The statement about C+ is obvious,
and that about C- follows.

PROOF: a+-a = 0-(a n 0) = a- and a+-0 = a-(a n 0) =
a+a- by (5.5), hence a+ * a- = a+-a- = a. Obviously, a+ e C+
and a- e C-. Finally, (a+ n a-) + (a n 0) = (a+ + (a n 0)) n
(a-+ (a ~ 0)) = a n 0 by (5.2), and hence a+ n a = 0.

(5.9) If a+b is defined in C and c  a+b, then c = a’ +b’ for
elements a’  a and b’  b of C.

PROOF: Let u = c-(b n c) and a’ = a n u, so that a’ S a.
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Since c * u = b n c and u * a’ are defined, b’ = c * a’ is defined
by the dual of (3.6 ), and c = a’+b’. We must show that b’ s b.
Now

and thus b’ s b.

6. The group BC

We assume from now on that C is a commutative clan. We discuss
in this section the canonical embedding of C into an ordered abelian
group EC. This group is constructed in two stages. The first stage
consists of constructing a semigroup E’C into which C is embed-
ded. In this, we follow [1 ]. The second stage consists of embedding
E’C into a group EC.
We form words (a,, ..., a,) with entries in the commutative

clan C, and we add these words by the usual formula

Words then form an additive semigroup which we dénote by WC.
We call two words A + (a, b) + B and A + (c) + B directly similar
in WC if a+b = c in C. Here A or B or both may be the "empty
word". Two words in W C are called similar if they are related by a
finite chain of direct similarities. This defines a congruence
relation in WC. We denote by E’C the quotient semigroup of WC
with respect to this congruence relation, or a semigroup isomorphic
to this quotient semigroup, by a1, ..., ar&#x3E; the image in E’C of
a word (al’ ..., a,) of WC, and we use lower case german letters
to denote elements of E’C, and of the group EC into which we
shall embed E’C. We note that always a1,..., ar&#x3E; = a1&#x3E;
+ ... +ar&#x3E; in E’C.

(6.1) The mapping a - a&#x3E; of C into E’C is one-to-one, and
a &#x3E; + b &#x3E; = c &#x3E; in E’C if and only if a + b = c in C. More general-
ly, a1, .. ar&#x3E; = a&#x3E; in E’C if and only if a1+... +a, = a in C.

This follows from the strong associative law (4.4). We refer to
[7] for a detailed discussion.

(6.2) a+b = b+a for any a, b in E’C.

PROOF: It is enough to show that a, b&#x3E; = b, a) for any
a, b in C. Let p = a ~ b, q = a ~ b, u = a-p = q-b, v = b-p
= q-a. Then a, b&#x3E; = p, u, b&#x3E; = p, q&#x3E; = p, v, a) = b, a).
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Before proceeding further, we need two lemmas.

(6.8) If a+b = c’ +c" in C, then there are decompositions
a’ +a" = a and b’ +b" = b in C such that a’+b" = c’ and a" + b"
= c"

PROOF: a+b = (a-b-)+b+ by (5.7) and (5.8), hence a-b-
S c’+ c", and a - b- = al-f-a", with a1 ~ c’, a" ~ c", by (5.9).
If a’ = a1+b-, then b’ = c’-a’ = (c’ - al ) - b- and b" = c" - a"
are defined in C, and we have the desired relations.

(6.4) If a+b = c1, ..., cr&#x3E; in E’C, then there are decomposi-
tions ci = c’i + c"i in C, for i = 1,..., n, such that a = c1,..., c’n&#x3E;
and 6 = c"1, ... , c"n&#x3E; in E’C.

PROOF: For a+ b = a1, ..., a,., bi, ..., b,), with (ai , ..., ar&#x3E;
= a and b1, ..., bs&#x3E; = b, we put ai = ai+0 and b, = 0+bj, for
1 = 1, ..., r, b = 1, ..., s, to obtain the desired decomposition.
Now we must show only that "decomposability" of (cl , ... , cn)
is preserved under direct similarity of words.
Let ci = c’i+c"i, i = 1, ..., n, be a "good" decomposition of the

word (cl , ..., cn ). If we replace two letters cj, Ci+l by a single letter
d = cj+cj+1, then we décompose d by putting d = d’+d", with
d’ = 1 1 d" = c"j +c"j+1. If we p one Jetter Ci Y two
letters p, q, with p + q = cj in C, then we have, by (6.3), decompo-
sitions p = p’+p"’, q = q’+q" in C, with p’ +q’ = c’j, p" + q" = c"’.
In both cases, we do not change decompositions of unaffected
letters cz , and we obtain the desired decomposition of the word
directly similar to (cl, ..., cn).

(6.5) If a+b = a+c in E’C, then b = c.
PROOF : It is obviously sufficient to consider the case a = (a)

only. Let C = (ci, ..., cn&#x3E;. By (6.4), we have decompositions
a = a’ +a", Ci = c’j + c"i in C such that a&#x3E; = a’, c’i, ..., c’n&#x3E; and
b = a", Clr, ... , c"n&#x3E;. Then a = a +CI + ... +c’n in C by (6.1),
and it follows that ci’+ ... +c’n = a". Thus b = c’2, ..., c’n,
c"1, ... , ") = c1,..., cn&#x3E; = c.

We have shown that E’C is a commutative cancellation semi-

group. Thus E’C can be embedded, by the usual procedure, into
an abelian group of "formal differences" of elements of E’C.
We denote this group by EC and we consider E’C as a subsemi-
group of EC. The group EC is determined up to isomorphism.
We denote by EC+ the set of all elements u of EC of the form

u = u1, ..., ur&#x3E;, with ul, ..., u,. in C+. This obviously is a sub-
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semigroup of EC. We put a ~ b for elements a, b of EC if b - a
is in EC+.

(6.6) With the order relation a ~ b just defined, EC is an order-
ed abelian group.

PROOF: Since E’C is a subsemigroup of EC, the relation a ~ b
is reflexive, transitive and compatible with addition. If a  b
and b ~ a, then a, = a+u+b for elements U, b of EC+, and it
follows that u1, ..., ur, Vj ..., vs&#x3E; = 0, and hence ul-E- ...+ur
+va+ ... +vs = 0 by (6.1), for elements ui, vj of C+. But then
ui = vj = 0 for all i and j, and hence u = b = 0 and a = b.
This completes the proof.

Let now f : C ~ Cl be a homomorphism of commutative clans.
Then 

(Wf)(a1, ..., ar) = (f(a1),..., 1(a,»
defines an additive mapping Wf : WC - WCI. Similar words
are mapped into similar words by W f (see [1 ] for détails), and thus

defines an additive quotient mapping E’f : E’C - E’Cl. This
mapping has a unique extension to a group homomorphism
Ef : EC - EC1. It is easily verified that this homomorphism is
order preserving.
The induced maps W f , E’ f and E f have the properties one ex-

pects, and thus W, E’ and E can be considered as functors. We
shall discuss the functor E further in § 8.

The canonical embedding oec : C ~ EC is def ined by aC (a ) = a&#x3E;,
for a E C. By (6.1) and the preceding discussion, ac is additive,
one-to-one and order preserving, and the group EC is generated
by the image 03B1C(C) of C. Moreover, ac is a universal mapping in
the followi ng sense.

(6.7) If h : C - A is an additive and order preserving mapping
of the commutative clan C into an ordered abelian group A, then
h = h* oec for a uniquely determined homomorphism h* : EC - A
of ordered abelian groups. If f : C ~ Cl is a clan homomorphism,
then rJ.,c 1 f = (Ef)03B1C.

PROOF: We must have h*«a» = h(a) for a E C, and by
[1, Thm. 1 ], this defines a unique additive mapping from E’C to A.
This mapping has a unique extension to a group homomorphism
h* : EC - A, and it is easily verified that h* is order preserving.
The second part of (6.7) follows immediately from the definition
of Ef.
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7. EC is a lattice-ordered group

(7.1) k(a-b) = 03B1C(a)-03B1C+(b), for a e C+ and b e C-, defines
an additive and order preserving mapping k : C - E(C+).
PROOF: Let a, c be in C+ and b, d in C’. Then (a)-(b) =

c&#x3E;- d&#x3E; in E(C+) iff a&#x3E;+ d&#x3E; = (a+d) = (b)+(c) = b+c&#x3E;,
hence iff a+d = b+c in C+, and also iff a-b = c-d in C. With

(5.8), this shows that k : C - E(C+) is well defined.
The mapping k obviously is order presering. By (4.4) and (5.7),

(a-b)+(c-d) = (a+c)-(b+d) is defined in C iff a+c is defined
in C+, and it follows that k is additive.

(7.2) If j : C+ ~ C is the inclusion mapping, then Ej : E(C+)
- EC is an isomorphism of ordered abelian groups.

In view of this result, we shall identify EC and E(C+), and the
set EC+ of elements u ~ 0 of EC with (E(C+))+ = E’(C+).

PROOF: For the mapping k of (7.1), obviously kj = 03B1C+, and
hence (Ej)k*03B1Cj = (Ej)kj = (Ej)03B1C+ = 03B1Cj, and k*(Ej)03B1C+ =
k*aci = kj = ac,, with (6.7). Since EC and E(C+) are generated
by occ(i(C+» and 03B1C+(C+) respectively, we conclude that (Ej)k*
= lEC and k*(Ej) = lE(C+). This proves (7.2).

(7.3) (a + c) n (b+c) is defined in EC if and only if a n b is

defined, and then (a + c) n (b + c) = (a n b) + c.

(7.4) a u Ü is defined in EC if and only if a n b is defined, and
then (a u b)+(a n b) = a+b.

These results are valid in any ordered abelian group. We omit
the straightforward proofs.

(7.5) (a) n (b) and a&#x3E; ~ b&#x3E; are defined in EC for any a,
b in C, and (a) n (b) = a n b), (a) u b&#x3E; = a ~ b&#x3E;.
PROOF: Let a-(a ~ b) = u, b-(a ~ b) = v. If a&#x3E; ~ ,

b&#x3E; ~ , then -a n b) = (u)-f-b = v&#x3E;+u, with u ~ 0,
b ~ 0. We apply (6.4) to EC+ = E’(C+) to obtain decompositions
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v = v’ + v" in C+, u =1t’-f-u" in EC+, such that v’&#x3E;+u’ = u&#x3E;,
(v")+u" = b. By (6.1) and (4.4), u’ = u’&#x3E;, with u’ e C+ and
u’ +v’ = u. Now v’ «5-, u n v = 0, and hence v’ = 0. Thus X =
a n b&#x3E;+u&#x3E;+v&#x3E;+u" = a ~ b&#x3E;+u", and  ~ (a u b). On
the other hand, (a u b&#x3E; ~ a&#x3E; and u b&#x3E; ~ b&#x3E;. Thus a ~ b&#x3E;
= (a) u b&#x3E; in EC. By (5.5) and (7.4), a&#x3E; n b&#x3E; = a n b&#x3E;
follows.
We prove now that EC is lattice-ordered, by proving that

a n b is defined in EC for all a, b in EC. This requires several
steps.

(7.6) Let a n b be defined and u ~ 0. If u n (b-(a n 6)) is

defined, then (a+u) n b is defined.

PROOF : (a ~ b) + [u ~ (b-(a ~ b))] = ((a ~ b)+u) n b = (a+u)
n (b+u) n b = (a+u) n b by (7.3).

(7.7) a n b is defined for a and b in EC+.

PROOF: Since a in EC+ is of the form a = l ui&#x3E;, with all u,
in C+, it is enough to show that (a+u&#x3E;) n b is defined if a n b
is defined.
Let first b = (b) with b e C+. If b&#x3E; = b+(a ~ b&#x3E;), then

b = v&#x3E;, with v e C+, by (6.1). Thus u&#x3E; n b is defined by
(7.5). But then (a+ u&#x3E;) n b is defined if a n b is defined,
by (7.6).
For arbitrary b in EC+, u&#x3E; n (0-(0 ~ b )) is defined by the

preceding paragraph, and thus (a+ u&#x3E;) n b is defined by (7.6) if
a n b is defined. This proves (7.7).

(7.8) a n b is defined for any a, b in EC.

PROOF: Since EC = E(C+), we have a = a’-a" and b =

0’ -b" for elements of E’(C+) = EC+. Now (a’+b") n (b’+a")
is defined by (7.7), and it follows from (7.3) that a n b is defined.

Consider now a homomorphism f : C ~ Ci of commutative
clans. It follows easily from the construction of meets in EC, and
from (7.5), that E f preserves meets, and hence joins. This completes
the proof of the following theorem.

(7.9) For any commutative clan C, EC is a lattice-ordered abe-
lian group, and the embedding mapping 03B1C : C ~ EC is a clan

homomorphism. If f : C ~ Ci is a homomorphism of commutative
clans, then E f : EC - EC, is a homomorphism of lattice-ordered
abelian groups.
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8. The functor E

We denote the category of commutative clans by ~ and the
category of lattice-ordered abelian groups by L. By (7.9), the
embeddings C ~ EC define a functor E from W to Y. Since EC,
for a commutative clan C, is only determined up to isomorphism,
the functor E is determined up to a natural equivalence.
The clan underlying a lattice-ordered abelian group L is commu-

tative. We denote this clan by FL. A homomorphism g : L ~ L,
in £F determines a homomorphism Fg : FL ~ FL1 of the under-
lying clans. Thus we have a "forgetful" functor F from Y to W.

For a lattice-ordered abelian group L, the group E(FL)
obviously is isomorphic to L. Since E(FL) is only determined up
to an isomorphism, we identify E(FL) with L. It follows that
EF = 1L.

In the present setting, a canonical embedding oce must be

regarded as a homomorphism aC : C ~ FEC in ~. If f : C ~ Cl
is a homomorphism in W, it follows from (6.7) that 03B1C1 f = (FEf)03B1C.
Thus the canonical embeddings occ define a natural transformation
oc 1~ ~ FE. Moreover, we have:

(8.1) If L is a lattice-ordered abelian group, then aFL = lFL.
If C is a commutative clan, then E(03B1C) = 1 Ec ·
We omit the straightforward proof.
With these notations, we may strengthen (7.9) as follows.

(8.2) The embedding functor E from W to £f is left adjoint to
the "forgetful" functor F from Y to .
We refer to [5] for the definition of a left adjoint functor. (8.2)

follows already from the remarks preceding (8.1), see [5; sec. 6].
We give a direct proof of (8.2) which uses only the definition of a
left adjoint functor.

PROOF: Let C be a commutative clan and L a lattice-ordered
abelian group. Inverse natural equivalences 03B1C, L : homtl (C, FL)
- homL (EC, L ) and 03B2C,L : hom, (EC, L ) -&#x3E; hom( C, FL ) are

obtained as follows. For a map f : C ~ FL, we put aC, L (f) = E f ,
and for a map g : EC ~ L, we put 03B2C,L (g ) = (Fg)03B1C. With (8.1),
it follows immediately that «C, L and PC, L are inverse mappings.
The proof that these mappings define natural transformations
is straightforward; we omit it.
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9. Miscellaneous results

As an interesting application of (7.9), we have the following
theorem.

(9.1 ) Any Boolean ring R can be embedded into a lattice-ordered
abelian group in such a way that meets a n b, joins a u b, and
relative complements b-a, a :5-&#x3E; b, are preserved.

In this connection, we note the following:

(9.2) The following properties of an abstract clan C are logically
equivalent.

(i) If a S b, then a n (b-a) = 0.
(ii) If a+ b is defined in C, then a n b = 0.
(iii) C is isomorphic to a clan underlying a Boolean ring R.
We omit the straightforward proof. The clan underlying a

Boolean ring has been defined in (1.2). By (9.2), (ii), this clan is
commutative.
A commutative clan C is called Archimedean if C satisfies the

following condition. If a in C is such that na&#x3E; ~ b&#x3E; in EC, for
all natural numbers n and a fixed element b of C, then a S 0.

It follows easily from (6.1) that na is defined in C, and na S b
in C, if na&#x3E; ~ b&#x3E; in EC. Examples of Archimedean clans are
clans of functions (see Introduction) and clans underlying Boolean
rings.
The Archimedean property of a clan C is closely connected with

the possibility of constructing a completion of C, see [2; ch.

XIV, § 9]. This is a topic for further research. We prove only
one theorem.

(9.3) A clan C is Archimedean if and only if EC is Archimedean.

PROOF: The "if" part is trivial. Let now C be Archimedean, and
let a, 6 in EC be such that na s b for all natural numbers n.
It follows that na+ ~ b+ for all natural numbers n, see [2; p. 225,
proof of Lemma 1]. We put b+ = u1&#x3E; + ... + ur&#x3E;, with ul, ...,
ur in C+, and we proceed by induction with respect to r. If

na+ :!5.’ u&#x3E; for all n, then a+ = v&#x3E;, with v e C+, by (6.1), and
nv S u for all n. It follows that v = 0 and hence a S 0. Suppose
now that c S 0 if nc ~ u for all natural numbers n, where u ~ 0,
and let na+ S u + u&#x3E; for all natural numbers n, with u e C+.
Then m(na+-u&#x3E;) ~ mna+-u&#x3E; ~ u for all m ~ 0 and n h 0,
so that na+ - u &#x3E; ~ 0 for all n. But then a S 0. This shows that
EC is Archimedean.
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