COMPOSITIO MATHEMATICA

N. J. S. HUGHES Steinitz' exchange theorem for infinite bases. II

Compositio Mathematica, tome 17 (1965-1966), p. 152-155 http://www.numdam.org/item?id=CM_1965-1966_17_152_0

© Foundation Compositio Mathematica, 1965-1966, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal N$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Steinitz' exchange theorem for infinite bases. II

by

N. J. S. Hughes

We first prove an improved form of Steinitz' Exchange Theorem for a Dependence Space, (Hughes, 1), using the same notation as in the previous paper.

Later, we define a generalized dependence space, by allowing the directly dependent sets to become infinite, and see that the Exchange Theorem becomes invalid, though, if they are of cardinal aleph 0 at most, an invariant rank still exists.

1. Steinitz' exchange theorem

THEOREM 1. If A is a basis and B an independent subset, both well ordered, of the dependence space S, there exists an explicitly defined, one-one mapping φ of B onto A', a subset of A, such that φ is the identity map on $B \cap A$ and B + (A - A') is a basis of S.

Let $C = A \cap B$, $X = A - C = (x_i)_{i \in I}$, $Y = B - C = (y_j)_{j \in J}$. It is sufficient that I and J are well ordered (by <).

For any $y_i \in Y$, there exists at least one relation of the form

(1)
$$y_j \sim (x_i) + \sum_{r < j} y_r + \sum_{s < i} x_s + \sum C.$$

We define

 $\varphi(y_i)=x_i,$

where $i \in I$ is the least in the well ordering such that (1) is satisfied, and put $\varphi(Y) = X'$.

LEMMA 1. φ is a one-one mapping of Y onto X'. Suppose that $j, k \in J$, j < k and $\varphi(y_k) = \varphi(y_j) = x_i$. Then

(2)
$$y_k \sim (x_i) + \sum_{r < k} y_r + \sum_{s < i} x_s + \sum C.$$

From (1) and (2) we have

$$y_k \sim \sum_{r < k} y_r + \sum_{s < i} x_s + \sum C,$$

which is impossible if $\varphi(y_k) = x_i$.

LEMMA 2. C+Y+(X-X') is independent.

If either $Y \cap (X-X')$ is not empty or the set above is dependent, for some $x_i \in X-X'$, the relation (1) is satisfied and we may suppose that $j \in J$ is the least possible in the well ordering. By the definition of φ , $\varphi(y_j) = x_k$, where k < i, so that

(3)
$$y_j \sim (x_k) + \sum_{r < j} y_r + \sum_{s < k} x_s + \sum C.$$

By (1) and (3),

$$x_i \sim \sum_{r < j} y_r + \sum_{s < i} x_s + \sum C,$$

which contradicts the minimality of j in J.

If, for all $x \in C$, $x \sim \sum A$, we say that A generates or is a set of generators of S.

LEMMA 3. C+Y+(X-X') generates S. From (1), for all $x_i \in X'$,

$$x_i \sim \sum Y + \sum C + \sum_{s < i} x_s,$$

and hence, by transfinite induction, for all $x_i \in X$,

 $x_i \sim \sum Y + \sum C + \sum (X - X').$

Since C+X generates S, the Lemma follows.

Theorem 1 now follows from the lemmas, defining φ on C to be the identity mapping.

2. Generalized dependence space

We shall call the set S a generalized dependence space (with respect to Δ), if it satisfies the conditions for a dependence space (Hughes, 1) except that the members of Δ , the directly dependent sets, may be infinite subsets of S.

We carry over the notation for a dependence space. Thus, for $x \in S$, $A \subset S$, x is dependent on A, $(x \sim \sum A)$, if and only if, either $x \in A$ or there exists D, such that

$$D \in \Delta$$
, $x \in D$, $D \subset A + (x)$.

We see, by induction on the cardinal of Y, that, provided Y = B - A is finite, Theorem 1 remains valid.

Hence, if S has a finite basis (or, equivalently, a finite set of generators), then any subset of S of greater cardinal is dependent and, if $x \sim \sum A$, then $x \sim \sum A'$, where A' is a finite subset of A. In fact, A' may be any maximal independent subset of A. Thus if

 Δ' denotes the set of those elements of Δ , which are finite subsets of S, then S is a dependence space with respect to Δ' , having exactly the same dependence relations $x \sim \sum A$.

THEOREM 2. If S is a generalized dependence space with respect to Δ and every member of Δ has cardinal aleph 0 at most, then every set of generators of S contains a set of generators of minimum cardinal (the rank of S). Any two bases of S have the same cardinal.

Let A be a set of generators of S, of minimum cardinal, which we may assume to be infinite, and B be any set of generators of S.

For every $a \in A$, there exists a set B_a , such that,

$$B_a \subset B$$
, $a \sim \sum B_a$, card $(B_a) \leq \text{aleph 0}$.

If $B' = \bigcup_{a \in A} B_a$, then $B' \subset B$ and, for any $a \in A$, $a \sim \sum B'$, so that B' generates S. Also

$$\operatorname{card}(B') \leq \operatorname{card}(A) \times \operatorname{aleph} \mathbf{0} = \operatorname{card}(A),$$

so that card (B') = card(A).

Since a basis is a minimal set of generators, the last part follows.

3. Examples of generalized dependence space

I. If S is an infinite set and Δ consists of all subsets of S of cardinal aleph 0, then S is a generalized dependence space with no basis, for a subset of S generates S if and only if it is infinite and is independent if and only if it is finite.

II. We call the subsets A and B of the infinite set S almost equal, $(A \equiv B)$, if there exists a one-one mapping φ of A onto B, such that the set of those $a \in A$, such that $\varphi(a) \neq a$, is finite.

Let S contain a system of disjoint, infinite sets P_i , $(i \in I)$, and Γ be the set of all sets C, such that

$$C \equiv P_i$$
, for some $i \in I$.

Now let Δ denote the set of all subsets D of S, such that

(1)
$$D = C + (x), \quad C \in \Gamma, \quad x \notin C.$$

We see that, if $D \in \Delta$, D has the form (1) for every $x \in D$. S is a generalized dependence space and X is a basis of S if and only if $X \in \Gamma$.

Let I = (1, 2), then P_1 and P_2 are bases but may have different cardinals.

Now let I be infinite and, for all $i \in I$,

$$\operatorname{card}\left(P_{i}\right) = \operatorname{aleph} 0.$$

Then every $D \in \Delta$ has cardinal aleph 0. However, if, for every $i \in I$, $a_i \in P_i$, then $A = (a_i)_{i \in I}$ is independent, but is not contained in any basis. We may also have

$$\operatorname{card}(A) = \operatorname{card}(I) > \operatorname{aleph} 0.$$

Thus Theorem 1 is invalid in a generalized dependence space as is Theorem 2 without the condition that the members of Δ have cardinal at most aleph 0.

REFERENCE

HUGHES

 Steinitz' Exchange Theorem for Infinite Bases. Compositio Mathematica. Vol. 15, Fasc. 2, pp. 113–118, (1963).

(Oblatum 19-12-63)

University College, Cathays Park, Cardiff, Gr. Britain