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Abstract theory of uniform distribution *

by

Gilbert Helmberg

The intention of this article is to present a survey of typical
and basic ideas and results concerning abstract theory of uniform
distribution. As in other cases, the idea underlying any abstract
formulation of uniform distribution is to find a concept of uniform
distribution as general as possible satisfying the following two
requirements: 1) it contains uniform distribution of a sequence of
reals mod 1 as a special case; 2) certain theorems on uniformly
distributed sequences mod 1 appear as special cases of theorems
on the abstract concept of uniform distribution.

In order to be able to trace these theorems through various
generalizations of uniform distribution mod 1 as well as to recog-
nize the limitations of these generalizations it may be allowed to
collect in a very rough and informal way the concepts and theorems
concerning uniform distribution mod 1 under the following
headings (for details the reader is referred to [12] and [4]):

a) Defining properties. (What is a uniformly distributed

sequence: definition by measures (relative frequency in intervals)
and functionals (averaging of Riemann-integrable functions),
behaviour in extended classes of sets and functions etc.)

b) Criteria for uni f orm distribution. (How to recognize uni-
formly distributed sequences: Weyl’s criterion, fundamental

theorem of van der Corput, Fejér’s theorem etc.)
c ) Constructions of uni f ormly distributed sequences. (How to get

uniformly distributed sequences: sequences obtained from special
functions, rearrangement of dense sequences etc.)

d) Comparison of uniformly distributed sequences. (How good
is the uniform distribution of a sequence: discrepancy, estimates
of trigonometric sums, well distributed sequences, completely
uniformly distributed sequences etc.)

e ) Metric theorems on uniform distribution. (How many sequences
are uniformly distributed: almost all sequences are uniformly

* Nijenrode lecture.
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distributed mod 1, special sequences depending on a parameter are
uniformly distributed for almost all values of this parameter etc. )

f) Distribution functions of sequences. (What about sequences
that are not uniformly distributed: distribution functions as

studied by van der Corput, Koksma, Schoenberg etc.)
g) Applications of uniformly distributed seqúences. (How to use

uniformly distributed séquences.)
The abstract concept of uniform distribution which one is

going to use will clearly depend on the choice and formulation of
the definition and of the theorems concerning uniform distribution
which one is going to start with. Thus two generalizations introduc-
ed by Bundgaard [1] and by Eckmann [5] aim in quite
different directions.
For systematic reasons let us first consider uniform distribution

in compact groups as studied by Eckmann [5], Hlawka [9],
and others. Here we start out with the following observation on
Weyl’s theorem on uniform distribution mod 1 of the multiples
of an irrational number: in the proof by means of exponential
functions enter only concepts also quite familiar in the theory of
topological groups. In fact, if we replace the interval [0, 1]
(endpoints identified) by any compact (Hausdorff) topological
group X having a countable base, if we replace Lebesgue measure
on [0, 1] by normed Haar measure Il on X, and if we denote by
OE(X) the set of complex-valued continuous functions on X, then
a sequence (xn) in X may be called uni f ormly distributed in X
if

or, equivalently, if

for all closed subsets M of X whose boundary is a p-null-set (here
xM denotes the characteristic function of the set M). If, further-
more, the set of exponential functions (exp(21ikx) : k = 0, ±1,
±2, ...} is replaced by a complete system of inequivalent irre-
ducible unitary representations of X {D(03BA): 03BA = 0, 1, 2, ...}, then
Weyl’s criterion for uniform distribution obtains the following
form: the sequence (xn) is uniformly distributed in X if
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(0 being the null matrix and D«» denoting the trivial represen-
tation D(0)(x) = 1 for all x ~ X). Using this criterion it is easy
to establish the following generalization of Weyl’s theorem: the
sequence (an) (a ~ X) is uniformly distributed in X if det|D(03BA) (a) -
E(03BA)| ~ 0 for ail 1( =1= 0 (E(03BA) being the identity matrix of same
degree as D(03BA) or, equivalently, if (an) is dense in X. Also van
der C o r p u t’ s fundamental theorem carries over, even with

Korobov-Postnikov’s sharper conclusion: if (xn+hx-1n) is
uniformly distributed for all h &#x3E; 1, then (xkn+i) is uniformly
distributed for all k ~ 1 and l ~ 0. This allows applications as in
the mod 1 case: if (xn) is uniformly distributed in X, if X is
connected and if p(n) is any non-constant integral polynomial of
degree &#x3E; 1 in n, then also (x"(n» is uniformly distributed in X.
In this context it may be mentioned that even if the second

axiom of contability for X (accounting for the countability of the
system of representations D(03BA))is omitted, there may exist

uniformly distributed sequences in the sense of (1) (cf. [7]).
Also, with some modification of this definition, one may study
sequences, uniformly distributed in locally compact groups (cf. S.
H a r t m a n "Remarks on equidistribution on non-compact groups",
p. 66, and J. H. B. Kempermann "on the distribution of a
sequence in a compact group", p. 138).

While important concepts and facts mentioned under the head-
ings a)-c) may be generalized successfully to the compact group
case, it seems hard, in the absence of any euclidean structure in the

underlying space X, to formulate a useful concept of a discrepancy
whose vanishing is necessary and sufficient for a sequence (xn) to
be uniformly distributed in X (cf. E. Hlawka "Discrepancy and
uniform distribution of sequences", p. 83). There are estimates
for the analoga of trigonométrie sums; for instance

holds for almost all sequences (xn) in X (here ~A~ = (03A3i,k|aik|2)1 2
for A = (aik) and "almost all" refers to the infinite product space
(X~, 03BC~) = nr (X, 03BC)). However, there is one more useful

concept related with those falling under heading d): a family
 = {(x03C3,n) : Q ~ 03A3} of sequences in X is called a farrtily of equi-
uni f ormly distributed sequences if, for every e &#x3E; 0 and for every
f e OE(X), there exists an integer N( f, e) depending on f and e only,
such that
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This definition, as it stands, does not make essential use of any
group theoretic concepts. These turn up in the statement that,
if (xn) is uniformly distributed in X, the séquences of the family
{(xns ): s ~ X} are equi-uniformly distributed. Applying this to a
uniformly distributed sequence of the form (an) (a E X) we see
that the sequences of the family {(an+h) : h ~ 0} (i.e. the sequences
obtained by cutting off the first h terms) are equi-uniformly
distributed. In general, any sequence (xn ) in X having the property
that {(xn+h) : h ~ 0} is a family of equi-uniformly distributed
sequences is called well distributed. An application of well distrib-
uted sequences has been given by Hlawka in generalization of
a theorem by F a t o u : let (xn ) be well distributed in X, let a be any
positive real number, and let (Pn) be a sequence of reals having the
property that 0  03C1n+1 ~ ap. for all n. Let, furthermore, f be a
complex-valued function, continuous almost everywhere on X
and not almost everywhere equal to zero. If 03A3~i=1|(03C1nf(xn)|  ~,
then 03A3~n=1 03C1n  oo.
A result of metric nature, implying that almost every sequence

is uniformly distributed in X, has been given above. In connection
with uniform distribution in compact groups the following metric
results are of special interest: Schreier [15] has shown that a
connected compact metric group X is generated by almost every
pair of elements of X (in the product space (X, 03BC) X (X, li».
Strangely enough, the abelian case seems to have been treated
explicitly only later when Halmos and Samelson [6] showed
that a .connected compact abelian group X satisfying the second
axiom of countability is generated by almost every element a
("generated" means that finite products of arbitrary finite

powers are dense in X). Thus, in view of the theorem mentioned
above, in the abelian case (a n) is uniformly distributed for almost
all a in X, whereas in the non-abelian case obviously (an) is not
uniformly distributed for any a. Incidentally, even in this case it
may still be possible to use sequences of this type in order to
construct explicitly sequences that are uniformly distributed in X
(cf. G. H e 1 m b e r g "A class of criteria concerning uniform distribu-
tion in conipact groups", p. 196).
However, the questions falling under the headings e ) and f)

may be treated successfully in an even more general setting, as
has been done by Hlawka [10], based on the work of van der
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Corput, Hill, and others. Let X be any compact (Hausdorff)
topological space satisfying the second axiom of countability.
Now there is no reason to single out any measure on X as preferred
to the others (all measures mentioned in the sequel will be assumed
to be regular nonnegative normed Borel-measures). Moreover, we
may regard the formation of limN~~ 1/N 03A3Nn=1 f(xn) as just one
possible summation method for sequences of the form (f(xn))
( f ~  (X), (xn) C X) and replace it by any other regular Toeplitz
method given by an infinite matrix A = (ank) whose coefficients
satisfy the following conditions:

(cf. J. Cigler "Methods o f summability and uni f orm distribution".
p. 44). We identify finite measures and bounded linear functionals
on (X) as elements of *(X) by means of the equation v(f) =
fx f(x)dv(x) for all f ~ (X). If A is any non-negative regular
Toeplitz matrix as above and if v is any measure on X we say that
the sequence (xn) C X is (A, v)-uniformly distributed in X if

There arises the question as to the existence of (A, v)-uniformly
distributed sequences. Let us assume 03A3~k=1 ank ~ M  oo for all

n ~ 1. Every row (ank)~k=1 of A defines a linear functional 03B1n on

(X) given by 03B1n(f) = 03A3~k=1 ankf(xk) and bounded by M. Since
the sphere of radius M in *(X) ist weakly compact, the sequence
(an) has cluster points in *(X) which by (2a) and (2b) must
necessarily be non-negative normed measures. Any such measure
we shall call an A-distribution measure of the sequence (xn). Thus,
for any given sequence (xn) in X and for any non-negative regular
Toeplitz matrix A there exists a corresponding non-empty set
SB = (A, (x,.» ~ *(X) of A-distribution measures of (xn). A
séquence (xn) is (A, v)-uniformly distributed in X if (A, (x,.»
consists of the measure v only. It turns out that the set M9( A , (xn))
is always weakly closed in *(X) and that under suitable re-
strictions, imposed on (xn), A and , given any two of these
three objects there is a third one such that 23 = (A, (xn»).
In particular, let SS be a closed and convex set of measures and
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let A satisfy the following condition (called Hill condition)

where an = 03A3~k=1 anx (this condition is satisfied in particular for
the matrix of usual arithmetic means). Then ’any sequence (xn)
dense in X may be rearranged to a sequence (x’n) such that
S8 = (A, (x’n)).
The Hill condition plays an important role not only in several

theorems of this type, answering essentially questions falling under
the heading f), but also in the following important metric result.
Let (X~, v~) = Il- (X, v). If A satisfies the Hill-condition, then,
for every measure v, voo-almost all sequences (xn ) are (A, v)-
uniformly distributed (this fact is also expressed by saying that A
has the Borel property). Still, the sequences (xn) being A-uniformly
distributed with respect to any measure v at all form a set of
first category in the infinite product space Xoo.

In a similar way Hlawka [11] has introduced a very general
concept of normal or completely uniform distribution of a sequence
in a compact space X. Essentially the same results as mentioned
above hold for sequences of this type, too.

It may be noticed that even in the absence of any algebraic
structure a priori in the space X, it is possible to make use of the
algebraic structure of the set of Borel-measurable transformations
in X as has been done by Cigler [2] (cf. also J. Cigler "Applica-
tions of the individual ergodic theorem to problems in number theory".
p. 000). Let, for a moment, X be a compact group again and let
(an ) be a uniformly distributed sequence in X. Then left multiplica-
tion by a may be regarded as a Borel-measurable transformation
T in X that is measure-preserving and ergodic with respect to
Haar measure ,u. The sequence (anx ) is uniformly distributed in X
for every x E X and may be written as (Tnx). If X is now any
compact space satisfying the second axiom of countability, then
there exists a countable subset 5 of (X) having the property
that every function f e (X) may be uniformly approximated by
finite linear combinations of elements of 5. Let T be any Borel-
measurable transformation in X, ergodic and measure-preserving
with respect to a measure v on X. Then, by the individual ergodic
theorem, applied to the elements of 5, for v-almost all x in X,
the sequence ( Tnx ) is (A, v)-uniformly distributed (where A is

again the matrix of arithmetic means). The following generaliza-
tion of a theorem of P o s t n i k o v and P j a t e z k i j gives information
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on the behaviour of individual elements x E X: if there exists a
real number c ~ 1 such that

then (Tnx) is (A, v )-uniformly distributed in X.
In our considerations of abstract concepts of uniform distribu-

tion we started out with a topological group and then forgot about
its algebraic structure. Now let us see whether it makes sense to
omit the topological structure instead. Since the concepts of
continuous functions and measures will disappear then, too, there
arises the question whether we can generalize the concept of
uniform distribution so as to be able to speak about uniform distri-
bution even in the absence of any topology in the underlying set X,
for instance in the purely group theoretic case. In order to find
an answer to this question we look back to the definition of a
sequence (xn), being uniformly distributed in a compact group X.
We may regard this sequence as the range of a mapping q : n ~ x,.
of the set P of positive integers into X. This mapping 99 induces
a mapping ~’ : f ~ f  g ~ that maps the Banach space (X) (with
respect to uniform norm) into a set of functions on P. The functions
f 0 cp belong to the Banach space m’ (with respect to uniform norm)
of bounded complex-valued functions f’ on P for which limN~~
1/N yN 1 f’(n) exists. This limit constitutes a bounded linear
funtional ~’ on m’, and the bounded linear functional ~ on (X)
defined by ~(f) = ~’( f  ~) coincides with Haar measure on X.
Thus we are led to the following définition : let X1, X2 be arbitrary
given sets and let 1, m2 be Banach spaces of bounded complex-
valued functions on Xl and X2 respectively. Let, furthermore,
~1 and ~2 be bounded linear functionals on ml and m2 respectively.
A mapping 99 of X 2 into X1 is called a uni f orm distribution o f X 2
into Xl (depending, of course, on 91, m2, CPl’ ~2), if the following
two conditions are satisfied:

This definition may still be extended (cf. [8]), but even in this
setting a generalization of Weyl’s criterion applies: let J be a
subset of Mi with the property that finite linear combinations of
elements of J are dense in 3Ri (for instance, the functions exp
(2nikx) in the mod 1 case, or the coefficients of irreducible unitary
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representations in the compact group case). Then the above
mentioned mapping 99 is a uniform distribution of X2 into Xl if
conditions (3a) and (3b) are satisfied for all f E .
Coming back to the original question what to do in the (non-

topological) group case, we may choose 1 to be the Banach
algebra (or more general any full module) of almost periodic
functions on X (in the sense of v o n Neumann and Maak) and
~1 to be the corresponding mean value. Since (in the presence of
sufficiently many almost periodic functions ) the group X admits
an almost periodic compactification X’ characterized by the fact
that X is a dense subgroup of X’ and the functions in ml are
precisely the restrictions of the functions in (X’) to X (their
mean value being essentially Haar measure on X’), in some

sense we are back to the compact group case again. However,
there are (at least) two reasons for stressing the purely group
theoretic aspect of this situation. In the first place, there is
the difference in formulation. This is supported by the fact that
in many cases (as for instance in the case of rationals or reals)
it seems easier to picture a set of almost periodic functions on the
given group X than to picture the almost periodic compactifica-
tion of X which might be a rather complicated object. Secondly
we still have free choice of X2, lm2, ~2, and 99. The main point of
interest here is not necessarily to study sequences in X by which
to compute the mean value of almost periodic functions but rather
to investigate the relationship between the group structure of X
and certain methods of decomposition of this mean value. The
questions falling under the headings d)2013f) therefore seem to lose
interest in this particular situation.
The following theorem, due to Maak [13], is a generalization

of the two-dimensional version of Weyl’s theorem on equi-
distribution of linear functions mod 1. It extends a result of

Bundgaard [1] referred to in the beginning. Let X2 = X be
a group and let D, D’ be two independent unitary irreducible
representations of X (i.e. the smallest full modules of almost

periodic functions, containing the coefficients of D and D’ respec-
tively, have an intersection consisting of the constant functions
only; a full module of almost periodic functions is a Banach

algebra of almost periodic functions with respect to uniform norm,
closed under formation of complex conjugates and left-and right-
translation by elements of X). Let X1 = X  X and let lml be
the smallest full module of almost periodic functions f(x, y)
on X1 containing all coefficients dik(x) and d;z(y) of the representa-
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tions D and D’ respectively. Let, furthermore, Wl2 be the set of all
almost periodic functions on X and let Mx,y, Mx be the mean
values on 1 and ID12 respectively. Then the mapping ~ : x ~ (x, x)
is a uniform distribution of X into X  X in the above sense: we
have f (x, x ) C- 92 and Mxf(x, x ) = Mx,y f (x, y ) for all f (x, y ) e ID1l.
As an application of this theorem we get the following generaliza-
tion of Kronecker’s approximation theorem: for any elements

a, a’ in X and any 8 &#x3E; 0 there is an element x in X such that

~D(a)-D(x)~  03B5 and ~D’(a’)-D’(x)~  s. As another conse-

quence of this theorem the coefficients of independent representa-
tions may in some sense be regarded as independent random
variables.

Having considered a mapping of X into X X X from the point
of view of uniform distribution, let us now consider a mapping
going the opposite way (cf. [8]). If Y and Z are subgroups of X
(not necessarily abelian), there is a natural mapping 99 of X2 =
Y X Z into X1 = X defined by ~(y, z ) = yz. Let ID1l and IDl2 be
the sets of all almost periodic functions on X1 and X 2 respectively
and let ~1 = Mx and ~2 = M 11, z be the corresponding mean
values. If, for instance, Y and Z are normal subgroups of X such
that X = YZ (however, X need not be the direct product of Y
and Z), then 99 is a uniform distribution of Y X Z into X, i. e. we
have f(yz) ~ 2 and My,zf(yz) = Mxf(x) for all f  ~ 1. If Y and
Z are closed subgroups of a compact group X and if 1 = (X)
and IDl2 = (Y X Z), then this fact may also be described by saying
that the Haar measure on X is the convolution of the Haar
measures on Y and Z, extended in an obvious way to measures
on the whole group X. Theorems of this type may also be formulat-
ed for infinite sets of subgroups, leading for instance to the formula

for the mean value of any almost periodic function f on the

rationals.
If Xl is the group of integers and if X2 ’S the set of positive

integers, we are led to study sequences (xn) of integers as has been
done by Niven [14] (cf. also I. Niven "Uniform distribution of
sequences of integers". p. 158). The characterization of these

sequences as having relative frequency I/m in every residue class
mod m for all m may be reformulated in the following way:
for every almost periodic function f on Xi whose Fourier ex-

ponents are rational multiples of 2ai we have
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Recently Cigler [3] has studied another interesting generali-
sation of uniformly distributed sequences mod 1. Let us come
back once more to the case of a compact group satisfying the
second axiom of countability and having Haar measure 03BC. Looking
at a sequence (xn), uniformly distributed in X, we may identify
every point x e X with the measure s. concentrated in x. Thus we
arrive at a sequence of measures (03B5xn) having the property that

for all f e OE(X). In general, let us call a sequence (v") of measures
uniformly distributed with respect to a measure v if

This définition admits an elegant treatment of questions concern-
ing convolutions of measures within the theory of uniform distribu-
tion. Let us close by mentioning two significant results. We define
convolution of measures as usual by 03BD103BD2(f) = XXf(xy)d03BD1(x)
dv2(y) and "inversion" by v*(t) = Xf(x-1)dv(x). Just as the

sequence of positive powers of any element a e X is uniformly
distributed with respect to Haar measure on the smallest closed
subgroup of X containing a, the sequence of positive powers of
any measure v is uniformly distributed with respect to Haar
measure on the smallest closed subgroup of X containing the
support of v. While this may be regarded as another generalization
of Weyl’s theorem on uniform distribution mod 1 of the multiples
of an irrational number, also the following generalization of van
der Corput’s fundamental theorem holds: if (03BEn) is a sequence of
measures having the property that, for every h &#x3E; 1, (03BEn+h03BE*n) is

uniformly distributed with respect to a measure 03BDh, and if the

sequence (vn ) is uniformly distributed with respect to p, then
also the sequence (03BEn) is uniformly distributed with respect to p.
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