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Problems and results on diophantine
approximations *

by

P. Erdös

The older literature on this subject (until about 1935) is

treated in the excellent book of Koksma [1]. The more recent
literature is discussed in a very interesting paper of Cigler and
Helmberg [2]. Unlike the above authors I by no means aim to
cover the literature completely and will mostly discuss only
problems on which I myself worked thus a more exact title would
have been "Problems and results on diophantine approximation
which have interested me". There will be some overlap with my
paper "On unsolved problems" [3]. First I discuss some questions
on inequalities of distribution and on uniform distribution.

I. Let xl , x2, ··· be an infinite sequence of real numbers in the
interval (0,1). Denote by Nn(a, b) the number of xi satisfying

We say that xl , x2 , ... is uniformly distributed if for every
0 ~  b ~ 1

The classical result of Weyl (see [1]) states that the necessary
and sufficient condition that the sequence xl, ... should be

uniformly distributed is that for every integer k, 1 S k  oo

Here I would like to ask a question which I have not yet answered
though it is perhaps very simple. Put

* Nijenrode lecture
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Ak can be infinite, but if x; == foc (mod 1) then Ak is finite for
every k. Is it true that lim sup A k = oo? 1 expect that the answer
is yes. It is easy to see that if Bk is the least upper bound of
|03A3nj=1 e203C0ikxj| I then limk=~ Bk = oo.

The discrepancy of xl, ..., xn we define as follows: (This notion
as far as 1 know is due to van der Corput)

Equidistribution is equivalent to D(x1, ..., Xn) = o(n). Van der
Corput conjectured and Mrs. Ardenne-Ehrenfest proved the

beautiful result that for every infinite sequence xl , x2 , ...

In fact Mrs. Ardenne-Ehrenfest showed that for infinitely many n

Roth sharpened this result by showing that for infinitely many n

One can express the theorem of Roth also in the following finite
form: There is an absolute constant c so that to every sequence
xl , ..., xn there is an m and an oc  1 so that

Perhaps in Roth’s Theorem c(log n)1 2 can be replaced by c log n,
this if true is known to be best possible [4].

1 would like to ask a few related questions.
Does there exist an infinite sequence x,  X2  ... so that for

every 0 S a  b  1

Denote by f(a, b) the upper limit and by F(a, b) the upper bound
of Nn(a, b). The fact that D(xl, ..., xn) is unbounded only implies
that F(a, b) cannot be a bounded function of a and b). On the
other hand it is not clear to me why f(a, b) could not be a bounded
function of a and b, though this seems very unlikely.

Let Izvl = 1, 1  v  oo be an infinite sequence of complex
numbers on the unit circle. Is it true that
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1 would guess that the answer is yes. If this is the case it would
be of interest to estimate how fast max1~m~n An’ (An = max|z|=1
03A0ni=1 |z-zi|) must tend to infinity.

Let w1, ... Wn be any n points on the surface of the unit sphere.
Let C be any spherical cap and denote by

where N(C) denotes the number of w’s which are in C and «C
is the ratio of the surface of C with the surface of the sphere,
the maximum is to be taken with respect to all spherical caps.
One would expect that Dn is an unbounded function of n, in other
words : n points cannot be distributed too uniformly on the surface
of the sphere (the situation is of course quite different on the
circle). Perhaps this can be proved by the method of Roth, who
settles in his paper the analogous question for the square [4].
Let zl, Z2 ... be an infinite sequence of points in the plane.

Denote by N(zo, r) the number of z’s in the interior of the circle
of center zn and radius r. Put

where the maximum is to be taken over all circles of radius r.

Probably f(r) is unbounded for every choice of the z’s and one
would like to estimate how fast f(r) or F(r) = maxogrl, f(R)
tends to infinity. The method of Roth will perhaps help here
too [4].
Let f(n) be an arbitrary number theoretic function which only

assumes the values +1. Is it true that to every cl there exists
a d and an m so that

It is perhaps even true that

The well known Theorem of van der Waerden [5] asserts that
for every k there exists an arithmetic progression a, a+d, ...,
a+(k-1)d for which f(a) = ... = f(a+(k-1)d).

Let finally 1  a1 ~ ... ~ an be n arbitrary integers. Denote
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where the minimum is taken over all sequences a1, ..., an. Szekeres

and 1 [6] proved 

Recently Atkinson [7] proved f(n)  exp(n1 2 log n) (exp z = ez).
The lower bound has not yet been improved, though we are sure
that this is possible, undoubtedly f(n) &#x3E; nk for every k and
n &#x3E; no(k). Atkinson’s result is perhaps not far from being best
possible.

Weyl’s criterion [2] does not give an estimation of the discrep-
ancy of a sequence. Turàn and 1 [8] proved, sharpening a previous
result of van der Corput and Koksma [1] the following result:
Assume that for every k satisfying 1  k  m we have

Then for a certain absolute constant C

Koksma and Szüsz independently extended this result for the
r-dimensional case [9].
An interesting special case of our Theorem is obtained if we

assume

From (5) we obtain that (6) implies

We could not decide whether the error term in (7) is best possible.
Another result on the discrepancy of points in the complex

plane due to Turàn and myself states as follows [10] : Let f(z) =
ao+... +anzn be a polynomial, denote its roots by

Then for 0 ~ oc  03B2  2a we have

It would be interesting to investigate whether (8) remains true
if n denotes the number of non vanishing terms of the polynomial
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ao+... +anzkn (or if (8) does not remain true now does it have
to be modified).
The following questions have as far as I know not yet been

investigated. Let wi,...., w" be n points on the unit sphere
chosen in such a way that (wi-wj) denotes the distance of Wi
and wj)

is maximal. Is it then true that Dn = o(n)? (see (4)). Can one
improve this estimate?
An analogous question would be the following: Put

where the maximum is taken over all points of the unit sphere
and mi, ... wn varies over all n-tuplets of points on the unit
sphere. Two questions can be asked. First of all let mi, ..., zey
be one of the sets for which there is equality in (9). Is it true that
for this set D. = 0(n)? Secondly assume that maxw j-j w2013wi
is not much larger than An’ how can one estimate Dn?

II. Now we discuss some questions on uniform distribution.
It follows early from (2) that for every k and every irrational
number a (nk03B1) = nka - [nka] is uniformly distributed, this
beautiful and important result was first proved by Weyl and
Hardy-Littlewood [1]. For general sequences ni C n2  ... it is

very difficult to decide whether (ni03B1) is uniformly distributed e.g.
Vinogradoff [11] only recently proved that (pn03B1) is uniformly
distributed for every irrational ce(pi = 2  p2  ... is the

sequence of consecutive primes). Weyl proved that for every
sequence of integers ni C n2  and for almost all a (ni03B1) is

uniformly distributed. Sharpening previous results Cassels and
independently and simultaneously Koksma and 1 [12] proved
that for almost all x the discrepancy Of Xk = (nk03B1) satisfies for
every a &#x3E; 0

Koksma and 1 use (5), Cassels’s method is more elementary.
It would be very interesting to investigate to what extent (10)
can be improved. Possible o (Ni (log N)5/2+03B5) can be replaced by
03C3(N1 2(log log N)c) for a certain constant c. In the special case
where the sequence n; is lacunary i.e. where it satisfies ni+l/n¡ &#x3E;

c &#x3E; 1. Gàl and 1 proved this, but our proof which is similar to the
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one we used to establish the law of the iterated logarithm [13]
for lacunary sequences ni, was not published. It is well known and
has been perhaps first obtained by Kac and Steinhaus that for
lacunary sequences (n; a ) behaves as if they would be independent.
Thus our result with Gàl gives no indication what will happen if
the condition ni+1/ni &#x3E; c &#x3E; 1 is dropped.
The following beautiful conjecture is due to Khintchine [14]

Let E be measurable subset of (0, 1) of measure m(E). Denote

where the summation is extended over those k’s for which (kot)
is in E. Then for almost all oc and every E

Presumably the same result holds if u1  u2  ... is any sequence
of integers and fn(03B1) dénotes the number of indices k for which
(nk03B1) is in E. This conjecture of Khintchine is very deep, directly
or indirectly it inspired several papers. More generally one could
ask the following question: Let n,  ... be an infinite sequence
of integers and f(x) is any Lebesgue integrable function in (0, 1).
Under what conditions on f(x) and on the sequence nl  ... is
it true that for almost all 03B1 ((nk03B1) = nk03B1-[nk03B1])

Raikov proved that if nk = ak, (a &#x3E; 1 integer) then (12) holds
for every integrable f(x). A simple proof of this result using
ergodic theory was given by F. Riesz [15].
Let nk+1 &#x3E; (1+c)nx, (c &#x3E; 0) and let 1(x) be in L2 and let ~n(f)

be the n-th partial sum of the Fourier series of f(x). Sharpening a
previous result of Kae, Salem and Zygmund 1 proved that if

then (12) holds [16].
Further I constructed [16] a lacunary sequence n,  n2  ...

and a function f(x) which is in Lp for every p and for which (12)
does not hold. In fact for our f(x) we have for almost all oc
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in fact for our f(x) we have for every a &#x3E; 0 and almost all oc

On the other hand I can show that if f(x) is in L2 and {nk} is any
lacunary sequence then for almost all a and every e &#x3E; 0

There is a considerable gap between (15) and (16). 1 think (15)
is closer to the truth but I cannot prove this. I would also think
that (13) remains true if o(1/(log log n)2+03B5) is replaced by
0(1/(log log log n )°) for a certain c &#x3E; 0, but I have not been able
to decide this. It is possible that (12) holds for all bounded func-
tions and every lacunary sequence {nk}. It seems impossible to
modify my example so that it should become a bounded function.
My lacunary sequence for which (12) does not hold is very

special, it would be interesting to try to determine for what
lacunary sequences (12) hold for all f(x) in L2 (or in Ll) and for
which lacunary sequences this is not the case, e.g. let a &#x3E; 1 be

any real number does (12) hold for the sequence [ak]? (If a is an
integer this is the quoted result of Raikov).
Koksma [17] proved the following result: Let f(x) be in L2 and

let {ck} be the sequence of its Fourier coefficients. Assume that

Then for almost all 03B1

1 was unable to find an f(x) in L2 or even in L, for which (17) does
not hold.

III. A sequence Xl, x2, ... in the interval (0, 1) is said to be
well distributed if to every a &#x3E; 0 there exists a ko = ko (e) so that
for every k &#x3E; k0, n &#x3E; 0 and 0  a  b  1

where Nn, n+k (a, b) denotes the number of xm’s, n  m  n +k in
the interval (a, b). As far as I know the notion of well distrib-
uted sequences was introduced by Hlawka and Petersen [18]. Let
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nk+1/nk &#x3E; 03BB &#x3E; 1, in contrast to the result of Weyl I proved that
for almost all a the sequence (nkoc) is not well distributed.l If

nk+1/nk ~ 00 it is not difficult to show that the values of a for

which (nk0t) is well distributed has the power of the continuum.

Further 1 can prove that there is an irrational number a for which

(p,.oc) is not well distributed (compare [ll]). The proof of these
results is not yet published. It seems very probable that (pn03B1) is
never well distributed (i.e. for no value of a) but I have not been
able to show this.

IV. Finally I would like to discuss some results on diophantine
approximations. Khintchine [19] proved that if f(q) is monotone
decreasing then the condition

is necessary and sufficient that for almost all « the inequality

should have infinitely many solutions in integers p and q. It is
easy to see that if (18) does not hold (i.e. if 03A3~q=1 f(q)/q  oo)
then without any assumption of monotonicity on f(q) it follows
that for almost all oc (19) has only a finite number of solutions.
The question now remains: Does (18) imply (19) without any
further assumptions on f(q)? Duffin and Schaeffer and Cassels
deduced (19) from (18) under much weaker assumptions then
monotonicity of f(q), but they both showed (18) does not imply
(19) without some condition on f(q) [20].
In his paper [20] Cassels introduced a property of sequences which

seems to me to be of interest in itself. Let ni  n2  ... be an
infinite sequence of integers. Denote by ~(n1, ..., nk-1; nk) the
number of integers 1 ~ a ~ nk for which a/nk =1= b/n; for every
1 ~ j  k. Clearly

Cassels calls the sequence {nk} a Y sequence if

Cassels shows that there are sequences which are not Y--sequences
1 Petersen informs me that this was known to him.
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(i.e. for which the lim inf. in (20) is 0). 1 have not succeeded to
decide the question whether there is a sequence nl  n2  ...
for which

1 would guess that such a sequence does not exist. I can only prove
that

cannot be 0. In fact 1 will outline the proof of a somewhat stronger
result: assume that

then

Assume that (22) holds. It immediately follows from

~(n1, ..., ni_l; ni) ~ ~(ni) that there must be arbitrarily large
primes p, so that ni = 0 (mod pi) for suitable values of i. Assume
now that nk is the smallest ni for which ni = 0 (mod pj). Then
if 1 ~ a nk, a ~ 0 (mod p,) clearly implies a/nie =F b/ni for
1 S j  k, or ~(n1, ..., 1 nk-1; nk) ~ (1-1/pj)nk, which implies (28).

Cassels shows [20] that the necessary and sufficient condition
that nl  n2  ... should have the property that the divergence
of 03A3~k=1 f(nk)/nk implies that for almost all a

has infinitely many solutions, is that nl  n2 ... should be
a z-sequence. Cassels also shows that every sequence nk+1 &#x3E;

(1+c)nk (c &#x3E; 0) is a 1-sequence. It seems likely that a weaker
condition will imply that a sequence is a I-sequence, but as far
as I know no such condition is known.

Duffin and Schaeffer [20] made the following beautiful con-
jecture : Let eq 1 S q  ao be an arbitrary sequence of non-
negative numbers. The necessary and sufficient condition that
for almost all oc the inequality
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should have infinitely many solutions in integers (p, q) = 1 is that

diverges. (99(q) is Euler’s 99 function). It is easy to prove the

necessity, the real difficulty is to prove the sufficiency.
I proved the following special case of this conjecture. Let a &#x3E; 0

be fixed and let s. = 0 or e. = a. The necessary and sufficient
condition that for almost all 03B1.

has infinitely many solutions is that 03A3~q=1 03B5q ~(q)/q2 diverges.
The proof is very complicated and has not yet been published.
My proof in fact gives the following slightly sharper result: Let
03B5q ~ 0 be a bounded sequence. Then the necessary and sufficient
condition that for almost all 03B1,

has infinitely many solutions is that 03A3~q=1 03B5q~(q)/q2 diverges.
Due to the great technical difficulties of the proof I am not at
present certain whether my method gives the general conjecture
of Duffin-Schaeffer.

My result immediately implies the following theorem: Let
ni  n2 ... be an arbitrary infinite sequence of integers. The
necessary and sufficient condition that for almost all a infinitely
many of the ni should be denominators of the convergents of the
regular continued fraction of oc is that 03A3~i=1 ~(ni)/n2i diverges.
(i.e. it is well known that if |03B1-mi/ni|  1/2n2i, (mi , ni ) = 1 then
mi/ni are convergent of oc). Hartman and Szüsz proved a special
case of the above result [21]. Finally I would like to state four
unrelated problems on diophantine approximation.

1. Hecke and Ostrowski [22] proved the following theorem:
Let oc be an irrational number and denote by N. (u, v ) the number
of integers 1  m :5,- n for which

Then if both u and v are of the form (k03B1) then



62

Szüsz and 1 conjectured the converse of this theorem, i.e. if (24)
holds then u = (k1 03B1), v = (k2oc), unfortunately we had not been
able to make any progress with this conjecture.

2. Denote by S(N, A, c) the measure of those oc in (0, 1) for
which

is solvable for some y satisfying N  y ~ cN.
Szüsz, Turàn and I conjectured that [23]

exists. What is its explicit form?
In our paper [23] we only solved a very special case of this

problem. Recently Kesten [24] strengthened our results, but the
general problem is still unsolved.

3. Consider 0  oc  1

Is it true that f(ot, n) has an asymptotic distribution function?
In other words is it true that there is a non-decreasing function
g(c), g(-oo) = 0, g(+oo) = 1, so that if m[/(oc, n), c] denotes
the measure of the set in ex for which f(ce, n) ~ c then
lim m[f(03B1, n), c] = g(c). Probably g(c) will be a strictly in-

creasing continuous function. Important recent contributions to
this problem have recently been made by Kesten, [25] but as far
as I know it is not yet completely solved.

4. The following interesting problem is due to LeVeque: Let
al  a2  ... be an infinite sequence tending to infinity satisfying

We say that the sequence xn, 1 ~ n  oo is uniformly distributed
mod ai, a2 , ... if yn, 1 ~ n  oo is uniformly distributed. Is it
true that for almost all et the sequence net, 1 ~ n  oo is uniformly
distributed mod al, ...? Leveque proved this in some special
cases [26].
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Added in proof : Since this paper was written the following
papers were published on the problem of LeVeque:
H. Davenport, P. Erdôs and W. J. LeVeque, On Weyl’s criterion

for uniform distribution, Michigan Math. Journal 10 (1963),
311-314;
H. Davenport and W. J. LeVeque, Uniform distribution rela-

tive to a fixed sequence, ibid 10 (1963), 315 - 319 and
P. Erdôs and H. Davenport, Publ. Math. Inst. Hung. Acad.

(1963).
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