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On a function, which is a special case of Meijer’s
G-function1)

by

J. Boersma

1. Introduction.

In the present paper a function, called K( z) is studied, which
is defined by means of a power series in the following way:

PI and vt are supposed to be real and positive; ai and bx may be
complex. We assume that aj and uj have such values that
r(a+ph) is finite for h = 0, 1, 2, ... ; so

a,+p,h # 0, -1, -2, ... for i = 1,..., rand h = 0, 1, 2,....(2)
It is clear that for pi = ... = Àr = "1 = ... = vt = 1 we have

in which rF t al’ ..., a,.; bl, ..., b t; z ) represents the generalized
hypergeometric function.

In section 2 the convergence of the power series (1) is examined.
In section 3 an integral representation for the function K(z) is
derived, by means of which in the case of positive rational para-
meters uj and vx the function K(z) may be written as a G-func-
tion. By means of this connection with the G-function the dif-
ferential équation, the analytic continuation and the asymptotic

1) The present article is the elaboration of an answer to a prize-competition of
the University of Groningen. This answer was awarded in September 1958.
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expansion of the function K(x) are discussed in resp. sections 4,
5 and 6, again for the case of rational p, and vx. In section 7 the
case of a divergent power series (1) is studied. Then a G-function

may be constructed, which has K - as its asymptotic expansion.
z

In section 8 the results of the foregoing sections are applied to
the case of the generalized hypergeometric function i.e. the case
with pi = ... = Pr = vl = ... = "1 = 1 (see (8)). In section 9
a comparison is made between the results of this paper and the
researches of E. M. Wright 2) about the asymptotic behaviour
of this same function, but for real positive values of the parameters
p¡ and v.. The methods used by Wright are however much more
complicated than the method followed in this paper.

Following Wright we shall introduce the abbreviations

Instead of p Wright uses the symbol h.

2. Convergence of the Series.
We examine the convergence of the power series (1). Use is

made of the following well-known formula3) for the gamma
function

valid for large values of ICI with larg el  n.

We write the power series in the right-hand side of (1) shortly as

1) E. M. Wright, Journ. Lond. Math. Soc. 10, pp. 287-298, (1985) and Proc.
Lond. Math. Soc. (2), 46, pp. 3892013408, (1940).

’ ) Cf. A. Erdélyi, Higher Transcendental Functions, Bateman Manuscript
Project, Vol. I, p. 47, (1958).
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We consider Ch+l and make use of (5) and (4).
CI%

We now distinguish three cases:

1°. K  0; then we have lim !CA+ll = 00.h-oo ch |
The radius of convergence of the power series (1) is now zero,
so that the series (1) is divergent for all values of z except z = 0.

2°. K = 0; then we have lim 1 CA+ll = p.A-+oo CA |
The radius of convergence of the power series (1) is now equal

to 1 . For 1.’111  -1 the series (1) is absolutely convergent. For
P P

1.’111 &#x3E; - the series (1) is divergent. The behaviour of the series
P

on the circle of convergence will be discussed after 8°.

8°. K &#x3E; 0; then we have lim 1 CA+ll | = 0.h~~ | Ch |
The radius of convergence of the power series (1) is infinite, that
means, the series (1) is absolutely convergent for all finite values
of z.

Finally we examine the convergence of the series (1) in the

case 2° (K = 0) for (si = 1-.
w P.

We put z =.-, then the series (1) becomes
P
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The power series (6) in w has a radius of convergence equal to. 1.
Now we make use of a convergence test of Weierstrass 4). We

write the power series (6) shortly in the form

We now co nsi d er dh+1 ; , b y means of (4) and (5) we find
dh

Application of Weierstrass’ test gives three subcases:
1°. Re e-î  -1.

The power series (6) is absolutely convergent for iwi I = 1,
so the original power series (1) is absolutely convergent for

1lzl = - . .
P 

2°. -1  Re 0 - i  0.

The power series (6) is convergent for lw | = 1, except for
w = 1, so the original power series (1) is convergent for

z -1 except 1-Izi 1 . , except for z . .
P P

4) Cf. K. Knopp, Infinite Sequences and Series, Dover Publications, p. 189,
(1956).
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8°. Re .%-) h 0.
The power séries (6) is divergent for [w[ = 1, so the original

power séries (1) is divergent for [z[ = 1-
P

3. Integral représentation and connection with Meijer’s
G-function.

We consider the following intégral

where C is a contour, which runs from oo-ii to oo+ia (v is a
positive number) enclosing all the poles

but none of the poles

of the integrand.5)
r t

We assume ~,u ~ vk+ 1 or K &#x3E;- 0.
1-1 t-i

We suppose that z satisfies the inequalities

Now the only singularities of the integrand within the contour
are simple poles at the points (8). The residue of the integrand
at the point s = h is equal to

5) Such a contour C exists according to (2):

aj +uj h i6 -m with h, m = 0,1, 2,... and j = 1 , ..., r.

a, +m
So we have h # - ai+m , that means none of the poles (8) coïncides with one
. ai
of the poles (9).
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It may be proved by means of the asymptotic expansion of
the l’-functiori that the integral (7) is convergent and that we
have from the theorem of residues

We now restrict ourselves to positive rational values of uj
and vx . Then each of the parameters p, and vx can be written. as
a fraction with positive integral numerator and denominator,
which are mutually indivisible. The least common multiple of
the denominators of these fractions is called q. Further we put

(y, and ôk are integers).
From (4) it follows that

We make use of the multiplication formula e) of Gauss and
Legendre for the r-function,

We transform the integral representation (10) into the integral
definition of the G-function as presented in Meijer’s "On the G-
function" 7), p. 229.
We put s = qv, then C is transformed into a contour C* en-

12 a a +1
closing all oles 0 1 2 ... but none of the poles -a, ai + 1a,+2 p , 

q ’ q 
p 

Yi Yi’
- aj + 2 ....(j = 1, ..., r) of the transformed integrand,

YJ

8) Cf. A. Erdélyi, loc. cit. 3), p. 4.
7) Meijer’s "On the G-function" refers to a collection of eight papers written

by C. S. Meijer under the same title, which appeared in Proc. Ned. Akad. Wetensch.
49, pp. 2272013237, 3442013356, 4572013469, 6322013641, 7652013772, 9362013943,106320131072,
116520131175, (1946).
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in which

and
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The argument of the G-function in (14) may be written by
means of (4), (11) and (12) in the following way

We remark that the condition, which Meijer assumes in defining
the G-function, viz. a, - be =A 1, 2, 8,... (j = 1,..., n; h = 1, ...,m)-
becomes in this case

Multiplication with y, yields

Because mj = 0,..., "s-1 we may write

as+psk =f:. 0, -1, -2, -3, ... for k = o, ..., q-l and j = 1, ..., r.
This condition is certainly fulfilled according to (2).
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4. Differential equation.
The function

satisfies the following differential equation

where 0398 dénotes the operator z - (Meiier’s "On the G-function",
p. 844). 

dz

In the G-function (14) the variable z is replaced by

from which it follows that the operator z d must be replaced
, dz

After substitution of the values (16) and (17) for or, and Pk in ( 19 )
and multiplication with

we obtain the following homogeneous linear differential equation
of order q+ ô for y = K(z):

where e denotes again the operator z d .dz

5. Analytic continuation.

In the case 2° of section 2 i.e. K = 0 or

the power séries (1) is divergent for Izl &#x3E; 1. so the function K{z}
p



48

is not defined for that region. Inside the circle of convergence
K(z) is equal to a G-funetion of the type G’::,ft(z), for the condition
K = 0 is on account of (12) equivalent to y = q+d.
We apply now theorem D (p. 285) of Meijçr’s "On the G-

funetion". The condition m+n &#x3E; p+1 becomes here q+y &#x3E; y+1
and is certainly fulfilled. In the sector

K(z) is according to theorem D an analytic function of z and
may be represented by the integral

where L is a contour, which runs from - ooi + a to + ooi+a
(a is an arbitrary real number) and is curved, if necessary, so
that the points (8) lie on the right and the points (9) lie on the
left of the contour.

1
For Izl  1 we may bend round the contour L to the contour

P
C and so we obtain the integral representation (10). In this way
the function K(z) is defined and analytic in the whole.complex
z-plane with exception of a cut, which has to be made along the

axis frompositive real axis from - to oo.

P

According to theorem E (p. 236 ) of Meijer’s "On the G-funetion",

the analytic continuation of K(x) outside the circle Izl = 1
p

in the sector larg (-z)1  03C0 may also be written in the form

If the condition
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is fulfilled., then we may apply to (22) the "sum" définition of the
G-function (Meijer’s "On the G-function", p. 280 ). The values of
the a’s and (J’s are substituted from (16) and (17) and the value
of M from (15). By means of formula (18) and some other elemen-
tary formulae for the f-function we can write the analytic
continuation of K(z) in the following form

defined fot Izi &#x3E; 1 and larg (-z)1  :Tl.

P
The conditions (2) and (23) must be fulfilled in order that the

séries in the right-hand side of (24) will be defined.
From (2) we have

80 P (a,+n is defined for i = 1, ..., rand n=0,1,2, ....
p,

In the case j # h condition (28) gives

a,+m, ah+mh l where l is an arbitrary integer,
yj yh

or

Because mi = 0, ..., yi - 1 we may write

aJ- PJ(a,,+mA) =1= 1 where 1 is again an arbitrary integer.
IuA .

We subtract from both sides py, (p is also an arbitrary integer).
According to (11) we then have
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Because mh = 0, , .., yh -1 we may write

with j, h = 1, ..., r; i =1= h; l’ and n arbitrary integers.

So F 1-1 PS(al,+n» is defined for i, h = 1, ..., r; i ~ h;{aj P.% }
-n = 0, 1, 2, ....

It is clear that the condition (23) is équivalent to the condition

This condition denotes that all points (9) are different, hence,
all these points are simple poles of the integrand in (7) and (21).
It is obvious that, under this condition, the series (24) also could
have been derived directly from the integral (21) by means of
the theorem of residues.

It may be remarked that the above results (21) and (24) (the
latter under the condition (25)) are also valid in the case of real,
not necessary rational, positive values Pi and "1: with

.as can easily be proved.

6. Asymptotic expansion.

In the case K &#x3E; 0 or

or y  q+ô the power series (1) is convergent for all finite values
of z. The function K(z) is then an analytic function of z in the
whole complex plane. We will examine the asymptotic behaviour
of the function K(z) by means of the relation (14) and the known
asymptotic behaviour of the G-function. The argument of the G-
function will be given by (18). The applied theorems are to be
found in Meijer’s "On the G-function", viz. the theorems B,
19, 17, 18. We distinguish two cases:
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There are now three subcases:

a. We apply theorem B (p. 288).

Assertions: The function K(z) possesses for large values of
Izl | with

or according to (4) and (11)

the asymptotic expansion

Herein is

and

the asterisk denoting that the number 1 + oci - OE, is to be omitted
in the sequence 1 + Otl - Otl’ ..., 1+aY-ai.
We substitute the values of the oe’s and 03B2’s from (16) and (17)

and the value of M from (15). In the same way as has been done
at the derivation of (24), the asymptotic expansion (26) may be
written in the following way:
For large values of |z| | with
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K(x) possesses the asymptotic expansion

where P (- :) stands for the, in this case, formal expansion in thez 

.

right-hand side of (24).
The asymptotic expansion (27) is valid for large values of

Izl with larg ( -z)l  (2-K) 2 . This sector does not cover the2 
.

whole complex plane; therefore another theorem is needed in
order to derive an asymptotic expansion for the remaining part
of the complex plane. This is done in subcase b.

b. We apply theorem 19 (p. 1066).

In the last two assertions, viz. the formulae (80) and (81) we
assume besides that the condition (28) is fulfilled.

Assertions: The funetion K(z) possesses for large values of
Izl with

or according to (4) and (11)

in which

(Meijer’s "On the G-function", p. 234), the asymptotic expansion

K(z) - M - A:+’;, Hy,Q+’( -z)Qq-xQpQe(I-y)lI’); .. (28)
for large values of Izl with

the asymptotic expansion
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for large values of Izi with

-the asymptotic expansion

for large values of Izi with

-the asymptotic expansion

p (- :) stands again for the, also in this case, formai expansion( z
in the right-hand side of (24). A:¥Í and A:¥Í become (see
Meijer’s "On the G-function", p. 849) in our case

From Meijer’s "On the G-function", p. 234 we have

where becomes in our case

c. In the subcase a the condition y &#x3E; 1 has been assumed; hence,
we have still to consider the asymptotic behaviour of K(z) for

large values of IZI with larg (-z)1 [  ( 2 - K ) " under the condition
2
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y = 0. y = 0 means r = 0 so that the product

is an empty product.
First we mention the (trivial) case: à = 0. Then we have

t = 0, hence

From now on we shall assume ô &#x3E; 0, so because 6 is an in-

teger, ô ’-&#x3E; 1. The power series (1) now takes the form

and the relation (14) becomes

in which is

and with in (85) and (86)

We apply theorem 17 (p. 1063).

Assumptions: 0  y  q+ô-2 and y+l  q : q+â-l,
which are fulfilled if y = 0, for q and 6 are at least equal to one.

Besides we have still the condition of the case 1 ç+y &#x3E; ô,
which becomes here q &#x3E; 6. It is clear that this condition is cer-

tainly compatible with the assumptions of theorem 17. Strictly
speaking, by means of theorem 17 the case -y = 0 can be treated
for the subcase Ib and for the case II. Further it is assumed that

or
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Assertions: The function K(z) possesses for large values of Izl
with

the asymptotic expansion

for large values of izi with

the asymptotic expansion

for large values of Izl with

the asymptotic expansion

In (38), (39) and (40) M’ is given by (36); A Q+a, À&#x26;ç) and
Ho, q+’ are given by the right-hand sides of (32) and (33) with
y = 0 and p, 1( and 0. in accordance with formula (37).

It is clear that in the sector (2-K)   arg ( -z)  yr + 03BB n
2 q

the asymptotic expansion (38) is the same as the asymptotic

expansion (28) in subcase Ib with y = 0. A similar result holds
for the asymptotic expansions (39) and (29) in the sector

- n- - n  arg(-z)  -(2-K) -. If y = 0 the formal ex-

q 2

pansion P (-1) in the right-hand side of (24) is an empty sum
( 2?/

(y = 0 implies r = 0, see (11)) and may be put equal to zero.

Then if arg ( -z) = +(2-K) ili the asymptotic expansions (30)2

and (31) also pass into the asymptotic expansions (38) resp. (39).
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We apply theorem 18 (p. 1064).

The first assumption is true; for from q+y  ô it follows that
y s q+6-2q; owing to q &#x3E;- 1, -2q  -2 we have therefore
Y  q+ô-2.
In the last assertion (formula (42)) we assume besides that the
condition (23) is fulfilled. Further it is assumed that

or

Assertions: The funetion K( z ) possesses for large values of Izl
with

the asymptotic expansion (28);
for large values of Izl with

the asymptotic expansion (29).
If y+l : q+y  iy+iq+iô, so if q+y  ô or

or K &#x3E; 2, the function K(z) possesses for large values of Izi
with arg ( -z) = 0 the asymptotic expansion

If q+y = ty+lq+id, so if K = 2, the funetion K(z) possesses
for large values of Izr with arg (-z) = 0 the asymptotic ex-
pansion
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where P’ - Z) denotes again the formal expansion in the right-xi

hand side of (24).
In the case y = 0 the first two asymptotic expansions of case II

pass into the asymptotic expansions (38) and (39). The formal

-expansion P( - 1 is then equal to an empty sum (see (24)) andz

may be put equal to zéro, so both asymptotic expansions (41) and
(42) pass into the asymptotic expansion (40).

7. The case

In this case the power séries (1) is divergent for every value
of z ~ 0. Now it may be that the power séries corresponding to

K( ) is the asymptotic expansion of some other function. In this
z

case the relation (14) is not true but we may formally write (see
Meijer’s "On the G-function", p. 230):

This expansion might be an asymptotic expansion of the type as
discussed in theorem B (p. 233 ) of Meijer’s "On the G-function".
We consider the G-function:

In the following this ’ function is shortly written as M- G’Y, "( - z)’OE ;q+&#x26;,,y q p«);
it has a meaning for every value of z # 0 because y &#x3E; q+à.
We now apply theorem B (p. 233) of Meijer’s "On the G-

function" to the function (44); then we must assume that
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and q+y &#x3E; iq+iô+iy or q+y &#x3E; ô which is certainly fulfilled-
Further there must be

or fJ; - Ph =1= 0, ± 1, ±2, ... for j=Ah; i, h = 1, ..., q.
This condition is also fulfilled according to (17).
Then the function (44) possesses for large values of ]z] with

n 
hi.or ] arg ( -z)[  (2-1) - (t IS sector covers the whole complex

2

plane because K  0) the asymptotic expansion

in which

and

After substitution of these expressions we see that the right-hand
side of (45) is equal to the formal expression on the right of ( 43) ;
we find therefore

The function (44) is the same as the function considered in
1 

(22) of section 5 8) after replacement of z by -. Hence, if the
z

8) In section 5 the case with y = q +ô is treated; here we consider the function
(22) with y &#x3E; q+c5.
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condition (23) is fulfilled we may write (46) in the following way:
For large values of Izi with

the function P( -z) defined by (24) possesses the asymptotic
expansion

8. The spécial case Il, = ... = fLr = VI = · · · = v = 1. ·

As has been stated in (3) the function K(z) reduces to the
generalized hypergeometric function. Section 2 passes into the
well-known convergence behaviour of this function. Section 3

gives us the generalized hypergeometric function expressed in
the G-function. The number q is equal to 1. The relations (11)
become:

From (4) we have

Formula (15) becomes M = 1.
In view of (3), (16) and (17) formula (14) becomes

According to section 4 the differential equation for y =, Ft (z)
becomes

d
where 0398 denotes the operator z d .z
Section 5 gives the analytic continuation of ,.Fr z) in the case
r = t+l.
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Section 6 gives the asymptotic expansion of TFt (z) in the case
r  t+1. The results agree with the results obtained in Meijer’s
"On the G-function", § 20 (pp. 117020131173).

Finally, if r &#x3E; t + 1 the result of section 7 becomes:
For large values of Izi with

and under the conditions (2) and (23), which become in this case

and ai-ah, =1= 0, + 1, ± 2, ... for i =1= h; i, h = 1, ..., r, the

following asymptotic expansion holds (see (44) and (47))

It may still be remarked that the function in the left-hand side
of (50) is equal to Mac Robert’s E-function 9)

9. Comparison with Wright’s results.

In a number of papers E. M. Wright has discussed the asymp-
totic behaviour of integral functions defined by Taylor series

t) Cf. A. Erdélyi, loc. cit. 3), p. 215.
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with an application to the case of the function of this paper.
The results of this application are to be found in two papers
which are cited in footnote 2 ) of this paper.
We recapitulate Wright’s results in our notation:

THEOREM 1. If K &#x3E; 0 and ’CI s ji min (K, 2)-e then

THEOREM 2. If K &#x3E; 2 and  n then

THEOREM 3. If K = 2 and  n then

THEOREM 4. If 0  K  2 and Il  (2-K) 2 -e, then2

3
THEOREM 5. If 0  K  2, ICI ~ min (n, - nK- s) and n  37:,(n 

2 
)

then

THEOREM 6. If f(s) has only a finite number of poles or none,
then K &#x3E; 1 and the asymptotic expansion of K(z) is given by

If f( s) has no poles, then H( -z ) = 0.

All these expansions are valid uniformly in arg z in the respective
sectors. Herein is

The "exponentia" asymptotic expression I(X) is 1°)

10) It may be remarked that in the définition of I(X) on p. 390 of Wright’s
A

second paper the coefficient Am must be replaced by A m . The theorems 1-5
K

are namely proved by means of some more général theorems which are derived
in E. M. Wright, Phil. Trans. Roy. Soc. (A), 238, pp. 423-451, (1940), where
this factor K indeed occurs.
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where the coefficients Ao, A1, A2, ... have been calculated such
that

assuming that arg s, arg ( as -f -,u3 s ) and arg ( bk -E- vk s ) all lie between
-1C+e and 1C-e. In particular

The "algebraic" asymptotic expression J( y ) is

with 11) Nh + Re ah  Nuh  N",+Re a. + 1

and

denoting the residue of the function T( -s) f(s) yS in the point

when this point is a pole of order p for the function 1(s). If the
point is not a pole of 1(s) Wright defines Ph, n = 0.

If f( s) has only a finite number of poles, then Ph, n = 0 when
n is greater than some fixed nh and Wright defines

e and T denote arbitrary positive numbers; M and N are arbitrary

N h _ an+n
11) If Nh is negative for some N and h, then 1 Ph, n y uh "BBill be put equal

n=o

to zero for that value of h. However, for sufficiently large N, Nh (h = 1, ..., r)
will certainly be positive.



positive integers; K is a positive number depending at most on
M, al’ uJ’ bk, vx, but not on s.

Further the following abbreviations are used:

In our paper we also obtained an algebraic type and an ex-
ponential type of asymptotic expansion. The algebraic type of

asymptotic expansion is given by P ( - ll (see (24)). This ex-
z

pansion always occurs accompanied by the condition (23), which
was equivalent with condition (25). The latter condition means
that all poles (56) of f ( s ) are different and therefore simple. From
(55) we have in this case

Substitution in (54) yields

Comparing this formula with (24) gives

The exponential type of asymptotic expansion is given by:

Substitution of (15), (32), (33) and (34) gives the expansion
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We see that the first term of this asymptotic expansion agrees
with the first term of the asymptotic expansion I(Z2). The agree-
ment between the further, higher order terms is not proved.
Because the coefficients M, which are originally introduced by
Barnes 12), and the coefficients A of Wright are defined in a much
different way, the agreement is not trivial.
So the following result is obtained

2°. Similarly

We now translate the results of section 6 by means of (59), (60)
and ( 61 ). We assumed K &#x3E; 0 and distinguished the following cases:

a. For large values of Izi with liîl  (2-K) -
2

K(z) = J( -z) in agreement with theorem 4.

b. For large values of Izi with (2-K) -  Il  9 + - Z
2 q

for large values of Izi with Â n  nî (nfor large values of Izl with -n - - n  n  - ( 2 -K ) §§/q 2

12) Cf. E. W. Barnes, Proc. Lond. Math. Soc., (2), 5, pp. 59-116, (1907).
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for large values of z with 17 = (2-Kl 9

n

for large values of izl with n = -(2-K) 2

n Â .

If (2 - K) -  ’l  Z + - n we may write2 q

À n

If - n - n  IÎ  - (2 - K) - We may write
q 2

So the first two assertions may be written in the following way:

For large values of izl with 1’1  K z 13)
2

which is in agreement with theorem 1 and theorem 5, for in the

sector [Ç]  K n J( -z) is neglig ible compared with the error
2

term of I( Z ), as Wright proves.
The last two assertions may be written in the following way:

For large values of Izi with ICI = K 22

which is in agreement with theorem 5.

c. In this subcase was supposed y = 0. But then f ( s) (see (51))
has no poles. The asymptotic expansions (38) and (39) are the
same as the asymptotic expansions I ( Z2 ) resp. I(Zl).

n Â
13) From the definition of Â it follows easily that we have in case 1 : K - &#x3E; - 1l.

2 q
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Hence we obtain the following results:

For large values of izl with 0  1’/  11; +n -
q

for large values of Izl with - n - -  ~  0
q

for large values of Izl with -1 = 0

r

We assumed y = 0 or i ui = 0. According to (4) we then
j=1

,have K &#x3E; 1.14) From the definition of Z, and Z2 it follows that

If K &#x3E; 1 and 0iîn+nwe have Re Zi  Re Zg, for then
q

and so sin il &#x3E; 0.
K

In this case I(Zl) is negligible compared with the error term
.of l(Z2). Meijer says then that I(Z2) is dominant compared with
I(Zl) (Meijer’s "On the G-function", p. 941).

Similarly if K &#x3E; 1 and 2013 n 2013 n-  q  0 we have Re Z2  Re Zl
q

and I(Zl) is dominant compared with I(Z2).
When these results are substituted in Wright’s theorem 6 we

obtain our results in the cases 0  q  11; + n-and 2013n 2013n -  ~  0.
q q

In the case = 0 we have Re Zl = Re Z2 so both expansions
I(Zl) and I( Z2) are of equal importance. Our result for q = 0
agrees with Wright’s theorem 6.

1’) We might also have rc = 1, but this leads ( see (4)) to the trivial case ô = 0,
which has been considered in section 6.
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II. K &#x3E; 2.

n

For large values of izl | with 0  ~  n -f - -
q

for large values of izl with - n - -n  ~  0
q

for large values of Izi | with q = 0 and if K &#x3E; 2

for large values of Izi with q = 0 and if K = 2

If K &#x3E; 2 the first three assertions agree with Wright’s theorem

2, for in the case 0?y+-7(Z) is dominant compared
q

with I(Zl) and in the case - n - -  ~  0 I(Zl) is dominant
q

compared with I( Z2 ). This may be derived in a similar way as in
case I, c.

If K = 2 the first two and the fourth assertion agree with

Wright’s theorem 3. In the case 0  ~  n + - ( Z2) is the
q

dominant term, in the case - a -  -1  0 I(Zl) is the dominant
q

term. The first two assertions may also be written in such a way

that they agree with Wright’s theorem 1. For if 0  ’fJ  :TT; + 
q

we have -:r   - and Z2 = Z; similarly if - n - -  17  0
q q

we have  c  n and Zl = Z. So for large values of ]z[
q

with ICI  n then

which is in agreement with theorem 1 for K &#x3E; 2.
So all our results on the asymptotic behaviour of K( z) agree

with Wright’s theorems. As has been stated, Wright’s theorems
occupy with asymptotic expansions valid uniformly in arg z in
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closed sectors, whereas our results give asymptotic expansions
valid in open sectors but not uniformly in arg z. However, it may
be proved that the used asymptotic expansions of Meijer’s G-
function, which are stated in open sectors, are also valid uniformly
in arg z in closed subsectors of these open sectors.

Finally, we may conclude that the results of this paper, derived
for rational positive values of the parameters, are in agreement
with Wright’s results for real positive values of the parameters,
whereas the methods followed by Wright are much more com-
plicated than the methods followed in this paper.
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