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Integral functions of two complex variables
by

S. K. Bose and Devendra Sharma 1) 2)

1. Let 3)

be a function of the two complex variables zl and Z2’ regular for
IZtl  rt, t = 1, 2. If rl and r2 are arbitrarily large, then t(Zl, Z2)
is an integral function of the two complex variables. We know that

is the maximum modulus of t(Zl Z2) for IZtl  rt .
In this paper we have defined maximum term and the ranks of

the maximum term, and have extended the method of systematic
determination of these as in the case of one variable by Newton’s
polygon ((1), p. 28). Also we have obtained relations between
these, and inequalities involving these and the maximum modulus.
Further, we have defined order and have obtained necessary and
sufficient conditions for the function to be of finite order, and also
the same for functions of finite order and type T.

2. Let 4)

be a function of the two complex variables z, and z2 , regular in
Iz,  r, and IZ21  r2 . Writing z, = r,. e’Oi and Z2 = 1’2ei02,

l} 1 regret to announce the sudden and untimely death of Devendra Sharma on
18th June, 1957.

2) We are thankful to the referee for the valuable criticism.
3) We have considered only two variables for simplicity. The results can easily

be extended to several variables.

4) If (zo, zo) is any given point, then by neighbourhood of this point we would
mean a bicylinder Iz,-el  Tl,BZI-Z:1  rât, Tl &#x3E; 0, TI &#x3E; 0.



211

and

This series is convergent for all values of 01 and 02 because

I:1,ml=olaml,mllrlr:1 is uniformly convergent, by hypothesis.
We, therefore, multiply both sides by cos (ml °1 + m2(2) or

sin (ml 01 + m2(2) and integrate term by term between the limits
zero and 2n. We thus have

and

Multiplying the second by i and adding, we get

Hence

Again, if we integrate (2.1) with respect to 01 and 0. in the range
zero to 2n, we get

From (2.2) and (2.3) follows

Now, if U is positive, then the integrand is equal to 2 U and if U
is negative or zero, then the right hand side is zero. Hence we have

THEOREM 1. If the function f(zl’ Z2) is regular for IZ11  ri and

IZ21 |  r2 and il A (r1’ r2) is its m aximum real part for IZ11  ri and

IZ21  r2l then f or all positive values o f ml and m2, the number

la.,,,.,Iiî ir’a is less than or equal to the greatest o f the two numbers
-2cxo,o and 4A (ri, r2)-2ao,o .
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COROLLARY. If i(Zl z2) is an integral function, then

f or all positive values o f ml and m2’ and f or all ri &#x3E; rf , r2 &#x3E; ?2
Similar results can be obtained for minimum of U (rI’ r2l °1’ (2).

Also for the maximum and minimum of V(rl’ r2l °1’ (2).
THEOREM II. If f(zi , Z2) is an integral f unction, and ql and q2

are two tixed finite positive numbers such that ) f(zi , z2)1 is algebra-
ically less than KrÎiri2 f or lzll = ri and IZ21 = r2l where ri and r2
are arbitrary large numbers and K is a constant, then /(zl, Z2) is a
polynomial of degree not greater than ql+q2.

PROOF : Since  I/(zl’ z2)1 s Kril11t for lzll = ri and IZ21 = T2’
therefore, from (2.4) follows

If ml &#x3E; q, or m2 &#x3E; q2 , then the right hand side vanishes as
r, or r2 respectively tends to infinity, and so a,.,,., is zero for
ml &#x3E; ql or m2 &#x3E; q2.

THEOREM III. I f f(Zi, Z2 ) is an integral f unction o f the two

complex variables z, and Z2’ then

f or all Rl &#x3E; rl &#x3E; ri and R2 &#x3E; r2 &#x3E; r2 , where

M(rl’ r2) = maxl/(zl’ z2)1,

lor [zi[  ri and Iz?1  r2 .

PROOF : We can write (2.4) as

and taking r,  R1 and r2  R2’ it follows that



213

COROLLARY: Il f(Zll Z2) is zero at Zl = 0, Z2 = 0, then

f or RI &#x3E; rl , R2 &#x3E; r2 -
3. Consider the moduli of the terms of the double series in the

expansion of the intégral function 1 )

where

If we consider any column or row, then the sequence thus ob-
tained tends to zero for all values of r1 or T2. Hence for every
value of ri , keeping m2 and r2 fixed, there is, therefore, one term of
the sequence thus obtained which is greater than or equal to all
the rest. This term will be the maximum term in that column and
will be denoted by ,u (m2; rl, r2). If there are more than one such
term, then the term of the highest rank will be regarded as the
maximum term of this column and the rank will be denoted by
VI(M2; rl). We next give different values to m2 , i. e. consider
different columns and suppose the greatest term occurs in the v2th
column, then the term ,u (v2; rl , r2) will be the maximum term with
respect to columns and the rank of this term will be denoted by
vl (rl ). If there are more than one column containing such term,
then the term of the highest rank with regard to column will be
regarded as maximum term, i.e. the column of highest rank
which contains the maximum term is v2th. Similarly, if we consider
mlth row, keeping ri, r2 and ml fixed, then we shall have

1 ) Suffix 1 will indicate row, for example, Mi, Pl, Vi etc. and suffix 2 will indicate
column, ml, P2’ 1’. etc.
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u (mi; rl , r2 ) as the maximum term in that row and the rank as v2 (m;
r2). Further, for different values of ml, suppose the greatest term
occurs in the vlth row, then the maximum term will be denoted by
P("l; rl, r2) and the rank of this term will be denoted by V2(r2)’
If there are more than one such term, then the same convention
as for columns is adopted. Hence we shall denote the maximum
term for given values of rl and r2 by ,u (r1, r2 ) and the rank of this
term will be denoted by v(rl, r2).
For a systematie study of finding the maximum term we shall

extend the method of Valiron ((1), p. 28) for one variable.
Let log Cmi, m_ -gml,ma’ then

and

ml m.

Since VCm m and vc::-: tend to zero as ml and m2 respec-
tively tend to infinity.

Taking OX, OY, OZ as the axes of coordinates, if we plot the
points Aml,m. of coordinates (ml, m2’ gml,m.), then, from (3.3),
it follows that we can construct a surface with plane faces and
every section of this surface by planes parallel to the XZ-plane
and YZ-plane form a Newton’s polygon, having certain of the
points Aml,m., lying in this vertical plane. Out of these some of
them coincide with the vertices of the polygon, whilst the remain-
der lie either on or above it. Let us denote this surface by S(f)
and call it Newton’s polyhedron.

If VI and v2 be the rank of a maximum term as defined above and
Mi =A vi or m2 =f= V2, then, it easily follows:

Now, let us consider the geometrical interpretation of this
inequality. Let D 1’1,1’1 denote a tangent plane, having direction
cosines proportional to -log rl, -log r2 and 1, passing through
the point AVl,m2 or Aml’v.. If we now draw the plane parallel to
the XZ-plane through AVl,ml’ then those points Aml,m. which lie
in the plane do not lie below the line L1’l’ the line of intersection
with the plane D,,,,, . of slope log rl . Similarly, if we consider the
plane parallel to the YZ-plane through Ami’’’.’ those points Aml,ml
which lie in that plane do not lie below the line L1’" the line of
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intersection with the plane D" 1 " , 1 of slope log r2 . The point Av l’ m .
or Ami’ v. is therefore a point of the polyhedron S (f) and the plane
D,1,rt is a tangent to this polyhedron.
Now, we take a vertical plane parallel to XZ-plane through

A v l’ m , . then m2 is fixed, i.e. in (3.2) we are considering a column.
The intersection of the plane with the surface will include a New-
ton’s polygon and the tangent line L,.1 1 of slope log rl will pass
through AV1,m.. . The point A,,,, 2is uniquely determined in the
plane, when log ri is not equal to the slope of one of the sides of
nl(!)’ and for such values of ri, there is only one term in the se-
quence (column of (3.2 ) under considération) equal to ,u(m2; Tl’ r2 ).
When log rl is equal to the slope of a side of ni (f), there are several
such terms and their number is equal to the number of the points
AVl,m. which lie on this side of this polygon. When more than one
term are equal to ,u (m2; rl, r2 ), we shall take the term of highest
rank amongst them as the maximum term, with respect to m2 and rl .
Thus having obtained the maximum term or terms with respect

to m2 and r1, we must draw a plane parallel to YZ-plane through
Aml’v.’ then ml is fixed, i.e. in (3.2 ) we are considering mlth row.
Again the intersection will include a Newton’s polygon and the
tangent line Lr. of slope log r2 will pass through Aml’v.. Here
again the point Ami’ Va is uniquely determined in the plane, when
log r2 is not equal to the slope of one of the sides of n2(/), and for
such values of r2 there is only one term in the sequence of terms in
the mlth row equal to ,u (ml; ri , r2 ). When log r2 is equal to the
slope of a side of n2(/), there are several terms and their number is
equal to the number of points A i, ". u which lie on the side of the
polygon. As in the case of m2 and rl , we shall take the term of
highest rank amongst them as the maximum term, with respect to
mi and r2. Finally the greater of the two terms obtained above
shall be denoted by ,u(TI’ r2).
We have thus, with this convention, obtained one term as maxi-

mum with respect to ml, m r and r2. Thus VI(m2; Tl’ 1:2) or
"l(TI’ r2 ), y2 fixed, 1’2(ml; rl , r2 ) or V2(rl, r2 ), ri fixed, and "(Tl’ r2)
will be used to denote ranks of the maximum term of the double
series. "1(m2; Tl’ r2), 1’2(ml; Tl’ r2) and v(rl, r2) are unbounded
non-decreasing functions of r1 and r2 . Further, Vl(M2; rl, r2) and
V2(ml; r1, r2) have left hand discontinuity wherever ri and r2

respectively pass through a value such that log rl and log r2
respectively equal the slope of one of the sides of the polygons
nl(/) and n2 ( f ). Hence v (r1, r2 ) has also discontinuity for such
values of rl and r2.
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4. Two functions f(zi, Z2) and g(z1 , Z2) having the same poly-
hedron will have the same maximum term and the rank.

Let us consider the function

where Gm l’ m 1 is the Z-coordinate of the point, whose X and Y
coordinates are mi and m2 .
The function W(rl’ r2) is a dominant function for f(zi, Z2)

and has the same maximum term. Also it is the simplest function
corresponding to the polyhedron S(f). The ratio

and

of the coefficients in W(rl, r2 ) corresponds to the ratio of aml,m.
and am _1 m , am m and am m _1’ and am m and am _1 m -1. We
shall call these as rectified ratios. The logarithm of R:. 1 is equal to
the slope of the Newton’s polygon obtained by plotting the points
(ml , Gml,m.) in a plane parallel to XZ-plane at a distance m2 , and
is therefore a non-decreasing function of ml tending to infinity.
Similarly the logarithm of S’i and Rm l’ mare 1 are non-decreasing
functions of ml , and ml and m2 tending to infinity.

Suppose for simplicity that Go,o = 0. Then we have

and since

and

therefore,

We may also put (4.2) as



217

and hence

Since ju(rl, r2) is greater of u(vl; r,, r2) and IU(V2; rl , r2), therefore,
log,u(rl, r2) will be given by either (4.3) or (4.4) or both.
We are now in a position to find a relation between IÀ(rl, r2 )

and ’V1(T1’ r2), V2(T1’ T2) and v(rl, r2). In the first place

Also it is obvious that M(rl’ r2 ) does not exceed the value of the
function W(rl’ r2 ). Suppose that Pl and P2 are integers greater
than vi = vl (r1 ) and v2 = "2(r2) and such that the rectified ratio
Rpi 1 &#x3E; ri and S§§§ &#x3E; r2. Then, for ql &#x3E; pl and q2 &#x3E; P2’

Hence
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In order that the terms in the bracket may be substantially
equivalent, we choose

and

which implies that

and

Hence we have the following result:

5. We shall now define order. Here we shall restrict to integral
functions of finite order.

Let

and let

then

and f (zl, Z2) is said to be an integral function of finite order p.
Further, pl(r.) and p2(rl) be defined as proximate orders.
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Now, for those functions which satisfy (5.1), the relation (4.6)
appears in an especially simple form, and it may be written

log M (rl r2)

Hence

We may also define order as

We will now prove the equivalence of the two definitions.
Let us start with the definition (5.1). From (4.3) and (4.4) and

the definitions of pl, , P2 and p, we have

or

where e = max. (el, e2) and kt &#x3E; 1, k2 &#x3E; 1, and so

whence, in virtue of (4.6)

Next, if we suppose that

then
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or

Hence

Thus, from (5.3) and (5.4), the équivalence of the two definitions
follows.

6. We shall now come to the necessary and sufficient condition
for an integral function f(zl, Z2) to be of finite order p. The result
is as follows:

THEOREM IV. The integral function

is o f finite order, i f and only i f

is finite ; and then the order p of I(z!, z2) is equal to fl.
PROOF: We first prove that p&#x3E; ,u. We may note that in case

,u = oo the above statement is to be interpreted as meaning that
the order is infinite, or else f(zi , z2) is not an integral function.
We know that

(i) If À = 0, p k y, since p is not negative. Let us suppose that
0  e  Jl  oo. Then, from (6.1), we have

i.e.,
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for an infinite sequence of values of ml and m2.
Also (6.2) may be written as

Let rl = (eml)l/p-e and r2 = (em2)1/p-e. Then

Since ju - e is independent of rl and r2l therefore,

Further, e is arbitrary and so p &#x3E; IÀ.
(ii) Next we prove that p  IÀ. We note that if g = oo, the

result is obvious. So we suppose that p  oo. Let e &#x3E; 0. Then

from (6.1) follows

for ml &#x3E; mO and m2 &#x3E; m2 ,
i.e.

or

Hence
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Let lhi be the part of the double series in (6.4) for which

ml  (2rl)p+e  m2  (2r2)p+e. We estimate El by taking the
largest value of el le2 s. Then

since the series in (6.5 ) is convergent and is independent of rl and r2.
Let £2 contain the terms for which ml &#x3E; (2rl)/I+e and m2 &#x3E;

(2r )/I+e and so in E we have r1 m-l/p+e  1 and r,m-ll#+e  1
and hence

Let E3 be the part of the series for which ml  (271)1’+8 and
in2 &#x3E; (2r2)P+8, then

Since

and

therefore,

Let the remaining part of the double series in (6.4) be denoted
by E4 i.e. for ml &#x3E; (2rl)I’+8 and m2  (2r2)1’+8, then

Further,
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Hence, substituting these values in (6.4), we get

and hence

since e is arbitrary and independent of rl and r2.
7. Suppose 0  p  co and let us define

and

The functions which satisfy the latter equality are said to be
functions of exponential type T.

If a = ezp and using the Sterling’s formula

(7.1) takes the form

where Zl’ Z2 are any (fixed) complex numbers.
If in this we put p = 1, then

We now deduce the following result:

THEOREM V. Il 0  a  00, the function
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is o f order p and type i, i f and only i f a = eap.
PROOF: From (7.1), we have

for e &#x3E; 0 and ml’ m2 large.
We shall first prove that T  oc/ep. Since we may add a polynom-

ial to i(zl, z2 .) without affecting its type, we may suppose that
(7.3) holds for al mi and m2 , interpreting its right hand side as 1
for ml = 01 M2 = 0. Then

The general term of the right hand side does not exceed its maxi-
mum.

Let

Then for § to be maximum,

i.e.

Therefore,

Thus the maximum term is exp ((r£+r£)(ce+ E)fep), attained for



225

mi = ri (ce+ E) fe and m2 = r£ (ce+ E) fe. Let El denote the part of
the series for which ml  (ce+2E)r% and m2  (cx+2e)r’. Then

Let 12 denote the part of the series for which rf  mt/((X+2e)
and r£  M2/(OC+28). Then

Let 27g denote the part of the series for which ml  (rx+2e)ri and
m2 &#x3E; (ce+2E)r£. Then

since

Therefore

Let the remaining part of the series be denoted by ~4’ i.e. for

m1 &#x3E; (oc+2e)rf and m2 :S (oc+2e)rP. Then, as in ~3 , we obtain

Thus
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Hence

since t(Zl 1 Z2) ’S of exponential type T.
Next, to show that T &#x3E; oefep, we have again from (7.1), for an

infinite sequence of values of ml and m2,

If zve take rl and r2 such that

for these values of ml and m2 , we have

for a sequence of values of rl and r2l tending to infinity. Hence

It remains now to show that f (zl , Z2) is of order p at most if
a  oo, and is of order p at least if ce &#x3E; 0.

For large ml’ m2, we have from (7.1)

and hence

By (6.1), the order of f(z!, Z2) is p at most. Similarly if « &#x3E; 0 the
order of I(z!, Z2) is at least p.
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