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On Special Pairs of Monotonic Series

by

A. Ziv

1. All numbers considered here are real and all series and se-

quences consist of positive (non-zéro) terms. 
By a Monotonie Couple, or M. C., we mean a pair of monotonic

not increasing and divergent series Ian; Ibn for which

An example of such M. C. was first constructed by J. P. C.
Miller and is the following:

It is easy to see that if Ian; Ibn is a M. C. then dn = max{an, bn}
(n = 1, 2, ...) is monotonie not increasing and I==ldn = oo.
But there exist series Idn with those properties for which there is
no M. C. la.; Ibn such that dn = max{an, bn}. In fact we shall
prove (theorem 1) that a necessary (and sufficient) condition for
the existence of such M. C. is limnoo ridn = 0. The same condition
will be shown (theorem 3) to be necessary and sufficient for la.
to be a series of a M. C.
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THEOREM 1: Given a monotonie and divergent series Id,. a
necessary and sufficient condition for the existence of a M. C.

,Va.; Ibn such that dn = max{an, bn} (11, = 1, 2, ...) is limn-+oo
nd, = o. 

2. We prove first:

LEMMA: If la,,; Ibn is a M. C. then each of the two index sets

is infinité :

PROOF: Suppose e.g. that B is finite, then there exists no for
which n &#x3E; no implies n j B or in other words min {an, bn} = an .
Denoting

we get

B y the définition of M. C. I:’l an = oo and therefore 1,,-l c. = 00.
This contradicts the definition of M. C. thus proving our Lemma.

8. PROOF oF THEOREM 1: We begin with the proof of the
necessity.

Suppose la.; lb. is M. C.; we denote

Considering the two sets (1), we define by induction two mono-
tonically increasing sequences of integers {mi} and {ni}: ml will
be any fixed element of A and then ni is the least element of B,
greater than mi and mi+l is any element of A greater than ni.

Consider now the sequence {ni}. Our lemma assures us that {ni}
is infinite; by definition ni e B, ni-l B ( i = 1, 2, ... ) so that

Since 11001 c,.  oo and - as can be seen easily - {cn} is monotonie
we have by a well known theoreni

Recalling (2) we get

now using (3)
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and the necessity is proved.
4. Let now id. be a monotonie and divergent series satisfying

limn-+oo ndn = 0.
{dn} has a subsequence {dn} for which

We may choose the integers ni so that

and

Let now {an} and {b.} be defined as follows:

Since {dn} is non increasing, it follows that both {an} and {bn}
are non increasing and also that max {an, bn} = dn. Thus it
remains to be proved that 100 ,,-l a. = oo, 1001 b. = oo and

I:.. min {an, bn}  O0.

From (5) follows

Further, using the definition of {an} and {bn} we get.

hence by (4)

and the proof is completed.
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5. For a further discussion of M. C. we need the following
theorem:

THEOREM 2: Let f (x) be a positive, monotonie and continuous
function, defined for x 1 and such that

Given any positive number p, define y = y(x) by (y-x)l(x) = p.
Then there exists an infinite sequence {aen} for which both

and

6. PROOF : Denoting T = (t-x)l(x) we get

We prove first that if fx,,} satisfies

it also satisfies

which by (8) is equivalent to (7).
7, To prove this, we shall use the monotony of the integrand

of (10) with respect to the variable T from which it follows, that
for any n and p &#x3E; iî &#x3E; 0

and also
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Given now any e &#x3E; 0 we substitute ’1J = e/2 in the preceding
inequalities and add them to get

Assuming that (9) holds we see that there exists such no that
n &#x3E; no implies

proving that (7) follows from (9).

8. We are going to show the existence of {xn} which satisfies
(6) and (9).

First let us verify - for a given T &#x3E; 0 - the existence of a

sequence fzm(z)} satisfying

and

By multiplying numerator and denominator by the same factor
we get from (12)

implying for a fixed T &#x3E; 0 that (11) together with (12) is equiva-
lent to (11 together with .

We have then to find {zm} which satisfies (11) and (13).
9. Since lim.,,,. xf(x) = 0 there is a sequence {Si} (Sk &#x3E;] 1;

sx --&#x3E; oo ) for which
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For an ce &#x3E; 1 we get rJ..8kf(rJ..8k)  a.skf{s1tJ and therefore

Since sk --&#x3E; oo and f (x) is continuous there exists for each a &#x3E; 1
and k &#x3E; kg(ot, a) (ko appropriate constant) a number z.(,’)(-c) for
which

Using (15) it is clear that for any ce &#x3E; 1 (z[l) satisfies (13) (sub-
stituting zm for z0153) and m for k). 

Define now Na. = Na(a) for each ce h 1 as some limit point of
the sequence

by (16)

Now, if for some or, Na = oo, {zfI,)} contains a subsequence {zm} for
which

This subsequence obviously satisfies (11) and (13). It remains to
consider the case that Na is always finite. Suppose that for some a,
N.  a. In this case denote by {zm} some subsequence of {za)} for
which 

.

sm being those terms of {Sk} which correspond to zm by (16).
From (18) we get for every m &#x3E; mo(a, T) (mo some appropriate
constant)

consequently
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and therefore for m &#x3E; mo

Regarding the inclusion {s;"} C {Src} we get by (14) that {zm}
satisfies (11). This implies by (18)

so that the case Na  a cannot actually exist.

10. There remains the case

Recalling that {xka satisfies (13) for any ce h 1 (after replacing
zm by z0153) and m by k) and using the définition of Na and (17 ),
there exists a term of {z0153)} denoted xa(r), for which both

and

Take now a = m. The sequence {zm} (m = 1, 2,...) thus obtained
satisfies (13), as implied by (20). Furthermore, by (19) we get
from (21)

which implies (11).
11. Thus the existence of {zm(’t’)} satisfying (11) and (13) or
- their equivalent - (11) and (12) is proved.
Now, since {zm(’t’)} satisfies (11) and (12) there is a term of this

sequence, denoted ae(7) for which both

and
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Let now n range over the natural numbers and denote x(r) = x"
for z = lIn. From (22) we get

which implies (6). In addition, (23) implies

Since f is monotonic, we get for any T &#x3E; 0 that if n &#x3E; 1/a then

which implies that (9) is valid for any T &#x3E; 0.

Thus our theorem is proved.

12. THEOREM 3: Given a monotonie and divergent series la,,,
a necessary and sufficient condition for Ian to be a series of a
M. C. is

PROOF: The necessity of limn-+-oo nan = 0 is an immediate

consequence of theorem 1 since if Ian; .1b,, is a M. C. and

d. = max{an, bn}, we have nan S ndn.
To prove the sufficiency we use theorem 2. Let 1(x) be any

continuous monotonie function passing through the points
(n, an) (n = 1, 2, ...) (e.g. the poligonal function obtained by
connecting the points (n, an) by straight lines). Clearly 1(x)
satisfies an = f(n) and have all the required conditions of theorem
2. Hence there exists a sequence {aen} for which (6) and (7) are
true. Now the sequence {aen} should be thinned out until it satisfies
the following three demands:
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Denoting yo = 1 we define a function g(x):

{bn} is defined now by

It is clear that {bn} is monotonic.

13. To show that I:’lbn = oo and I=l min {an’ bn}  ao we

use the integral test for convergence:

and therefore

Define now h(x) = minfj(x), g(x). It is clear that min{an, bn} =
h(n). We can see that

therefore

by (24) and (25) we get then

and therefore .Il min{an, bn}  oo proving that la,; lb. is a
M. C.

It may be added that in each relevant statement the condition
of weak monotony could be replaced by the stronger condition
of strict monotony without any alteration in the results of
theorems 1 and 8.
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