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Differentiable mappings in the Schoenflies theorem

Marston Morse
The Institute for Advanced Study Princeton, New Jersey

§ 0. Introduction

The recent remarkable contributions of Mazur of Princeton
University to the topological theory of the Schoenflies Theorem
lead naturally to questions of fundamental importance in the
theory of differentiable mappings. In particular, if the hypothesis
of the Schoenflies Theorem is stated in terms of regular differen-
tiable mappings, can the conclusion be stated in terms of regular
differentiable mappings of the same class? This paper gives an
answer to this question.

Further reference to Mazur’s method will be made later when
the appropriate technical language is available. Ref. 1.

An abstract r-manifold X,, » > 1, of class C™ is understood in
the usual sense except that we do not require that 2, be connected.
Refs. 2 and 8. For the sake of notation we shall review the defini-
tion of 2, and of the determination of a C™-structure on 2, m > 0.

We suppose that 2, is a topological space which satisfies the
Hausdorff condition and which is an r-manifold in the sense that
each point p € X, has a neighborhood which is the homeomorph of
a euclidean r-disc.

We consider local representations F of X, of the form

(0.0) F:U-—>X,

in which U is an open subset of a euclidean r-space, and X an
open subset of Z,, homeomorphic to U under F. We term X a
coordinate domain on X, and U a corresponding coordinate range.
The euclidean coordinates (u,, . . ., %,) of a point (u) € U are called
local coordinates of the corresponding point F(u) e X.

Let U and V be open subsets of euclidean r-spaces. A homeo-
morphism of U onto V will be said to be a C™-diffeomorphism of U
onto V if f has the form

(0.1) v; = f(Uyy ..o u,) = fi(u), t=1,...,7)
where (u) is a point in U, and (f(u)) is the image of () under f,
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where each f, is of class C™ over U, and where the functional matrix

of;

ou;

is of rank r at each point of U.
A set [F] of local representations F of X, of the form (0.0) will

be said to determine a C™-structure on 2, if [ F] together with the

associated sets [U] and [X] of euclidean coordinate ranges U and

coordinate domains X on X, satisfy the following two conditions.
I. Covering Condition. The sets of [X] shall have Z, as a union.
II. C™-compatibility Condition. If

(#i=1,...,71)

F,:U, > X, F,:U, > X,
are arbitrary mappings in [F] such that
(0.2) X,nX,=X+#0,

then the mapping (u) — (v) defined by the condition
Fy(u) = Fy(v)
for (u) e FT}(X) and (v) € F3*(X) shall be a C™-diffeomorphism
(0.3) f: FiY(X) - F;4(X)
in the sense just defined.

Local representations of class C™, admissible in H. Given a
C™-structure H on X, determined by [F], a local representation

F,:U—->X

of X C X, satisfying the conditions imposed on F, in (0.0), will be
admitted in H as a representation of class C™, if F, and an arbitrary
F, e [F]- satisfy the above compatibility condition defined for
F, and F,. We do not demand that F, be in [F]. If [F'] is a
second set of local representations of Z, such that [F] and [F’]
both ‘“determine’ a C™-structure on X,, we understand that these
structures are the same if the ensemble of admissible representa-
tions of X, of class C™, associated as above with [F], is the en-
semble associated with [F’].

C™-diffeomorphisms of X, onto X,. Suppose that X, and Z,
are given with C™-structures (m > 0). Let ¢ be a homeomorphism
of X, onto X,. We say that ¢ is a C™-diffeomorphism of Z, onto X,
if whenever F : U — X is an admissible local representation of X,
of class C™ then

(0.4) eF : U » ¢X

is an admissible local representation of X, of class C™.
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The euclidean n-spaces E and &. Let n > 1 be a fixed integer.
Let E and & be two euclidean n-spaces with euclidean coordinates
(g . . ., @,) and (yq, . . ., Y¥,) respectively. We shall be concerned
with an (n—1)-sphere S,_; in E of unit radius, and a compact
(n—1)-manifold .#,_, in & of class C™ such that .#,_, is the image
of S,_; under a C™-diffeomorphism ¢.

We suppose that S, _; and #,_; have C™-structures derived from
those of E and & respectively. That is we suppose that.#,_, is the
union of a finite set of coordinate domains each with a representa-
tion of class C™ of the form

(0.5) Y, = Fy(ug, ...y Uy_y) t=1,...,mn)

where (¥, ..., y,) are the euclidean coordinates of the point of
M ,_, represented and

(ul, .o oy un—l) = (y]_9 L) grQ ceey yn)'

Here 4, is to be deleted from the set (y,, . . ., y,) corresponding to
an integer r which depends on the given coordinate range. The
(n—1)-sphere S,_, shall have an analytic structure similarly
related to the structure of E.

Cy-diffeomorphisms. Let X, and Z] be r-manifolds of class C™.
Let P and P’ be points respectively of Z, and X,. Then Z,— P and
X2, — P’ are r-manifolds to which C™-structures derived from those
of X, and Z, respectively will be assigned. A homeomorphism

A:Z, > 2Z

of Z, onto X, will be termed a Cj-diffeomorphism if for some
PeZ, and P' e Z,, A(P) = P’ and the restriction of A4 to Z,— P
is a C™-diffeomorphism of X,— P onto X,—P’. We term P the
exceptional point of A.

Let /S,_, and J.#,_, be respectively the closures of the interiors
of S,_,and #,_,in E and &. Open sets in E and & are n-manifolds
to which the differential structures of E and & respectively will
be assigned. When we refer to a C-diffeomorphism of a neigh-
borhood of JS, _, relative to E we shall always mean a Cg-diffeomor-
phism in which the exceptional point (if any exists) is on the
interior of S, _,. With this understood the fundamental theorem of
this paper is as follows.

THEOREM 0.1. Given a C™-diffeomorphism (m > 0)

(0.6) @S,y > M,y

of S,_, onto M ,_, there exists a Cy-diffeomorphism A, of some open
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neighborhood of |S,_, relative to E onto some open neighborhood of
JM,_, relative to &, where A, is such that
(0'7) Atplsn—l = Q.

There are indications that Theorem 0.1 would be false if Cy'
were replaced by C™ in its statement, at least false for some in-
tegers n. See ref. 5.

Mazur has established an Embedding Theorem under certain
restrictions on ,_;, without affirming any differential structure
for the mapping function A4,. If #,_, is an (n—1)-manifold of
class C™, m > 0, and if ¢ is a homeomorphism, Mazur’s process is
applicable to prove that A, exists as a homecomorphism. The
essence of this paper is that the construction of Mazur can be so
modified and extended that when ¢ is a C™-diffeomorphism,
a mapping A, exists which is more than a homeomorphism, which
is in fact a Cy-diffeomorphism satisfying Theorem 0.1.

Methods. We begin in § 1 and § 2 by setting up a theory of the
composition by partial identification of two n-manifolds of class
C™ to form a ncw n-manifold X of class C™. In § 8 we introduce a
fundamental theorem on a modification of a C™-diffeomorphism
given initially as a C™-diffeomorphism of a neighborhood of the
origin in E onto a neighborhood of the origin in &. The modifica-
tion is a C™-diffeomorphism of E onto &.

In the next five sections we successively introduce three different
classes of problems arising out of our initial Schoenflies problem:
given ¢ to find 4,. We say that a class (4) of problems 4 is
effectively mapped into a class (B) of problems B if to each problem
A corresponds at least one problem B such that the solution of B
implies the solution of 4. We show that each of our classes of
problems (excepting the fourth) can be effectively mapped onto
the succeeding class of problems.

(I). The first class of problems is to find 4, satisfying Theorem
0.1, given ¢ as in Theorem 0.1.

(II). The second class of problems is a subset of the first class
in which ¢ is a “‘sense preserving’’ C*®-diffeomorphism (§ 4) such
that for some neighborhood Ny of the “z,-pole” Q of S,_;

¢INg = I|Ng,
where I is the mapping #, =y,(¢ =1, ...,n) of E onto &.

(III). In the third class of problems ¢ in (II) is replaced by a
C>-diffeomorphism @ of a neighborhood of S,_, relative to E. In
some neighborhood of the a,-pole of S,_,, relative to E, @ is
is given by I.
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(IV). Finally we reflect E in a suitable (n—1)-sphere to lead
to a problem which concerns a C3’-diffeomorphism of a rectangular
subregion of an n-cube K in E onto a special subregion of an n-cube
X in &. Cf. § 7.

We eventually reduce the problem to one involving mappings of
class C®. Various theorems on the possibility of C™-extensions
over E of Cm-diffeomorphisms given locally are established of
general character.

In the last sections we return to the theory of the partial
identification of n-manifolds as developed in § 8. We thereby solve
an arbitrary problem of our fourth class, implying a solution of an
arbitrary problem of the first class, that is the existence of a
mapping A, which satisfies Theorem 0.1.

PART I. TRANSFORMATIONS OF THE PROBLEM
§ 1. Composite n-manifolds 2.

Let M and # be respectively two n-manifolds abstractly given,
without points in common. Let W and #” be fixed open subsets of
M and # respectively. We admit the possibility that M or .# may
be empty. We presuppose the existence of a homeomorphism

(1.1) u:WwW->9. (onto #")

Let each point p € W be identified with its image u(p), to form a
“point” which we denote by [p : u(p)]. Subject to this identifi-
cation let X be the ensemble of all points of M and .#.

The #-mappings =, n;, . To each point p € M corresponds a
point n(p) € X represented by pif p ¢ W and by [p : u(p)]if p e W.
To each point ¢ € # corresponds a point 7(q) € 2 represented by
qif g¢#, and by [u~2(q): q] if ge# . Set

(1.2) my, = n|M 7y = 7| M.

The mappings
M —->2X

Ty M >
are biunique but not in general onto. The mapping # is onto X but
not in general biunique. For the purpose of future identification we
shall refer to =, =,, m, as the #-mappings associated with ZX.
Observe that
(1.3) a(M' v M) =7 (M) vV ny(M) =2
(1.4) 7 (M) O mo( M) = 7y (W) = (W)



88 Marston Morse (6]

and that for pe W or g e #
(1.5) 7 (p) = my(p(p)) 75(q) = 7y (n7(q))

Notational conventions. In the future we shall ordinarily set
o(1(p)) = 7y - p(p); mi(nM(q)) = 7y - wH(g)-
We have found such a simplification of notation necessary in more
complex cases. For example, if f,, f,, fs, f4 are mappings such that

(1.6) h(fa(fs(fa(4))))
is well-defined for a set 4, we shall write (1.6) as
(L.7) frofa-fafa(4)-

Thus each . replaces a parenthesis (). We admit the notation f, f,
for a composite function only when the range of values of f,, or a
restiction of f, indicated by a side condition, is included in the
domain of definition of f,. If G is a subset of a topological space H,
the set theoretic boundary of G relative to H, and the closure of G
rclative to H will be respectively denoted by

BuG ClyG.

2'topologized. Let X and Z be arbitrary open subsets of M and .#
respectively. Let 2 be the ensemble of subsets of X' of the form
7,(X) or my(Z'), together with the intersection of any finite number
of these subsets of Z. Each union of a collection of sets of £ shall
be an open subset of 2, and each open subset of X shall be of this
character. The space X' is thereby topologized. So topologized X
is not in general a Hausdorff space. To remedy this we shall
impose Condition («) on Z.

In Condition («) and in the proof of Lemma 1.1 a neighborhood
of p e M and of q € A, relative to M and # respectively, will be
denoted by N, and A4/,.

Condition (). For arbitrary points p eByW and qefaeW
there shall exist neighborhoods N, and A, relative to M and M
respectively, such that

(1.8) TNy, a W) gy N " W) =0
or equivalently
(1.9) UN, aW)yn (N W) =0.

Since M and .# have no point in common, p # ¢. For the same
reason

(1.10) N,AN =0, ClyW a ClyW = 0.
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LemMMA 1.1. Under Condition (o), X is a Hausdorff space.

To establish this lemma let a and b be distinet points of 2.
Let r and s be point antecedents of a and b respectively under =x.
Then r and s are in M U .#. We shall take both r and s in M, or in
M, if possible. The proof is divided into cases, not in general
disjoint, but covering all the possibilities.

Cask L 7, se M. In this case disjoint neighborhoods N, and
N, exist in M, and give rise to disjoint neighborhoods =, (N,) and
,(N,) of @ and b, respectively, in Z.

Cask IL 7, s € #. The proof in this case is similar to that under
Case I.

Case III. re M — W, s e #4 — W . By proper choice of r and
s, including an interchange of r and s, all possibilities fall under
Case I, II, or III. If r e M—W, then either r e 8y W or else
re M—W, where W = ClyW. Similarly if se.#—%, where
W = ClgW, then either sepf ¥ or else re #—W. Thus
Case III may be partitioned into the following four subcases.

Case III (1). re M — W, s ¢ #4 — A. In this case there exists
a neighborhood N, which does not meet W and a neighborhood
A", which does not meet #". No point of N, is identified under u
with a point of A,. Hence =,(N,) does not meet zy(A",).

Case III (2). re By W, seB ¥ . By virtue of Condition (a)
there exist neighborhoods N, and A", such that

(N, o W) anp( N, n W) = @.

It follows that =,(N,) does not meet my(A",).

CasE III (8). 7 € By W, s e # — W . In this case there exists an
A, which does not meet #7, so that z,(4",) will not meet 7,(N,)
whatever the choice of N, in M.

CasE III (4). re M—W, sefa¥ . The proof is as under
Case III (8).

The lemma is thereby established.

The reader will note that x; and &, are homeomorphisms into X.

CoroLLARY 1.1. Under Condition («) 2 is an n-manifold.

It remains to show that each point a ¢ X has a neighborhood
relative to X which is the homeomorph of an n-disc. Now a = =(r)
for some point r € M (or #), and r has a neighborhood N, (or .£/",)
which is the homeomorph of an n-disc. Hence =, (N, ), or alternately
79(A",), is the homeomorph of a disc, and a neighborhood of a.

CorOLLARY 1.2. In the special case in which M = W, X is an
n-manifold, and the mapping
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(1.11) 7wy M—> X

is a homeomorphism onto X.

If M = W then W = @, so that Condition («) is always
satisfied. Since z, is always a homeomorphism of .# into Z, one
has merely to note that when M = W, =, is onto ZX.

There exists a corollary similar to Corollary 2 in which one
supposes that # = #".

A canonical representation of X. The composite n-manifold
defined and topologized as above in terms of the n-manifolds
M and #, their open subsets W and #” and the homeomorphism
u, will be said to have the canonical form

(1.12) Z=[M, M, u W,¥].

Subsets of X p-represented. Let A and & be subsets respectively
of M and #, and set

(1.18) 7w (A) U my(L) = [A, o, 2].
This subset of X will be said to be u-represented if
(1.14) pAna W)= n¥.

If a subset Z of X' is u-represented as in (1.13), then 4 and <7 are
uniquely determined as the sets

(1.15) A=aYZ)nM A =aYZ)n M.

We shall refer to 4 and &7 as the first and second component,
respectively, of [4, &, X7.

Whether u-represented or not, [4, &, 2] = @ if and only if
A =0 and & = @.

The use of u-representations of subsets of X entails the validity
of Lemma 1.2. It is particularly convenient when mappings of
subsets Z of X2 are to be defined in terms of mappings of Z’s two
components. In order that such mappings lead to uniquely defined
mappings of Z it is necessary to know what points of 4 and of &/
are identified. When Z is u-represented A n Wis identified with
AW,

LemMA 1.2. Two u-represented subsets of X,

(1.16) (4, o, 2] [B, #, 2],
have a u-represented intersection,
(1.17) [An B, n%B, 2],

and a p-represented union,
(1.18) [Avu B, o v A, 2.
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We first show that (1.17) and (1.18) are u-representations of
subsets of 2. This is a consequence of the fact that the relations,

119) uAnW)=AL W uBAW)=BnH,
imply the relations

ulAnB)anW]l=(ANB)nW

pl(AvB)nW]l=(LVB)nH.
To prove that (1.17) gives the intersection of the sets (1.16), we
use the definition (1.18), and show that the intersection of the
sets (1.16),
(1.20) [71(4) U 7y()] A [7(B) U 7(2)]

= (A N B) 0 my(A n B),
that is the set (1.17). In verifying (1.20) one uses the inclusions,
7 (A) N 7y(B) Coy(A A B); 7my(F) N7y (B) Cg(A 0 B),

consequences of the u-representation of the sets (1.16). The proof
of (1.18) presents no difficulty.

CoroLLARY 1.8. A necessary and sufficient condition that the
subsets (1.16) of X have O as intersection in X is that

(1.21) AnNB=0, 4nB=0.

CorOLLARY 1.4. The complement in X of a y-represented subset
(1.18) of X' is the p-represented subset of 2,

(1.22) M—A, #—A,X].
This is a u-representation since the given relations
WANW)=oA W, uW)=W
imply the relations
ul(M—AyA W] = (M—-A)nW.

That the set (1.22) is the complement of the set (1.13) follows from

the fact that the set (1.22) does not intersect the set (1.13), and

that the union of the sets (1.18) and (1.22) is the set [M, M, X]=Z.
LEmMA 1.8. A sequence

(1.23) [A;, ;3 2] [t=0,1,...]
of u-represented subsets of X has a u-represented union,
(1.24) [L‘J Au \{ dﬂ Z]

and a u-represented complement in Z,
(1.25) [M— G A,, M—y &, Z].
i i
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The proof of the first affirmation of the lemma is similar to that
of the corresponding affirmation in Lemma 1.2. The second affir-
mation of the lemma is a consequence of Corollary 1.4.

We shall make repeated use of Lemma 1.4.

LeMMA 1.4. If X is a composite n-manifold with the canonical
form (1.12) then any p-represented subset

Z =14, 2]

of X in which A is an open subset of M, and < an open subset of
M, is a composite n-submanifold of X.

As an open subset of M, A4 is itself an n-manifold, as is 7,
as an open subset of . If Z is u-represented it may be identified
with the composite n-manifold,

(1.26) A, L, pl(An W), AW, L "W).
If =; and =, are #-mappings associated with X, Z is the union
7w (A) v m,

of two open subsets of X, accordingly an open subset of X. Its
topology as a composite n-manifold (1.26) is readily seen to be its
topology as derived from ZX.

The following will be readily verified by the reader, recalling
that X—Y = X n (2-Y).

Lemma 14. If X =[A4,,2] and Y = [B, %, 2] are two
u-represented subsets of X then X —Y 1is the u-represented subset of X

[A—B, o —3B, 2).

§ 2. 2 as an n-manifold of class C", m > 0

Suppose that a composite n-manifold has a canonical represen-

tation
=M, M, u W, #

where M and # are n-manifolds of class C™, m > 0, and u a
Cm-diffeomorphism of W onto #°. We refer to the #-mappings
7, 7y, 7, associated with 2 as in § 1. In terms of these elements
we shall assign 2’ a unique structure as an n-manifold of class C™.

As in § 1 let [F] and [#] be respectively sets of local repre-
sentations

(2.1) F:U—-X F:U>F
of M and .# which ‘“‘determine’” the given C™-structure of M

and #. A system [F] of local representations of X' adequate to
determine a C™-structure on X may be defined as follows.



1) Differentiable mappings in the Schoenflies theorem 93

To each F € [F] defining a mapping U — X we make correspond
a mapping
(2.2) F:U - n(X) (onto 7,(X))
such that for (u)e U
(w) > F(u) = n; - F(u).
Similarly to each & ¢ [#] defining a mapping # - ¥ we make
correspond a mapping
(2.3) F:U - 7y(%)
such that for (u)e%
() > F(u) = ny(F (u)).

The mappings (2.2) and (2.8) are homeomorphisms of the respec-
tive coordinate domains U and % onto the open subsets 7, (X) and
75(Z’) of 2. They are thus local representations of X in the sense
of § 1. It remains to prove the following.

LeMMA 2.1. The above set [F] of local representations of X satisfy
the Covering Condition I and the C™-Compatibility Condition II

of § 1.

The Covering Condition. The set [X] of coordinate domains
associated with the system [F] have M as a union, while the set
[Z] of coordinate domains associated with the system [#] have
A as a union. Taking into account the fact that

7y (M) U p( M) =2
we see that the union of the coordinate domains
7, (X) 7o(%)

associated with the system [F] is 2. :
The C™-Compatibility Condition. We consider first the compati-
bility of two local representations of M

F,:U,—»> X, (r=1,12)
in [F]. To these mappings correspond two local representations
F,:U; > m(X,)

in [F]. Set X; n X, = X. Then
7 (Xy) 0 7y (X)) = my(X).
The compatibility condition for F; and F, involves the two sets
U =F17X)CU,
U’ = Fz' n(X)CU,.
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Taking into account the relations #n, F; = F; we see that
(2.4) U' = F{}(X), U" = F;(X).
H X # O these sets are not empty and the compatibility condition
on F, and ‘Fz is satisfied if for (u) e U’ and (v) e U’ the condition,
(2.5) Fy(u) = Fy(v),
implies a C™-diffeomorphism of U’ onto U”. Since the condition
(2.5) is equivalent to the condition

Fy(u) = Fy(v) [(w)eU’, (v)eU"”]

and since U’ and U"’ are the sets (2.4), this compatibility condition
on F, and F, reduces to a compatibility condition on F, and F,,
that is to a condition satisfied by hypothesis.

The case in which M is replaced by # is similar.

There remains the question of the compatibility of two local
representations in [F] arising from two local representations

F:U—-X F U >X

in [F] and [#] respectively. These two representations in [F]
have the form
mF=F,:U—->n(X) 7, F =F,: U~ ny(¥).
Set
(X)) nm(Z) = A4, U =F (4), U"” =F;'4).
If A # O the requirement (C) of compatibility on F; and F, is the

following.
(C) For (u) e (U’) and (v) e U"” the condition
(2.6) Fi(u) = Fy(v)

shall imply a C™-diffeomorphism of U’ onto U".

We shall transform this condition into an equivalent form which
is known to be satisfied. To this end recall that X is a subset of M,
and & a subset of .# so that A has the form

A =m(Y)=m(¥)
with YCW, # C# and % = uY. Consequently
U =F1n(Y)=FYY)
U' =F;!' n(¥) = FYY).

Rewrite (2.6) in the form =n, - F(u) = 7, - F (v). Since (u) is
required to be in U’ = F-Y(Y) we infer that F(u)eY C W.
On W, n; = m,u so that (2.6) can be rewritten in the form

7y F(w) = my+ F(0)
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or equivalently
(2.7) - F(u) = F(v).

Thus (C) is equivalent to the following.

(C®). For (u) e U' and (v) e U"” the condition (2.7) shall imply a
C™-diffeomorphism of U’ onto U".

With respect to the given C™-structure of M

F:U — F(U)

is an admissible local representation of the n-manifold W. More-
over u is given as a C™-diffeomorphism of W onto #". According
to the definition of such a C™-diffeomorphism (Cf. 0.4)

(2.8) uF :U —u- F(U)
is an admissible local representation of #” of class C™. The mapping
(2.9) F:U" - ZFU")

is also an admissible local representation of # of class C™. The
coordinate domains g - F(U’) and & (U"') in # are identical, in
fact are uY and %. Hence u F and & must satisfy the compatlblhty
condition (C°). Thus (C) is satisfied.

This completes the proof of the lemma.

Composite n-manifolds X based on (E, &). Asin § 1 let E and &
be two euclidean n-spaces. We regard E and & as n-manifolds with
differcential structures determined by the assumption that their
cartesian coordinates are admissible local parameters. We shall
consider the special case of a composite n-manifold.

(2.10) Z=[M, M u W,W)

in which M and .# are open subsets of E and & respectively, with
differential structures derived from those of E and &. The sets
W and #  are open subsets of M and .# respectively, and u is a
Cm-diffeomorphism of W onto #". In such a case we say that 2 is
based on (E, &).

We shall define a condition (y) on X sufficient that 2~ be an
n-manifold.

Condition y. Let the composite n-manifold (2.10) be based on
(E, &). Under Condition (), u as defined over W, shall be continuous-
ly extensible over Cly,W as a mapping v into &, and the subset

(2.11) v(Bu W)
of & shall not meet M.
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LeEMMa 2.2. Under Condition (y) 2 is an n-manifold.

Lemma 2.2 will follow from Corollary 1.1 provided we show that
X satisfies Condition («).

As in Condition («), let p € By W and q € B ¢# be given. Since
g is in .# and .# is open relative to &, .# includes a neighborhood
A, of g relative to &, closed relative to &. The point »(p) is in the
set (2.11) and so by hypothesis not in .#, and in particular not in
N,

Set Clyy W = W. By hypothesis » maps W continuously into &,
extending u. In particular » maps p into a point »(p) which does
not meet the closed set #",. If N, is a sufficiently restricted neigh-
borhood of p relative to M, N, n W will be so restricted a neigh-
borhood of p relative to W that

YNy, Ao W)ynN,=0.
For such a choice of N,
uNyAanW)yn (N qn W)= 0.

Thus (1.9) of Condition («) holds. Lemma 2.2 follows from
Corollary 1.1.

C™-diffeomorphisms of X. Let X be represented canonically as
in (2.10). Let 2’ be a differential n-manifold of the same class
C™, m >0, as 2. We shall establish a fundamental lemma.

LemMa 2.8. If X has the canonical form (2.10), necessary and
sufficient conditions that there exist a C™-diffeomorphism « of 2 onto
2’ are that there exist a C™-diffeomorphism f of M into 2’ and a
Cm-diffeomorphism { of M into X' such that

Q) ()W = fIW,
(i) f(M—W)n () =0,
(iii) f(M)v f(H)=2".
When these conditions are satisfied the C™-diffeomorphism o is
uniquely defined by the conditions
(211)"  a-m(p) =fp) a-mlg) =£(g) [peM,qeW]

If a Cm-diffeomorphism « of X onto X’ exists, the mappings
| = am, and { = an, are C™-diffeomorphisms of M into 2, and of
A into X' respectively. For pe W

- 7 u(p) = & 7y (p)
so that (i) is satisfied. The condition (ii) is necessary if « is to be
biunique, while the condition (iii) is necessary if « is to map X
onto 2.
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The conditions are sufficient. Given f and / satisfying these
conditions one defines « by (2.11)’, noting that « is single-valued
on X by (i), and biunique by (ii). That « is a homeomorphism
follows from the existence and continuity of the inverses f!,
£7% (7)Y (my)l. That « maps X onto X' follows from (iii).
Since f, &, and n, are C™-diffeomorphisms, «, as defined by (2.11)’,
is a Cm-diffeomorphism.

This establishes the lemma.

A special procedure for defining a C™-diffeomorphism «. Suppose
2, as given by (2.10), partitioned into a countable ensemble of
disjoint subsets,

(2.12) X 4, Xos Xis -y

of which X, X, ... shall be open subsets of Z. Suppose further
that there exists a sequence,

(2.13) t—l’ to, tl’ o o0y

of homeomorphisms of the respective sets (2.12) onto disjoint
subsets of X',

(2.14) t_3(X_1), to(Xo)s 2:(X1)s ..o [t(X,) open in X', ¢ = 0]
whose union is 2’. Suppose moreover that there exists an open
subset X, of X such that X, D X_, and a C™-diffeomorphism
t, of X, into 2’ such that

Xy n X)) =t[(X, n X)) (i=-1,012...)

Suppose finally that for ¢ = 0, ¢, is a C™-diffeomorphism.

LeEMMA 2.4. Then the mapping t: X — X' defined by setting

tlX, = t,|X; (t=-1,0,1,2....)
is a C™-diffeomorphism of X' onto X'.

It is clear that t is biunique since each mapping ¢, is biunique,
since the sets (2.12) are disjoint and have X' as union, and the
image sets (2.14) are disjoint and have 2’ as union. It remains to
show that t and its inverse are locally C™-diffeomorphisms. This
is clear for t. For an arbitrary point in 2 has an open neighborhood
N in at least one of the sets

X, Xo Xq5 -+
and t|N is then a C™-diffeomorphism into 2. It is true for t-1,

since an arbitrary point in 2’ has an open neighborhood N! in at
least one of the sets

(. (X4)s Go(Xo)s ta(Xa), -
and t-1|N! is then a C™-diffeomorphism into 2.
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§ 3. Modifications of mappings

In this section we establish Lemma 8.2, a technical lemma of
fundamental importance in transforming the Schoenflies problem.

As previously, let E and & be euclidean n-spaces with Cartesian
coordinates (z) = (zy, ..., @,) and (yy, ..., y,) respectively. Let
fi» =1, ..., n, be a function of class C™, m > 0, mapping an
open neighborhood of the origin in E into the axis of reals. We
suppose that f,(0) = 0.for ¢ = 1, ..., », and that the origin is a
critical point of each f;. The transformation

(3.1) Y = z;+1:() (i=1,..,n)
defines a C™-diffeomorphism of some spherical neighborhood N of
the origin in E onto a neighborhood of the origin in &.
Let ¢t — A(t) be a mapping of the t-axis into the interval [0, 1],

of Class C*, such that A(¢) = A(—t) and

My=1, (0=t=1)

A(t) =0, (t = 4).
Set 72 = 234 ... +a?. We suppose r = 0. Set f,(z) = 0 when
f:(z) is not already defined. These new values of f;(z) will enter at

most formally.
Lemma 3.1. If e is a sufficiently small positive constant the

mapping
2
(3.2) y; = 242 (22-) fi(@) (=1,...n)

is a C™-diffeomorphism of E onto &, reducing to the mapping (8.1)
for r < e and to the identity,
(3.3) I:y,=ua, t=1,2,...,m)

for r = 2e.

The proof of this lemma will be reduced to the verification of
statements (I) to (IV).

(I). The mapping (8.2) reduces to the form (3.1) for r < e and
to I for r = 2e.

Statement (I) is immediate. We continue by setting

(3.4) 2 (:_2),‘,.(;0) = R,(z) i=1,...,n)

and note that the partial derivative R,, exists and that

@5)  Ru@ =(5) fu@2r (5) et
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for (z)eN, and 4, j =1, ..., n. Now A(r?/e?) and 2A’'(r?[e?) are
bounded for r < 2e. Moreover for § = 1, .. ., n, the integral form
of the Law of the Mean shows that, with ¢ summed from 1 to =,

(8.6) fi(®) = @;a,(x) [(z) e N]
where a,,(z) is continuous on N and a,;(0) = 0. Let % be an arbitra-

ry positive constant. It follows from (8.5) that for a suitable
choice e(n) of e and for (z)e E

(8.7) IR,-,,(iL')I =7 GBi=1...,1)

The choice of n and e. We put two conditions on e. The first is
that e be so small a positive constant that the subset of E on which
r < 2e¢ is interior to the spherical neighborhood N. Under this
condition on e the right members of (8.2) are functions of class

C™ over E. We now put two conditions on 7. We choose 7 so small
that when (8.7) holds the jacobian

D(yys . . - Y,)
D(zy, ... 2,)

for the mapping (8.2). A second condition on 7 which will be used
presently is that for the given fixed =
(8.9) 2n2n+nln® < 3.
A final condition on e is that e < e(n). With this choice of ¢, (8.7)
and (3.8) hold.

(II). With e so chosen let (z) and (a) be arbitrary distinct points
in E with images (y) and (b), respectively, under (8.2). Then
(y) #* (b).

To prove this let d(z, a) be the euclidean distance between (z)
and (a) in E, and d(y, b) the euclidean distance between (y) and
(b) in &. We shall show that

d(y, b

dEZ, a; >4

independently of the choice of () and (a) in E with (z) # (a).
Note that

(8.11) y;—b, = x;—a;+R,(z)—R,a) (t=1,...n)

We shall adopt the convention that a repeated index 7, A, k, etc. is

summed from 1 to n. Using the integral form of the Law of the
Mean we infer that

(3.12) Ry(x)—R,(a) = 4,()(z;—a;) (5,j=1,...,n),

where A4;; is continuous over E and

(8.8) >3}

(8.10)
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(8.13) |4y(z)| = 9,

where 7 is the constant appearing in (8.7). It follows from (3.11)
and (3.12) that

(8.14) d*(y, b) = d*(=, a)
+24 (z)(@;—a,)(2;—a;) + A (@) A o (2) () —ap ) (2 —az).

From (8.14), (3.183) and (3.9) we see that

d*(y, b)
d¥*(z, a)

Relation (8.10) thus holds and (II) is established.

(III). The mapping (8.2) is onto &. Let D be the subset of E
on which d(z, 0) < 2e, and 2 the subset of & on which d(y, 0) <2e.
It is clear that the image &’ of E under (8.2) is open and includes
&—2 since (8.2) reduces to the identity I on E—D. Suppose
that 2 is not wholly included in &’. There would then exist a
sequence of points ¢;, ¢,, . . . in & with antecedents p,, p,, . . . in
D such that (q,) converges in & to a point ¢ not in &”’. A suitable
subset of (p,) will converge to a point p € D, since D is compact.
Under (8.2) some open neighborhood of p is mapped homeo-
morphically onto an open set in & which must necessarily include
¢. Hence ¢ is in &’. From this contradiction we infer the truth of
(III).

(IV). The mapping (3.2) is 1—1 and bicontinuous.

That the mapping is 1—1 follows from (II). The mapping (8.2),
restricted to the subset [r = 2¢], of E reduces to I, and so is bi-
continuous. Restricted to the subset [r < 2e¢] the mapping (8.2)
is also bicontinuous. Cf. Bourbaki ref. 4, Cor. 2, p. 96. For the
subset [r < 2¢] of E is compact and the restricted mapping is
1—1 and continuous onto an image in & which is a Hausdorff

> 1—2n2n—n3n® > 4.

space.
This establishes the lemma. We shall prove a fundamental

theorem.

LEMMA 8.2. Let ¢ be a C™-diffeomorphism, m > 0, of some
neighborhood of () = (0) in E onto a neighborhood of (y) = (0) in
&, where ¢ has the form

(8.15) Yi=gilz), g&0)=0 (i=1,..,n)
Set
(8.16) L(z) = gm’(Oﬁq . (summing as to j).

For a sufficiently small positive constant e there exists a C™-diffeomor-
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phism T of E onto & such that T reduces to g for r < e and to the
mapping
(8.17) T, :y, = Lyz) (t=1,...,n)
for r = 2e.

We shall obtain T as a mapping T,/-'T, where T, is defined
as follows.

The mapping g can be represented in a neighborhood of the
origin in the form

(8.18) Yy, = Ly2)+r,(z) t=1,...,r)
where 7, is of class C™ in some neighborhood of the origin, where
r,(0) = 0, and the origin is a critical point of r,. The mapping
IT{'g = T, has the form

(8.19) Y, = 2, =p,(z) t=1,...,m)

where p,(z) has the general properties attributed to r,(z). In
accordance with Lemma 8.1, for ¢ > 0 and sufficiently small,
there exists a C™-diffeomorphism T, of E onto & such that T,
reduces to T, for r < e, and to I for r = 2¢. Set T = T,11T,.
Then T reduces to g for r < ¢ and to T, for r = 2¢. Thus T
satisfies the lemma.

§ 4. The second class of problems

By a problem of the first class we mean a problem of finding a
mapping A, which satisfies Theorem 0.1 when a C™-diffeomorphism

(4.1) 9:S,_, > MA

n—1
is given as in Theorem 0.1. We shall designate such a problem by
(4.2) [‘P; Sn-—h V[n—l]l'

We term m the indez of the problem. In the first class of problems
m may be any integer from 1 to o or co. We shall introduce a
second and equivalent class of problems.

(4'3) [(P, Sn—h ln—l]z'

Sense preserving @. In this second class of problems we shall
start with a C™-diffeomorphism ¢ of the nature of ¢ in (4.1), but
with ¢ restricted in two ways. The mapping ¢ shall be sense
preserving in the following sense.

Let p be an arbitrary point of S, _; and let

(4.4) (ay ..., a,)
be a set of independent vectors at p of which ay, . . ., a,_, shall be
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tangent to S,_, at p and a, shall be a vector which has the direction
of the interior normal to S,_; at p. At the point ¢(p) in & let

(bl’ LS ) bn)

be a set of independent vectors of which b,, .. ., b,_, shall be the
vectors tangent to 4, _, at p(p) which are the transforms under ¢
of the vectors a,, . . ., a,_,, and let b, be a vector whose direction
is that of the interior normal to .#,_, at ¢(p). We say that ¢ is
sense preserving if the determinant of the direction numbers of the
vectors (a,, . . ., a,) has the sign of the determinant of the direction
numbers of the vectors (by, . . ., b,). It is clear that this characteri-
zation of a sense preserving ¢ is independent of the choice of
peS,; and of the vectors a,, ..., a,_; tangent to S,_; at p.

The sense index o(p) of . We shall assign ¢ of (4.1) a sense
index ¢(p), equal to 1 or —1 according as ¢ is sense preserving or
not. A C™-diffeomorphism f of & onto & of the form

yi = 1:(y) (G=1,...,n)
will be said to be sense preserving if
D(yi, .. YL
. (yl yn) >~ 0.

B D(yl’ ceo Ya)
We note that fp is a C™-diffeomorphism
fo: 5,4 —> (M) [onto f(A4,_,)]
We note further that
(4.5) a(fe) = o(p)(sign 4).
Let Q be the “z,-pole” of S,_,, that is the point on S,_; at
which @, attains its maximum value.
The second class of problems. A problem (4.8) of the second class
shall be a problem (4.2) of the first class in which ¢ is a sense preserv-

ing diffeomorphism of class C* of S,_, onto M ,_, such that for some
neighborhood, Rg, relative to S,_,, of the x,-pole Q of S,_,
(4.6) 9IRq = I|Rq

That the first class of problems is equivalent to the second class
of problems will follow from Lemmas 4.1 to 4.3.

LeMMA 4.1. Given a C™-diffeomorphism ¢ of the form (4.1) there
exists a C™-diffeomorphism £ of & onto & such that fp is a sense
preserving C™-diffeomorphism of S, _, onto f - ¢(S,,_,), and such that
for some neighborhood Ry relative to S, _, of the x,-pole Q of S,_,

(4.7) (fg)|Rq = I|Rq.
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Let L and Z be the coordinate (n—1)-planes in E and & on
which 2, = 0 and y,, = 0 respectively. Let O and @ be respectively
the origin in E and &. Set ¢(Q) = 2. We begin by proving (a).
(a). There exists a sense preserving C™-diffeomorphism & of &
onto & such that F(2) = O and F (M ,_,) intersects £ in a neigh-
borhood of O relative to Z.

The mapping & will have the form hk, where h and k are
defined as follows.

k. The mapping k shall be a rigid motion of & such that k(2)=0
and such that the (n—1)-plane tangent to k(#,_,) at 0 is 2.
Note that k is sense preserving.

h. A sufficiently small open set on % containing @ will serve
as a coordinate range for an admissible local representation

. Yn = Y(yl’ o os Yno1)
of k(A#,_,) of class C™. The function Y has a critical point when
Y1 = Y3 =...= Y,y = 0. The equations

Yi=9 G=1,..,n—1)
Yn =Yn —Y (Y15 - - ©» Y1)

define a C™-diffeomorphism 2 of a sufficiently restricted neighbor-
hood of @ relative to &, onto a similar neighborhood of 0. It
follows from Lemma 3.1 that there exists a C™-diffeomorphism A
of & onto & which reduces to 4 in some neighborhood of 0 relative
to &.The image (hk)(#,_,) accordingly intersects # in a neighbor-
hood of @ relative to . Note that 4 and hence & is sense preserving.

The Cm™-diffeomorphism &% = hk of & onto & satisfies (a).

The mapping f required in Lemma 4.1 will be set up in terms of
I and &, already defined, and mappings F and T now to be de-
fined.

F. Statement (a) admits a parallel statement as follows. There
exists a sense preserving C™-diffeomorphism F of E onto E such
that F(Q) = O, and F(S,_,) intersects the coordinate (n—1)-plane
L in a neighborhood of O relative to L.

T. If R, is a sufficiently small open neighborhood of O, relative
to L, then for p € Ry, the mapping

(4.8) (y) >F .¢. Fp); Ry > <&

is a C™-diffeomorphism of R, onto a neighborhood of 0 relative to
the coordinate (n—1)-plane . The mapping (4.8) carries O
into 0. It admits an obvious extension

g:Ny—~> &
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over a neighborhood N, of O relative to E, an extension which is a
Cm-diffeomorphism of N, onto a neighborhood of 0 relative to &.
Suppose g represented in the form (3.15). By proper choice of g the
sign of the jacobian

_Dgy, - 2)
D(z,, ..., z,)

can be made positive or negative at pleasure. We choose the sign

of 4, so that

(4.9) o(p)(sign 4,) > 0.

In accord with Lemma 8.2 there exists a C™-diffeomorphism T of
E onto & which reduces to ¢ on some neighborhood N of O
relative to E. According to this choice of T

4,

(4.10) T F.9.Flp)=p (p eN N Ry).
The choice of f. We now introduce the mapping
(4.11) f=IF'T'%; & > 6.

For peN n R,

(fp)(Fp)=1.F1.T.F.p.F-p) [by (411)]
= I(F-1p) [by (4.10)]

so that (4.7) is satisfied for Ry = F~}(N n R,). The mapping f is
sense preserving or not, according as T is sense preserving or not.
If A, is the jacobian associated with f, sign 4, = 4, and

a(fp) = o(p)(sign 4;) = o(p)(sign 4,) > 0
in accord with (4.9). Thus fp is sense preserving.

This completes the proof of Lemma 4.1.

We shall now state a lemma whose proof will be given in a
separate paper. Ref. 6. If ¢ were initially of class C* this lemma
would not be needed.

LemMA 4.2. If the C™-diffeomorphism ¢ is given as in (4.1) there
exists a sense preserving C™-diffeomorphism J of & onto & such that
Jo is a C®-diffeomorphism,

Jp:S,,—>JI(A,_,) [onto J(A,_,)].

Without this lemma the procedures of this paper would lead to a
proof of Theorem 0.1 modified by supposing that m > 1, and
affirming that A, was a Cg'~!-diffeomorphism and not necessarily a
Cy-diffeomorphism. When ¢ is merely of class C! the family of
normals to #,_; to be introduced in § 5 would in general form a

"“ficld”” on no neighborhood of #,,_, relative to &. Our use of this
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family of normals reduces the class of the mapping functions by 1
when m is finite, but not at all when m = co. Lemma 4.2 enables
us to prove that the first and second classes of problems are
equivalent. In the second class the given ¢ is of class C*®.

Starting with the C™-diffeomorphism ¢, given in (4.1), we can
apply Lemma 4.2 and obtain the C*-diffeomorphism Jp. We now
apply Lemma 4.1 to Jg in place of ¢, and obtain thereby a C*-
diffeomorphism f and a new boundary mapping fJg. Setting
F = fJ we state the following corollary.

CoROLLARY 4.1. Given a C™-diffeomorphism ¢, m > 0 of the form
4.1, there exists a C™-diffeomorphism F of & onto & such that Fo is
a sense preserving C®-diffeomorphism of S,_, onto F - ¢(S,_,), and

(Fp)IRq = I|Rq
for some neighborhood Rg relative to S,_, of the z,-pole Q of S,_,.
To employ this corollary we need the following general lemma.

LemMMA 4.3. Let F be a C™-diffeomorphism of & onto &. To a
problem (4.2) in the first class, of index m > 0, corresponds a problem

(4.12) (@Y S -/(1.—1]1

also in the first class with index m* = m such that
ot =Fyp, M1, =FA, ;.

If A, is a solution of problem (4.12) then

(4.13) 4, =F14,

is a solution of problem (4.1).

Since 4., is a C{,"l-diffeomorphism of a neighborhood of JS,_;
onto a neighborhood of J.#},_,, we infer that 4 is a Cg-diffeomor-
phism of a neighborhood of JS,_; onto a neighborhood of

FA(J My ) = JENAML) = J Moy
As for the boundary condition we have
Aq:llsn—l = <pl = F(p
by hypothesis, so that
Ag|Spy = (F14,)|S,y = F'Fp = .

Thus A, is a solution of problem (4.2).

CoroLLARY 4.2. The first and second classes of problems are
equivalent.

Since each problem in the second class is by definition a problem
in the first class, it remains only to show that to each problem (4.2)
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in the first class corresponds a problem
(4.14) (@Y Su1s #n_1le

in the second class whose solution A, implies a solution A, of the
given problem (4.2). To ¢, given in the form (4.1), corresponds a
mapping F of Corollary 4.1. Setting ¢! = Fop we make the problem
(4.2) correspond to the problem (4.12) of Lemma 4.8. The new
index m! = o0, and ¢! is sense preserving. The mapping ¢! is thus
of the type admitted in a problem of the second class. By Lemma
4.8, 4,, as given in (4.18), affords a solution to problem (4.2).
The corollary follows.

§ 5. The “bands” B,S, , and B 4, _,.

In this section we shall define ‘‘band” or ‘‘shell” neighborhoods
B,S,_,and B, #,_,of S,_, and #,_, respectively, and establish a
Cm-1-diffeomorphism, m > 1, of the form
(5.1) @s: B,S,_1 > B, M ,_, [onto B, .#,_,].

Fields of mormals to #,_,. Let q¢ be a point on .#,_; and
(Y45 - - -» Y,) coordinates in &. Let
(5.2) FU>F; yy=F,u); w)e (t=1,...,m)

be an arbitrary admissible local representation of .4, ; with a
coordinate domain Z which contains ¢q. We are supposing that the
Z,; are of class C™, m > 1, and that the functional matrix

OF |

(5.8) %,

with columns ¢ =1, ..., n, and rows j=1, ..., n—1, has the
rank n—1 at each point of #. Let a,(u), ¢t =1, ..., n, be the
determinant of the submatrix of (5.8) obtained by deleting the
i-th column of this matrix. The set of numbers

(5.4) (ay(u), . . ., a,(u)) = (a,(u))
define a vector ¥, normal to .#,_, at the point (F;(u)). Without
loss of generality we can suppose that (a,(«)) has the direction of
the exterior normal to .#,_, at (& ,(u)). Were this not the casean
interchange of the parameters u, and u, and the corresponding
interchange of the first two columns of the matrix (5.4) would
bring this about.

Let % ,, be regarded as a directed axis with origin at (F,(u)).
The point on % ) with algebraic coordinate s will have euclidean
coordinates
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(5.5) y; = F,(u)+sa,(u) [(w) ¢ 2).
Since m > 1, each mapping a, is of class C! at least. Set

D(yys - - -5 Yn)
D(sy Uy o ooy Uy_y)

for each value of s and each (u) e Z. Recall that 4(u, 0) is the
determinant of an n-square matrix obtained by adding (5.4) as a
first row to the matrix (5.3). Hence

A(u, 0) = a3(u)+ +ai(u)#0 (ue).

Let %, be an open subset of % which contains F~1(¢q) and whose
closure relative to the euclidean (n—1)-plane of % is in %. Then
on %,, A(u, 0) is bounded from zero. We infer that there exists a
positive constant s, such that A(u, s) is bounded from zero for
(u) €%, and s on the interval (—s,, ;). Let J, designate the
interval (—a, a). It follows from the usual implicit function
analysis that if a is a sufficiently small positive constant, and if

(), 8] e Uy X ],

then the mapping of %, X J, into & defined by (5.5) is a homeo-
morphism. Now .#,_, is compact and so is the union of a finite
ensemble of open sets each of the character of #,.

The band B, .#,_,. We draw the following conclusions. Let ¢
be an arbitrary point of .#,_, and ¥”, the unit vector normal to
#,_, at ¢ with the direction of the exterior normal. Let y(qg, s) be
the point (y) on ¥7, with algebraic coordinate s. Let

(5.6) Hy: My (X[, —> E

be a map in which (g, s) = y(q, s) € &. If a, is a sufficiently small
positive constant 5, is readily seen to be a homeomorphism of

= A(u, 3)

(5.7) M1 X ], [0 <a<ay)
onto a neighborhood
(5-8) B a "ln—l

of A ,_, relative to &. As an open subset of &, B, #,_, derives a
differential structure from &. We term B, .#,_, a band neighborhood
of M, , of width 2a.

One can regard the product ., ;X J, as an n-manifold of
class C™ since it is the product of two manifolds each of class C™.
Given the mappings (5.2), the corresponding set of mappings

(53.9)  UX]Js>F(U)x]Js [(w)Xxs] > [Fiu)Xs]
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regarded as local representations of #, ;X J,, define a C™-
structure on .#,_; X J,. The mapping 5, is a C™~1-diffeomorphism
of #, X ], into B, #, ;, [Cf. (10.4)]. For a mapping (5.9),
followed by 5#,, leads to an admissible local representation (5.5)
of B,M, , of class C™1.

The band B,S,_;. Corresponding to peS,_; let V, be an
exteriorly directed unit vector, normal to S,_, at p, and let s be
the signed coordinate of an arbitrary point on ¥, with s = 0 at p.
If 0 < a < 1 there clearly exists, as in the case of #,_,, a C®-
diffcomorphism

(5.10) H,:S, ,XJ,~ E,

in which the point (p, s) € S,_; X J, corresponds to the point on
V, with algebraic coordinate s. The image of S,_, X J, under H,
is denoted by B,S,_, and termed the band neighborhood of S, _,
of width 2a.

LemMA 5.1. If ¢ is a C™-diffeomorphism given by (4.1) with
m > 1, and if a is a sufficiently small positive constant there exists a
Cm-Ll-diffeomorphism ¢, of the band B,S,_, onto the band B, A, _,
such that

(palsn—l = @,
and such that the point on the vector V , exteriorly normal to S,_; at
p with algebraic coordinate s € J,, corresponds to the point on the
vector ¥V, exteriorly normal to M, , at @(p) with algebraic
coordinate s.

To set up such a C™-1-diffeomorphism note that the homeomor-
phism

Ga : Sn—lxja _>V¢n—1x]a

in which (p, s) € S,_; X J, corresponds to (p(p), $) € #,_1 X [, isa
Cm-diffeomorphism. If one sets

¢a=xaGaH;1 [0 <a <min(a0’ 1)]
one infers that ¢, is a C™-1-diffcomorphismof B,S,_,onto B, .#,_,.

Nortk. If m = oo in Lemma 5.1 ¢, is of class C*, as the proof shows.
If m =1 Lemma 5.1 does not apply.

§ 6. Problems of the third class

As previously, we suppose that & is assigned its conventional
differential structure.

Problems of the third class. Let @ be a C*-diffeomorphism of an
open neighborhood of S,_, into & such that in some open neighborhood
Ng relative to E of the z,-pole Q of S,
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Setting M ,_, = D(S,_;) a problem
(6.2) [(D’ Sn—l’ "ln—l]li

of the third class is to find a C3’-diffeomorphism Ag4 of some neigh-
borhood of JS,_, onto a neighborhood of J#,_, relative to &, such
that for some meighborhood Z of S, _, relative to E

(6.3) Ay|Z = D|Z.

As in § 1, we understand that a class (4) of problems 4 is
“effectively mapped” into a class (B) of problems B if to each
problem A corresponds at least one problem B whose solution
implies a solution of 4. In this sense we state the following lemma.

LeMMA 6.1. The second class of problems can be effectively mapped
tnto the third class of problems.

Our first task is to assign to each problem (4.3) of the second
class a problem of the third class.

Given ¢ in problem (4.8), Lemma 5.1 implies the existence of a
constant @ > 0 and a C*-diffeomorphism

(6'4') Pa ¢ Basn—l g Ba jn—l (onto Ba "Jn—l)
such that ¢,|S,_; = ¢. By definition of the problem (4.8) there
exists a neighborhood R,, relative to S,_;, of the z,-pole Q of
S,—_1 such that ¢|R, = I|p. With a chosen as in Lemma 5.1 and H,
as in (5.10), set
NQ = Ha(ROX]a)'

Then N, is a neighborhood of Q relative to E. It follows from the
definition of ¢, in Lemma 5.1 and the relation ¢|R, = Ig, that

(6.5) 9 Ng = I|Ng.

Thus ¢, is a mapping @ admissible as datum in a problem of the
third class. To a problem (4.8) of the second class we made corre-
spond the problem

(6-6) [(D’ Sn—l’ "['n—l]:i
in which @ = ¢,.

Our second task is to show that a solution A of the problem
(6.6) is equally a solution of problem (4.3).

It is clear that A, is a C3-diffeomorphism of some neighborhood
of JS,_, onto some neighborhood of J.#,_;. Moreover the condi-
tion (6.8) is satisfied and implies the boundary condition

Ad)lsn—l = ¢|Sn—1 = (paISu—]. =@
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in accord with the definition of @ and of ¢,. Thus the boundary
condition (0.7) is satisfied with 44 replacing 4, . Hence 4, is a
solution of problem (4.8).

Thus the second class of problems has been effectively mapped
into the third class of problems.

This establishes Lemma 6.1.

§ 7. Problems of type K

In this section we shall define a final class of problems, termed
problems of type K. In § 8 we shall show that the third class of
problems can be effectively mapped into the class of problems of
type K. In later sections we shall show that any problem of type K
admits a solution, thereby implying a solution of our original
problem of class 1.

Two notational conventions require mention. The interior of a
subset X of E or of & will be denoted by X. The complement of X
relative to E or & will be denoted by CX or ¥X respectively.

The sets K, K', K", k, k,. Let K be an n-cube in E with center
at the origin, with (n—1)-faces parallel to the coordinate (n—1)-
planes, and with arbitrary diameter. Let I, denote the (n—1)-
plane [z, = 0]. Set

(7.1) k=Knll, ky=knK.

The set K —k, is the union of two disjoint open sets K’ and K'’ into

which K is separated by deletion of k,. Of the two sets K’ and K"’
let K’ be the set on which z, < 0. Note that

(7.2) BeK' v BgK'" = ky v BgK.

Mappings o' and w. Let G be a compact subset of K’ u K"
such that K—G is arc-wise connected. Set
(7.8) G =GnK', G'=GnK"

so that G = G’ U G". We suppose that G'’ is not empty.
We introduce a C*®-diffeomorphism

w:E—G—> &
such that o' reduces to I on some e-neighborhood N, relative to E

of CK.
The class (w). For each such o’ and choice of G set

(7.4) o' |(K—G) = w,
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thereby defining a class (w) of mappings w. Note that o’ is
uniquely determined by its restriction w.
The sets A, X', A", &, k,. Observe that

(7.5) o'(BeK) = I(BgK).
Set
(7.6) A =1K, & = o'(k) £y = w(k,)

and note that 2# — &, is the union of two disjoint open sets #” and
A", Just one of the two sets ' and X", say S, is such that

(7.7) I(K'nanN,)CXx".
The sets H, H', H"', #, #', #', 4, 4", 4. Let d be so small

a positive constant that the subsets H' and H"' of K on which
z, < —d and =z, > d respectively are open sets such that

(7.8) H DG’ H"DG".
Observe that the parameter d is determined by the choice of H’

and H". Recalling that o is defined on K—G, but not over all of
K, set

(7.9) #' =A"—(K'—H') H#" =A"—w(K"—H'")
(7.9) ¥ =H"—w(H —-G') I =H"—w(H"—G")
Y=%990v¥%" H=HJUH' #=H v
It follows from (7.7) and (7.9) that
o(K'—H'YCH' w(K'—H")CH"
IH AnN,))Cs#' I(H'nN,)Ct"
and, since H'—G’' and H''—G' are arc-wise connected that
(7.9)"” o(H'—G')YCH' w(H'-G")CH".
It follows then from (7.9) that

(1.10) A —# = w(K—H), # —F = o(H—G), X —F = o(K—G).
Problems of type K. A problem of type K will be denoted by
(7.11) [w, H', #' g

and defined as the problem of finding a mapping 4, which satisfies
Lemma 7.1.

LemMA 7.1. Corresponding to an n-cube K, a mapping » € (w),
an n-rectangle H' CK' and set 5#' C A", chosen as above, there
exists a Cy’-diffeomorphism,

(7.12) A, H —>H' [onto ']
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such that for some compact subset 2 of H' with 2 DG’
(7.13) AJH' —8) = w|(H'—Q).

NotEe. To be assured of a solution of an arbitrary problem of
type K it is sufficient to be assured of a solution of all such prob-
lems for which K is a given fixed n-cube K. To establish this it
merely is necessary to subject E and & to a common change of
scale, defined by a suitable common change of scale on each
coordinate axis in E and &. We shall make use of a special n-cube
K of the form

(7.14) (—1<2, 1) G=1,...n)

and solve a problem of type K which is arbitrary except for this
special choice of K.

We need the following lemma.

LemMA 7.2. The sets H#', #'', #' —%' and H#''—Z'' are open
relative to &.

To prove that 5’ is open relative to & set K'—H’' = A and
ClgA = B. By (7.9)

H' =AH"—w'(4).

We shall show that
(7.15) H' = A"—w'(B).
This will follow if w’(B)—w’(A4) does not meet X, a condition
which is satisfied since

@' (B)—w'(4) = o' (B—A) Cw'(ky U BegK) CBed LU (k).

With (7.15) established note that B is compact. Hence w’'(B) is
compact and J#’ open relative to &. That 5"’ is open relative to &
follows similarly.

Since H'—G' is open relative to E and the diffeomorphism o’
maps H'—G' onto #'—%', in &, the set #’'—%' is open relative
to &. The set S#''— %" is similarly open relative to &.

§ 8. Final reduction to problems of type K
In this section we shall transform a problem
(8.0) [P, Sp1s M n1ls
of the third class by means of a reflection ¢ and define thereby a
problem of type K of the form
(8:1) [w, H', #" k.
The n-cube K. The (n—1)-sphere S,_; has a unit radius. The
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coordinates of its center will be determined by our construction
but are in fact immaterial. Let S, be an (n—1)-sphere in E with
center at the z,-pole Q of S,_;, and with radius ¢ < 1. We shall
presently further condition the choice of ¢. The (n—2)-sphere
S,n S,_; lies in an (n—1)-plane II,. See Fig. 1. Let P, be the

Q

//Q’/]\\

Fig.1, n=2, B‘=t(,3EK)

intersection of I7, with the z,-axis. Of the n-cubes with center at
P, and with (n—1)-faces parallel to the coordinate (n—1)-planes
let K, be the smallest n-cube which includes S,. Let Ny be an
open spherical neighborhood of Q relative to E such that

(8.2) ®|Ng =I|N,

where @ is the mapping given in the problem (8.0). Let ¢ be so
small that K, C Ny. We suppose ¢ so chosen and fixed hereafter.
We then set K, = K and take P, as the origin of coordinates in E.

The reflections t and 7. Let ¢ be the reflection of E—Q in S,
recalling that the center of S, is the z,-pole Q of S,,_,. SetIQ = 2
and let 7 be the reflection of £—2 in IS,. Both ¢t and 7 are in-
volutions, and 7] = It. Note that t =t1and v = v .

The choice of »'. Recall that the domain of definition of @ in
(8.0) is an open neighborhood N of S, ; which includes the
neighborhood N of Q. Without loss of generality we can suppose
that N is arc-wise connected. Set I'= N—Q and
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(8.8) o' = P! (on tI').
We shall prove (a) and (b).
(a). The mapping o' reduces to I on a neighborhood of CK

relative to E.
Now o' reduces to I on the set R = t{(Ng—Q). In factif p ¢ R,
then p = t(g), with e Ng—Q, so that

W(p) =7 & .tp) = T.Blg) = 1.1(g) = I .4q) = I(p)-
Referring to the definition of K, set
(8.4) A = J[t(BgK)] [Cf. § O for def of J].

and recall that Ng O K D A. It follows that N is a neighborhood
of A relative to E, and No—Q a neighborhood of 4 —@ relative to
E—Q. We infer from (8.4) that

t(A—Q) = CK.
Hence #(Ng—Q) is a neighborhood of CK and (a) is proved.
Let K', K", k, k, be subsets of K, defined as in § 7. The ¢t image of
S,—1—0Q is the (n—1)-plane IT, passing through the origin. Hence
1S,—.1—0Q) Dky,. We continue by proving (b).
(b). The domain of definition, tI', of w’, is arc-wise connected and
has the form
(8.5) tl' = E—G,
where G is a compact subset of K' v K'' with Q contained in G n K",
Recall that I' v Q is the domain of definition of @ so that

ras,_,—o.
On applying ¢ to the members of this inclusion we find that
tI' D k.

Since tI' is open, and, according to (a), includes %k, and a neigh-
borhood of CK, it follows that (8.5) holds with G a compact subset
of K’ v K". Since tI' does not contain @, and K'' does, we infer
that Q is in G n K"'.

Set G’ =K' nG,G" = K" n G and define H and H" asin § 7.

On setting

o = w’I(K—G)
one can further define ¢, ', "', 9, 9', ¥'" asin § 7. A problem
(8.6) [w, H', #' |k

of type K is now defined in the sense of § 7. We accordingly turn
to the following lemma.
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LemMA 8.1. On making the problem (8.0) of the third class corre-
spond as above to the problem (8.6) of type K, there isdefined an
effective mapping of the third class of problems into the class of
problems of type K.

Suppose there exists a solution

A, H — H

of problem (8.6). In accord with (7.18) and the definition of w as a
restriction of o’
(8.7) A (H'—Q) = o'|(H'—Q).
Now ' is defined on E—G'—G" and 4, on H'. We can extend
2, by a Cg-diffeomorphism y,, such that
(8.7 polH' = AJH’
(8.7)"” U J(E—G"—Q) = o'|(E—G""—Q).
The mapping u, is thereby defined on

H V(E-G'"—Q)=E-G".
It is defined twice on

(E—G"—2)nH' = H'—Q,
but consistently because of (8.7). The sets H and E—G"' —2 are

open so that u, is a Cg’-diffeomorphism. The “‘exceptional” point
of p, (if such exists) is in 2. Cf. (8.7)". We now set

(8.8) Ay =Tu,t! [on {E—G")]
and complete the definition of 4, by setting
(8.8)" 40(Q) =@

We shall prove that A4, so defined, is a solution of problem (8.0).
To that end we establish (c), (d), and (e).

(c). The domain of definition of A4 is an open neighborhood of
] Sn—l‘

Recall that E—Q is the union of the disjoint sets

(8.9) Sn1—0s JSu1s C(JS4)

where ] S,—1 denotes the interior of JS,_,. The space E is also the
union of the sets

(8.10) [, =0] [z, <0] [z,>0].

Moreover the images under ¢ of the sets (8.9) are the respective
sets (8.10) and conversely. The domain of definition of A, is

(8.11) Q U H(E—G") = E—(G").
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Since G is a compact subset of [z, > 0] we infer that A, is de-
fined on an open neighborhood of JS,_,.

(d). The mapping Ay is a CP-diffeomorphism of its domain of
definition into &, with “‘exceptional point” (if any exists) in JS,_,.

That 4, defines a Cg’-diffeomorphism of ¢{(E—G"’) into £—2
appears from (8.8). In the domain of definition of A, there
remains the point Q. Since E—G"’ contains all points in E whose
distance from Q is sufficiently large

H(E—G") D (He—0Q)

provided H is a sufficiently small neighborhood of @ relative to E.
According to (a), o’ reduces to I outside of a sufficiently large
(n—1)-sphere in E with center at the origin, and by virtue of
(8.7)", p, does likewise. Hence u, reduces to I on t~1(Hg—Q) if
H 4 is sufficiently restricted. For such H it follows from (8.8)’ that
Ay reduces to I on Hy—Q. Since A,(Q) is defined as I(Q) we
conclude that A4, is a Cg’-diffeomorphism of its domain of defini-
tion, with exceptional point (if any exists) on

tQCtH CJS,,.

In accord with the definition in § 6 of a problem (8.0) of the
third class it remains only to show that for some open neighborhood
Z of S,_, relative to E

(8.12) Ap|Z = D|Z

To this end we refer to the compact subset 22 of H' introduced in
(7.18), and prove the following.

(e). An open neighborhood of S, _, relative to E on which (8.12)
holds is afforded by the set
(8.18) Z=lE—-R—-G")v Q= E—tQ—iG".

Since 2 and G" are compact subsets of [z, < 0] and [z, > 0]
respectively, it follows from the fact that the ¢-images of the sets
(8.10) are the respective sets (8.9) that Z as defined by (8.13) is

an open neighborhood of S,_,; relative to E. That (8.12) holds
when Z is given by (8.18) is seen as follows. On Z—Q

Ag =7ttt =10't1==0

by virtue of (8.8), (8.7)"" and (8.8), respectively, provided the
domains of validity of (8.8)", (8.7)" and (8.8) permit this applica-
tion. That (8.8)" may be so applied is clear since E—Q—G" C E
—G"'. The application of (8.7)" is exactly as written, while (8.3)
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may be applied since E—Q—G" CtI" by virtue of the relations
2D G’ and (8.5). Finally 4,(Q) = I(Q) = ?(Q).

Thus A4,, as defined by (8.8)’ and (8.8)", is a solution of prob-
lem (8.0), and Lemma 8.1 is established.

PART II. CONSTRUCTION OF A SOLUTION
§ 9. The mappings R, ®, Tr, 7 r
In this section we shall define certain mappings essential for the

construction of a solution of a problem of type K. As indicated in a
Note in § 7 it will be sufficient to take K as the special n-cube

(9.1) (—1 52, £1) (i=1,...,n).

The sets K, K', K", H, H', H', A", ', X', A", #, H', #"' shall
be sets associated with such a K in § 7. Recall that H' and H'' are
the subsets of K’ and K"’ on which z, < —d and «, > d respec-
tively.

The radial transformation R. Let R be a radial transformation of

E onto E in which a point (z,, ..., z,) has an image (y,, . . ., ¥,,)
such that

x,—8 z,
(9‘2) Y% —8 = 2 y Y = E (T =2... n)'

The point P = (8,0,...,0) in E is fixed under R. The image
R(K) of K under R is an n-cube of breadth 1, with center at the
point (4, 0, ..., 0) in E.

The mapping T. This mapping is essential in setting up our
modification of the Mazur construction. In enumerating its
characteristic properties we shall denote by Int A the smallest
product of n subintervals of the respective coordinate axes of E
which contains a given bounded subset 4 of E. Let u denote the
mapping of E onto E by the identity. The mapping T shall be a
C*-diffeomorphism of E onto E with the properties (9.8)—(9.8).

(9.3) T|H” = ulH"

(9.4) T|H' = RH'

(9.5) RT(K)nT(K) =@
(9.6) T(K) C Int. [K U R(K)]
(9.7) T[z, <0]C [z, <0]
(9.8) Tz, = 0] C [z, = 0]
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We shall define such a mapping T by a composition pzp,p, of
three C*-diffeomorphisms of E onto E.

The mapping p,. Let  be a mapping of class C* of the t-axis
onto the interval [0, 1] such that () = 0 for ¢t < .5 and 5(f) =1
for £ > 1. In terms of the above constant d, let a < d? be a positive
constant presently to be conditioned as in (I). Set «(t) = 1 for
t <0 and

(9.9) a(t) =17 (S—) +1 [t = 0].
The mapping p, shall have the form
(9.10) y, = «(w,,)% G=1,...n).
It reduces to u for 22 = a and z, > 6, and to the mapping
(9.11) ) Y, = — (G=1,...,n)
for ¢, = 0. We continue by proving (I).

(I). If a > 0 is sufficiently small p, is a C™-diffeomorphism of

E onto E.
To establish (I) it is clearly sufficient to show that the mapping.

z,
Yn = “(wn ) _2—

is a C®-diffeomorphism of the z,-axis onto itself. To that end note
that

(912) i(e) = @/(a,) 22 4 20
’ ’ wﬁ wn

From (9.13) it follows that «’(z,) = 0 when 22 = a, and according-
ly that |«'(z,)| is bounded independently of the choice of q.
Formula (9.12) now shows that for a > 0 sufficiently small,
Yn(2,) has the sign of «(z,), that is, is positive, Statement (I)
follows.

The mapping p,. This mapping is defined as the transformation

@&
= —2n (=
(9.14) Yo =Tt 2=2 (d) r=2,...,n)
yf = w"
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It is clearly a C*-diffeomorphism of E onto E. It reduces to the
mapping
(9’15) Y= w1+2, Yp = (1' = 2’ ce 4’12”)
for z, = 0, and to u for z, = d.

The mapping p;. This mapping is defined as the transformation

2z,
—
Y = 2,

and is a C*®-diffeomorphism of E onto E. It reduces to u for
z, = 0 and to the mapping (9.15) for z, < —d/2.

LeEmMMA 9.1. The mapping T = pgpap, has the properties (9.8)—
9.8).
( Rzalation (9.8) is immediate since z, > d on H" and each of the
mappings p;, py, and p; reduces to u for z, > d.

To verify (9.4) write the mapping R in the form

r=2...,n)

(9.16) gy =21y g =" r=2,...n)
2 2
and observe that when 2, =< —d, T reduces to a composition of the
mappings (9.11), (9.15), and (9.15), applied in the order written,
that is to (9.16). '
We verify (9.5) as follows. The ranges of 2, on the images of K"’
under p;, pypy, I, RT are included respectively in the intervals
(—1,1), (—1, 8), (—1, 3), (8.5, 5.5). Since the latter two intervals
do not intersect we infer that

(9.17) RT(K") n T(K") = @.

The ranges of z, on the images of K’ under p,, pyp;, T, RT are
included respectively in the intervals (—.5, .5), (1.5, 2.5),
(1.5, 4.5), (4.75, 6.25). Since the last two intervals do not intersect
it follows that

(9.18) RT(K')nT(K') = Q.
The relations (9.7) and (9.8) are obviously valid. From these
results, from (9.17), (9.18) and the continuity of T, (9.5) follows.

The validity of (9.6) is immediate. One notes that Int[K u RK]
is the m-interval

(—l<zy <45), (-l<z,<1) (r=2,...n).

The range of z; on the image of K under T is included in
(—1, 8)u (1.5, 4.5) = (—1, 4.5) and (9.6) follows.
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The mappings R', T,, #', 7 ,. The r-th iterate of the mapping
R will be denoted by R*(r = 1,2, ...). Whenr = 0 we understand
that R° = u. The inverse of R" will be denoted by R-". We shall

also sect

(9.19) ' RT =T, (r=0,1,...).
Observe that T = T,, and that
(9.20) T, |H" = Rr|H"

(9.20)" T,.,|H = R1\|H' (r=0,1,...)

in accord with (9.3) and (9.4).
We shall consider the sequence of subsets of E

(9.21) T,(K), Ty(K),. ...
As r 4 o the set T,(K ) tends uniformly to the center P = (8,

0,...,0) of the radial mapping R. Each of the sets (9.21) is
included in the n-interval

(-1l<z, <8), (1<, <1) (=2,...,n)

Moreover the sets in (9.21) are disjoint. More explicitly:
(a) For integers r and p such that r >p =1

(9.22) T,(K) n T,(K) = @.

The relation (9.22) has already been established when p = 1 and
r = 2. See (9.5). To establish (9.22) in the general case recall that
the range of #; on T(K"') is included in the interval (—1, 8) of the

x,-axis. The images of this interval under R", r =0, 1, ... are
disjoint for different integers r. It follows that

(9.23) T.(K")n T,(K") =0

for arbitrary integers r > p = 1. On recalling that the range of z,
on T(K') is included in the interval (1.5, 4.5). one finds similarly
that the images of this interval under R", r = 0, 1, . . . are disjoint
for different integers r. It follows that

(9.24) T(K')NnTyK')=0 (r>p=1).
Relation (9.22) follows from (9.23) and (9.24), taking account of
(9.7) and (9.8).

We shall need the following lemma.

LemMA 9.2. For an arbitrary integer r > 0, and for arbitrary

subsets A and B of K and H, respectively
(9.25)' ,§o R*(B) A T,(A) = T,(A n B) (r > 0).
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Moreover
(9.25)" HAT(K)=0 (r > 0).
Set B' = H' n B, B"" = H" n B. It will be sufficient to prove
(9.25)" in the special cases B = B’ and B = B"’.
Suppose that B = B’ and note that R?(B") = T,,,(B") by
(9.20), so that
R*(B") A T,(4) = T,1(B") A T,(4).
This intersection is @ if r = p+1, by (9.22). However,
T,(B")nT,(A)=TJ(A n B"),
since T, is biunique. Thus (9.25)" holds when B = B’
Suppose that B = B’. Observe that
(9.26)  R*(B') A T,(4) = R[R*\(B') 1 T,,1(4)]
= R T, (B')nT,4(4)] =0
unless r = p. Moreover
R(B)YNnT(A)=T(B')nT(A)=T,(4 n B’') (r>0).
It follows that (9.25)" holds as stated.

The relation (9.25)"" is a consequence of (9.26) with p =0
therein.

The radial mappings #'. Set
(9.27) I(P)=2 ZI=1IR
introducing # and Z. The mapping £ is a radial transformation of
& with center at £ and could be defined in terms of the cartesian
coordinates of & as R was defined on E. The r-th iterate of Z will
be denoted by #" understanding that £ is the identity when
r = 0. The inverse of %" will be denoted by Z-".

The mappings J,. The relations (9.20) will have a partial
analogue on & if we define 9 ,, p =1, 2, ... over the subset
H of & as follows:

(9.28)’ T | = R\
(9.28)" T o = R\ H’
The mapping 7, is a C®-diffeomorphism of 5 into &.

An extension of w. The C®-diffeomorphism w was defined in § 7
as a restriction of o’ to K—G We shall here give an extension of
o to the set
(9.29) O R(K—G)

r=0

(r=0,1,...).
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by setting (for r =0,1,...).
(9.30) w.R(p) =& . w(p) (p e K—G).
This extension is of course unrelated in general to the extension

o’ of w. The exténded w is a C*-diffeomorphism of the set (9.29)
onto the set

(9.31) '§092'(92f—g) [by (7.10)].
We add a useful lemma.

LEMMA 9.3- wa+1 = .7-,._'_1(0 (On H—G)-

To establish this relation refer to the definition of 7, ,; and note
that in accord with (9.80)

T o = B = oR’ (on H'—G") -
T o = BHo = oRH (on H'—G').

T

On adding the extreme members of these equations the relation
results.

In Lemmas 9.2 and 9.8 the mapping T has been taken as a
C*-diffeomorphism of E onto E with the properties (9.3) to (9.8).
For the sake of a proof in § 16 we find it useful to suppose that T is,
in particular, the mapping T = p, pyp, as in Lemma 9.1. To state a
lemma concerning this mapping let ¢ be a constant such that
—1 < & < 0 and introduce the subinterval of K,

K:(c<a <1) G=1,...n).

We shall be concerned with the subset K—K¢ of K.
LemMA 9.4. The mapping T = pyp,p, has the following property.

If (z) €K and if T(z) e K—K°, then (z)e K—K°.

Set T'(z) = (y). Now (y) e K—K°*. Hence —1 < y; < ¢ for at
least one integer % on the range 1, . . ., n. The form of p3p,p, shows
that

Z;
Yi = a’n(wn) 'é" +hz(wn) <e
where h,(z,) = 0. We infer that
Ly
an(wn) ; <e.

Since 1 < «,(z,) < 2 it follows that z; < &. Hence (), given in K,
is in K—K°.
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§ 10. The composite n-manifold X

Composite n-manifolds based on (E, &) are defined in § 2. In
this section a special manifold X of this character will be defined.
In the next section we shall show that X is the C*-diffeomorph of
E—2P.

In defining X we shall make use of the points P and £ appearing
in § 9 as the centers of the radial transformations R and # of
E and & respectively. We shall refer to the special n-cube K of
the form (9.1), to the mapping w, to £, to subsets of K and ¢
defined in § 7, and to the extension of w over the set (9.29). We
suppose X represented in the canonical form,

(10.1) X =[M, M u W,¥), [Cf. (1.12)]
and define M, .#, y, W,# by setting

(10.2) W = §0 R'(H—G)
(10.8) M= E—P— r§o R'(G)
(10.4) W = H(H—9)
(10.5) /fgo R (H)

(10.6) L= oW

Observe that M and .# are open subsets of E and & respectively,
that W and #~ are open subsets of M and .# respectively. That
w(W) =w follows readily on using the relations

H -G =w(H—-G), oR"=Rw
from (7.10) and (9.80), and the consequent relations,
u(W) = rﬁjogzr . o(H—=G) = O #(#—9).
Thus g is a C*-diffeomorphism of W onto #°. The composite
space X is now defined as a topological space as in § 1.

LemMmA 10.1. The space X is an n-manifold.

The proof of this lemma is based on Lemma 2.2. We need the
relations
(10.7) Bu(H—G) C fgH; o' (BgH) = o
where o’ is defined over E—G in § 7 and reduces to w on K—G.
To establish the first relation in (10.7) note that

Bu(H—G) C Beg(H—G) CpgH L fgG.
Since G is closed in E and included in CM the first relation in (10.7)
follows. Continuing the proof of (10.7) note that
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BeH = (BgK 0 BgH) v (K n BgH)

Bed = (Bs 0 fg)H O (X O fok)

I(BeK 0 BgH) = BeX N Bt

o' (K n BgH) = A  Bgt.
The second relation in (10.7) follows. The first relation in (10.7) has
the useful extension,
(10.8) BuR(H—G)CBgR"(H) = R'(BgH) (r=0,1,...).

Lemma 2.2 is concerned with
(109) By W = 8 p,, R(H—G) C G R'(BzH) [by (10.8)].

By definition 4 = w|W, and in particular w . R"(p) = Z" . w(p)
for p e K—G. Hence p admits a continuous extension » over
BuW such that

v.R(p) =R .w'(p) [peBsH, r=0].

For this extension it follows from (10.9) and (10.7) respectively
that

(10.10) vWBuW)C O . o' (BgH) = O A" (BsH).

To apply Lemma 2.2 we have merely to note that the right mem-
ber of (10.10) does not intersect .#.

The condition (y) in Lemma 2.2 is accordingly satisfied. We
infer that X is an n-manifold.

We understand that X has received a differential structure of
class C* in accord with the procedure defined in § 2, making use of
the differential structures of class C* given on M and .#.

A first partition of X. In order to define the C*-diffeomorphism
t of X onto E— P in the next section we shall partition X into an
cnsemble of disjoint subsets

(10.11) X_1, X Xqs -
of which X, X,, ... shall be open. These sets will be u-represent-

ed in the sense of § 1.
The sets Xy, X, . . .. With the notation for subsets of a compos-

ite manifold introduced in § 1, let
(10.12) X, = [R"(K—G), #"(#),X] (r=0,1,...).

Since
R(K—G)C M, R(H)C.M
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X, is actually a subset of X. To prove that X, is u-represented we
must show that the general condition (1.14) is satisfied in the
form appropriate for X,.

The verification of this condition will be clearer if we begin
with the case r = 0. When r = 0 condition (1.14) takes the form,

(10.13) ul(BE=G)nW]l=H W.
Since (K —G) n W = H—G,, this condition may be written
(10.14) wWH—-G)=HnW.

Now u(H—G) = w(H—G) by virtue of the definition of g in
(10.6). We then have

WH—G)=H#—G =H W

in accord with (7.10) and the definition of #° in (10.4). Thus
(10.13) holds.

In the case of the general r the verification of condition (1.14)
is similar. In fact

w(R(K—G)A W] =w.R(H—G) =% .w(H—G)
= R(H—G) = R(H)W

for reasons similar to those cited when r = 0. Thus X, is a u-
represented subset of X.

The set X_,. This set is the complement relative to X of the
union of the sets X,, X;, .... Since the second components of
these subsets of X, as represented in (10.12) have .# as union, it
follows from Corollary 1.4 that X_, is u-represented in the form,

(10.15) X_, = [4, 9, X].

where
(10.16) A = M—'(:Jo R"(K—G) = E—P— G R'(K)

The subsets X,, X, ... are open subsets of X, since their first
and second components in the representation (10.12) are open
subsets of M and of .# respectively. Hence each of these subsets of
X is a submanifold of X in accord with Lemma 1.4. As a submani-
fold of X, X,, r =0, 1 ... will be assigned the C*-differential
structure derived from X.

The set X,. To show that the mapping t: X — E—P (to be
defined in the next section) is a C*-diffeomorphism, we shall
need a special open subset X, of X such that X, O X_,. (Cf. Proof
of Lemma 2.4). Let #, 7, 7, be the #-mappings associated with
X, as defined in § 1. Note that X_, = =,(4). It follows from the
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definition of w’ in § 7 that there exists a compact subset B of K
such that

(10.17) w|(K—B) =I|(K—B) (BDG).
We now set X, = m,(A4,) where
(10.18) A, =§0R’(I°{——B) ud= E—P—-rgoR'(B).
We see that A4, is an open subset of M and that 4, O A. Hence
X, is open relative to X and
(10.18)’ X, =m(A,)dm(4d)=X_,.
We assign X, its C®-differential structure as a submanifold of X.

A second partition of X. We shall here partition X into an
ensemble of disjoint subsets

(10.19) Y ,Y, Y, Y, ...
of which Y, Y, ... shall be open. These sets shall be u-represent-
ed in the sense of § 1. This partition will be used in § 12 defining a

C>-diffeomorphism s of X onto X*.
The subset Y, of X. Let

(10.20) Y, = [H'—G', #', X].

Itis clear that H'—G' C M and 5#’ C .#. The condition (1.14) that
Y, be u-represented takes the form

wH -GV W]=H" W
or equivalently
o(H'—-G')=H"—-9%,
a condition which is satisfied by virtue of (7.9).
The subsets Y,, Y,, . . ., of X. Referring to the mappings 7T, and
J, defined in § 9, set
(10.21) Y,=[T(K—G), T,(#)X] (r=12,...).

We shall prove (a) and (b).
(a). The right member of (10.21) defines a subset Y, of X.
To establish (a) we have merely to prove that

(10.22) (i) T(K—G)C M; (ii)T (#)C 4.

Taking into account the explicit form of M as given in (10.3),

(i) will follow if T,,(K —G) does not meet P (obviously the case) and
if
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(10.23) T,(K—G) n Qo R*(G) = @.

Relation (10.28) follows from Lemma 9.2. That (10.22) (ii) holds
is a consequence of the definition of 7, in (9.28) and of the form
(10.5) of 4.

(b). Y, is p-represented in (10.21).

The general condition (1.14) here takes the form
(10.24) UTK—G) AW =T (H)n W (r=12,...).

Making use of (10.2) and of Lemma. 9.2 to reduce the left member of
(10.24), and of the definitions of 7, and of #” to reduce the right
member of (10.24), one arrives at the equivalent conditions

(10.25) o[T,(H—G)] = T (#—9)
(10.26) T, .0(H—G) =T (#—9),

of which (10.26) is satisfied on account of (7.10).

This establishes (b).

The subset Y_, of X. This set is the complement with respect to
X of the union of the sets Y,, Y, .... The union of the second
components of these sets is

H' O[S (H () RN H")] = O BH) = A.
It follows from Corollary 1.4 that Y_, is u-represented in the form
(10.27) Y_,=[L,9,X]
where
(10.28) L=M— T,(ILG)—(H'—G'):E—P—QIT,(I%)-H'

The subset Y, of X. We shall need a special open subset Y, of X

such that Y, D Y_;. Let B be a compact subset of K such that
(10.17) holds. Set

(10.29) L, = M—0 T,(B—G) = E—P—0 T,(B)—G'.

We see that L, is open relative to M and that L CL,. Now Y_,,
as defined by (10.27), is the set m,(L). We set Y, = =,(L, ) and
note that

(10.30) Y, =m(L,)dm(l) = Y4

as required. The subset Y, is open relative to X and is assigned
a C*-differential structure derived from that of X.
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§ 11. The C*-diffeomorphism t of X onto £§—2.

To define t we shall make use of Lemma 2.4 and follow the
procedure outlined preceding this lemma. More explicitly we
shall define homeomorphisms

(11.1) t_1s tos by, Lo, -
of the disjoint subsets (§ 10)
(11.2) X_4, Xo, Xy, X, .

of X onto disjoint subsets of &—2 whose union is &—2. Recall
that # = I(P). The mappings {,, ¢, ... will be C®-diffeomor-
phisms. We finally define a C*-diffeomorphism ¢, of the subset
X, of X (§ 10) into £—2, and show that

(11.3) (X, nX)=t(X,nX,) ¢=—-1,0,1,...).
The mapping t defined by setting
(11.4) t1X, = t,|X, (6= —1,0,1,...).

DEFINITION OF f,, r =0, 1, .... In defining ¢ use will be
made of Lemma 2.8. We refer to the #-mappings =, =, 7,
associated with X as in § 1. Let w be extended as in (9.30). To
define ¢, on X, the mappings f and / appearing in Lemma 2.3 are
here denoted by f, and /, respectively, and defined by setting

(1L.5) 1:(p) = o(p) [p e R(K—G)]
(11.5)" £(e) =1 [q e 2 (H)]
The C*-diffeomorphism ¢, : X, > &—% is then defined as in
(2.11)' hy setting

(11.6) t, . m(p) = f(P) & - 7a(g) = £:(9)-

Note that

(11.7) f,. R(K—G) = & . o(K—G) = R'[A —F) C R (A)
by virtue of (9.80) and (7.10). We shs:ll verify Conditions (i), (ii),
(iii) of Lemma 2.8, taking X’ as #7(.¢"), and conclude that ¢, is a
C*-diffeomorphism of X, onto .9?'(.9?').

VERIFIcATION OF (i). The general Condition (i) of Lemma 2.3
has the form (fu)|W = f|W and must be applied here with W
replaced by
(11.8) W, = R(K—G)n W = R(H—G)

where W is given in the canonical form of X. Condition (i) thus
rcduces to the condition
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(11'9) ([r:ur)‘Rr(H_G) = frlR’(H—G) [/"r = /"IWr]
and is satisfied in accord with the definition of x in (10.6) and of
{, and f, in (11.5).

VERIFICATION OF (ii). The condition (M —W) n f(#) =D of
Lemma 2.8 here takes the form

(11.10) o[R(K—G)—W,] n %"(#) = @
Replacing W, by R"(H—G) fram (11.8), and using (9.80), condi-
tion (11.10) becomes
R . o(K—H) n R(H#) =0
By virtue of (7.10) this is equivalently
R(H—H) R(H) =D

and is clearly satisfied.
VERIFICATION OF (iii). The Condition (iii) of Lemma 2.8 has the
general form f(M) n f(#) = 2, and is here satisfied in the form

R . 0(K—G) U R'(H#) = R(K) [using (7.10).

It follows from Lemma 2.8 that t, is a C®-diffeomorphism of X,
onto .%’(ch), r=20,1,....

DEFINITION OF ¢_;. Recall that X_; = n,(4) where A4 is given
in (10.16). We define {_, on X_, by setting

(11.11) t_, .7 (p) = I(p) [for pe A]

and observe that t_,(X_;) = I(A4). It is clear that ¢_, is a homeo-
morphism of X_; onto I(4). Taking into account the form of 4 as
given by (10.16) we see that

(11.12) I(4) = (g’—g»—:’go.@f(if).
It may be concluded that
Cux)=6-2 (=-101,...)

and that the sets ¢,(X,) are disjoint.
DEeFINITION OF £, . Recall that X, = #,(4.,) where 4, is given
in (10.18). We define ¢, over X, by setting

(11.13) t, . m(p) = 1(p) [for pe A,].

Proor oF (11.3). Note first that if for p e M, n,(p) is in X,
then p must be in the first component of X,, since X, is u-rep-
resented. Hence:
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X, nX,=m(4,)nm.R(K—G) (r=0,1,...)

(11.14) =m, . R(K—B) [by (10.18)].

Forpe R’(K—B), 7, (p)is thusin X, n X, . Inaccord with (11.5)’,
(11.6) and (9.30),

(11.13) ¢, . m(p)=w(p)=w . R". R"(p)=Z".w . R~"(p)=I(p)

since o reduces to I on K — B. A comparison of (11.15) with (11.18)
shows that

(X, nX,)=t](X,nX,) (=01,...)

as required.
From (10.16) and (10.18) it follows that A, D 4, so that
X, nX_; =m(A). It follows from (11.11) and (11.13) that

Xy 0 X)) =8 |(X 0 X ).

Thus ¢, is a C*-diffeomorphism of X, into &—Z for which
(11.8) holds. The conditions of Lemma 2.4 are thus satisfied, so
that if t is defined by (11.4) we have the following lemma.

LeMMmA 11.1. There exists a C®-diffeomorphism t of X onto
& —P defined by the conditions

t.m(p) = o(p) [peR(K—G), r 2 0]
t.m(g) = ¢ [ge %7 (), r 2 0]
t.m(p) =I(p) [ped]

§ 12. The composite n-manifold X*.

In this section we shall define a composite n-manifold based on
(E, &). The manifold will be assigned a C®-structure. In the next
section we shall show that there exists a C*®-diffeomorphism
s of X onto X*. Let

(12.1) X* = [M*, M*, u*, W*, W'*]

be a canonical representation of X*. We shall define X* by
defining the elements in the representation (12.1). Reference will
be made to the n-cube K of (9.1) and to the subsets K’, H’, G’,
H', ' etc. associated with K in § 7. The mapping o’ defined on

~E—G in § 7 will also be used as well as the restriction w = w'[(K —
—G). Set
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(12.2) W* = H'—G', M*=E—P—G'
(12.8) W =H—G, M= A
(12.4) u* = o W*

The compatibility condition u*(W*) = #"* is satisfied since
o(H'—G') = #'—%" by (7.9). Thus X* is a topological space
as defined in § 1. We continue by proving Lemma 12.1.

LeEMMA 12.1. The space X* is an n-manifold.

This lemma will be proved by showing that X* satisfies Con-
dition (y) of Lemma 2.2. The proof is similar to that of Lemma
10.1. We begin by showing that

(12.5) @' (Bar W*) C Bg (#7)

As in the proof of (10.7)

BsW* C BaH' U fG's fuux W C gl

(12.6) o' (Byx W*) C o' (BgH') = ppt”
making use of (7.9)". Relation (12.5) follows from (12.6).

Turning to Condition (y) note that u* as defined by w over W#*,
and regarded as a map of W* into &, admits o’ as a continuous
extension over S« W*. Condition (y) is satisfied if the right
member of (12.6) does not meet .#*. But the set M* = ¢’ is
open in &, and so does not meet Bg'.

Lemma 12.1 follows from Lemma 2.2.
A partition of X*. We shall partition X into a sequence

(12.7) Y*, Y5, YE, ...

of disjoint subsets whose union is X*, and of which the sets
Y&, Y¥, ... are open. This partition will be used in defining the
C*-diffeomorphism s of X onto X¥*.

DEFINITION OF Y. Employing the representation of subsets of
a composite manifold introduced in § 1, set
(12.8) Y§ = [H'—G', H#', X*]

noting first that H'—G’ C M* and 5#’ C .#*. The condition (1.14)
that Y be p*-represented in (12.8), takes the form

(12.9) w[(H—G)n W*] =#"nW*
or equivalently
(12.10) oH —-G')=H"-9"

taking into account the definitions of W and of #7*. Condition
(12.10) is satisfied in accord with (7.9)". Moreover Y§ is an open
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subset of X* and as such will receive a C*-differential structure.
DEFINITION OF Y, r=1,2,.... Set
(12.11) Y* = [T,(K), 9, X*] (r=12...)
noting that T,(K) C M*, since T,(K )N G =@ by virtue of
Lemma 9.2. The condition (1.14) that (12.11) be a u*-representa-
tion of Y¥ takes the form,
T,(K) n W* = 0,
or equivalently,
T,.K)n (H—G') = 0,
and is satisfied in accord with Lemma 9.2. The subset Y} is open
relative to X* and will receive a C*-differential structure from X¥*.
The sets Y¥, p =0, 1, ..., are disjoint since the intersection of
any two of their second components is obviously @, and since the
intersection of any two of their first components is likewise O,
in accord with (9.28), (9.24) and (9.25)".
DEeFINITION OF Y*,. This set is the complement with respect
to X* of the union of the sets Y7, YT, . . . and can be u-represented

using Corollary 1.4. The union of the second components of
Yy, Y§, ... is o#’ = A*. The union of the first components of

Yy, YE, ... is

(12.12) f§1 T, (K)u (H —G')

and the complement of this union with respect to M* is L, as given
by (10.28). Hence by Corollary 1.4

(12.18) Y = [L, 9, X*]

With Y* so defined X* is the union of the disjoint sets Y%,
1=—1,0,1, ...

§ 13. The C®-diffeomorphism s of X onto X*.

In defining s we follow the procedure preceding Lemma 2.4.
We make use of the second partition of X into the union of the sets

(18.1) Y, Y, Y, Y,, ..
defined in § 10, and define a sequence of homeomorphisms ‘““‘onto”
of the form

(18.2) $;: Y, >Y¥ (t=—1,0,1,...)
of which sy, $;, . .. will be C®-diffeomorphisms. With Y, defined
as in (10.30) we introduce a C*-diffeomorphism

(13.3) 5,1 Y, > X*
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such that

(18.4) s ¥, . nY)=s](Y,nY,) (¢=—-1,0,1,...)
We finally set

(138.5) s =s,|Y,; (t=-1,0,1,...)

The sets Y, Y,, Y, ... are open and X is their union. The sets

(18.6) Y*, Y5, YE, VS, ...

of § 12 are disjoint and X* is their union. It follows from Lemma
2.4 that 8 is a C*-diffeomorphism of X onto X*.
DEFINITION OF s,. Recall that

(18.7) Y, = [H'—G', #',X] Y§ = [H'—G', #', X¥]

by definition. Let =, =, n, be the #-mappings associated with
X, and let n*, af, 7y be those associated with X*. Set

(18.8)  so.m(p) =7 (p), So0-ma(q) =73(q) [peH' =G, ge#’]
These two conditions on s, define a single-valued s, on Y, taking

account of the identifications used in defining Y, and Yg. In fact
H'—G' is identified under x with a subset of #”, since

" (18.9) (H'—G')n W* = H' -G,
while H'—G’ is identified under u* with a subset of #’ since
(18.10) (H—G'YnW =H'—('

If pe H —G’, then p and w(p) are identified both under x4 and
under u*, and have the same image under s,.

It follows from (18.9) that each point of Y is the image of a
point in 5’ under m,, while (18.10) implies that each point of
Yy is the image of a point in 5’ under nf. Hence
(18.11) o =m(H') Y§ = af(H')

Thus (13.5) defines a C* diffeomorphism s, of Y, onto Yg.

DEFINITION OF 8,, 7 =1, 2.... Recall that
(13.12)’ Y, = [T(K—G), T,(#)X] (r=12...)
(18.12)" Y* = [T(K), 9, X*]

To define a C*-diffeomorphism s, of Y, onto Y} we shall follow
the procedure of Lemma 2.8 and define a C*-diffeomorphism f,
of the first component of Y, into Y}, and a C*-diffeomorphism £,
of the second component of Y, into Y}. The C*-diffeomorphism s,
is then defined by setting

(18.13) s, - m(p) = () s, - ma(q) = £+(9)
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for p e T.(K—G) and q e T ,(#).
DEeFINITION OF f,. To define f, we introduce a sequence of
C*-diffeomorphisms such that

(13.14) K—G—> T (K—G) > T, (K)—>Y* (r > 0)
and such that for p eK—G
(1815) p—>T,(p)>T,.I . w(p) >af . T,. I . w(p).

An arbitrary point 2 in the first component of Y, has the form

T,(p), and by virtue of the mapping (18.15) has an image in Y}

(18.16) fl@)=a*.T,.I'.0.T X () [zeT(K—G)]

Making use of Lemma 9.3 we see that in particular

(18.17) By) ==t . T,. I . T aly)  [yeT,(H-G)]
DEeFINITION OF /,. For 2 in the second component of Y, set

(18.18) L(z)==af.T,.I7'. T;Y(z) [z € T (#)]

noting that

(13.19) T,I-Y (o) C M* (r > 0).

Since zf is defined on M¥*, /, is defined on J, (s#).

1
We now verify the conditions (i), (ii), (iii) on f and /£ in Lemma

2.3. .
CoxprrioN (i). The W which appears in the general condition
(i) of Lemma 2.8 is here to be replaced by

(18.20) W,=W A T,(K—G) =T,(H—G), [W from (10.2)]

where the second equality in (13.20) follows from Lemma 9.2.
Making use of the definition of f, in (18.17) and of /, in (13.18), the
condition (i), £, . u(p) = f,(p), p € W, reduces to the form

T (H—=G) = o|T,(H-G),

and is satisfied by virtue of the definition of u.
ConprtioN (ii). The Condition (ii) has the general form

f(M—W)nf(M#)=0O
in Lemma 2.8. Here M —W is to be replaced by
T(K—G)—W, = T(K—H)

in accord with (18.20). Thus Condition (ii) takes the equivalent
forms

LITK—H)] 0 41T (#)] = @
w.TNT(R—H)T 0T (H#)] =0
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(13.21) o(K—H)n# =0
and is satisfied in accord with (7.10).

CoNDITION (iii). According to this condition Y}, taken as 2’
in Lemma 2.8, should equal

if, . TAE—G)] U [£, . T ()]
=[nf.T,. I, 0(K—G)] U [a} . T,.IY(H#)]
=a* T, . I (A) =a*. T,(K)

using (7.10). The last member is Y*, so that Condition (iii) is
satisfied.
If s, is defined by (18.18) then Lemma 2.8 implies that the mapping

(13.22) 5,:Y, > Y* =g T,(K) (r > 0)
is a C*-diffeomorphism onto Y. '

DeFINITION OF $_,. Recall that
(18.28) Y_,=[L 0,X] Y* =[L, O X*]

where L is given in (10.28). An arbitrary point in Y_, is of the
form 7,(p) with p e L. The point nf(p) is then a point in Y*,.
We define s_; by setting

(18.24) s_1 . m(p) = =7 (p) (peL)
So defined s_; is a homeomorphism of Y_; onto Y*,.

THE DEFINITION OF s,. Recall that Y, = #,(L,) where

(18.25) L,=M—-3T(B—G)DL [Cf. (10.29)]
We define a C*-diffeomorphism of Y, into X* by setting
(18.26) sy - m(p) = 2 (p) (peLy)
We must show that the relations

(18.27) s, (Y, nY,)=s(Y,NnY,) (i=-10,1,...)

are satisfied.

VERIFICATION OF (18.27). This verification is immediate in
in case ¢ = —1, as one sees on comparing (18.26) and (18.24) for
pel.

The case © > 0 in (18.27). To verify (18.27) in this case note the
following. If for a point p € M, z,(p) is in Y,, then p must be in the
first component of Y,, since Y, is u represented. Hence

(18.28) Y, nY,=m(L,) nm.T,(K—G)=m,.T,(K—B)
(r>0)
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Any point in Y, n Y, is thus of the form =, (x) with z in T,(K — B )
For such an 2 (13.18) gives

(18.29) s,.m@)=f@)=af.T,.I . 0. T (2)
by (13.16). But B has been so chosen that
o|(K—B) = I(K—B),

so that w can be replaced by I in (18.29). It follows then from
(18.29), so reduced, that

(13.80) s, . my(x) = nf(x) (my(z)e Y, nY,)
Now (13.30) is in agreement with (18.26) so that (18.27) holds for
i>0.

The case © = 0 in (18.27). As in the case ¢ > 0, if for p e M,
the point 7y (p) is in Y, then p must be in the first component of
Y, since Y, is u-represented. Hence

(1331) Y, nY,=mn(L,) nm(H' —G') = my(H'—G')
For such a x,(p)

(13.32) 8o - 11(p) = #f (p) (mi(p) e Y, nY,)
in accord with the definition (13.8) of s,. On comparing (13.32)
with (13.26) we see that (13.27) holds for ¢ = 0.

Thus (18.27) holds without exception, so that if s is defined
by (18.5), it follows from Lemma 2.4 that s is a C*-diffeomorphism
of X onto X*.

The definition of s is explicit in Lemma 13.1.

LemMma 18.1. There exists a C®-diffeomorphism s of X onto X*
defined by the following conditions:

(18.33) s.m(p) = =)' (p) [pe H'—G']

(18.34) s.my(q) = 73(q) [gest”]

(18.85) s.m)==*.T,.I"'.0.T () [2e T(K—G), r>0]
(18.36) s.m(z) =a*.T,.I"1. T =) [zeT(#),r>0]
(18.37) s.m(p) = =f(p) [pel]

§ 14. A special C*-diffeomorphism D.

The mapping D which we shall define in this section, taken
with the mappings t and s already defined in § 11 and § 13 respec-
tively, is essential for our derivation of a solution of a problem of
type K.

The mapping a. To define D we shall need a C*-diffeomorphism
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a of D into E, where D is an open n-interval of E of the form
(14.1) D:(a<x <b,) t=1,...,m)

Let ¢ and p be constants on the open interval (0, 1). We shall refer
to the n-subinterval of D

(14.2) D,:(a <z <aitc(b;—a)) z=1,...,m)
Bearing in mind the fact that pc is a constant on (0, 1), D,, is
well-defined and D O D, D D,,. Observe that D, D,, and D ,, are

geometrically similar n-intervals with common vertex (a, a, .. ., @)
e E. We shall define a over D in such a fashion that

(14.8) a(D) = D,, a|D,, =u|D,,
where u is the identity on E.

The mapping .A,. Let A, map the interval (0, 1) onto the
interval (0, ¢) in such a way that

A(t)=1t (0<t<pe)
A1) >0 (0<t<1)

and ,4, is of class C*. The existence of ,4, is readily established as
an indefinite integral of a suitably chosen function.

DerINITION OF a. The required mapping a may be defined as
one in which (z) — (2’) in E with

(14.4) @ —a = (b,.—a)cz,,(:;:—‘;) G=1,...,n)

It is readily verified that a has the desired properties. It will be
noted that a depends upon ¢ and p as well as upon D. However ¢
and p will be chosen and fixed.

The choice of D and c. Recall that K, H' and H'' are defined by
the respective conditions

K:(—-1=22,=1) (t=1,...,m)
H:(-l<z,<1), (-1<2,<—d), J=1,...,,n—1)
H':(-l1<a;<1), d<z, <1), G=1...,n—1)

Recall also that d > 0 was chosen in § 7 so small that
H' DG, H'DG"
We shall take D as an n-interval of the form
(14.5) (-1<e,<b;) (b;>1)(t=1,...,n)

such that D contains the fixed point P of the radial transforma-
tion R, and is geometrically similar to H'. These conditions do not
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uniquely determine D. It is however sufficient that some choice of
D be made. Once a choice of D is made it is clear that for suitable
choice of ¢, with 0 <c <1

(14.6) D,=H'.
We suppose D and ¢ so chosen and fixed.

The choice of p. Since H' O G’ it is possible to choose p such that
0 <p<1and |p—1| is so small that

(14.7) D, DG
We suppose p so chosen and fixed. We note that
(14.8) D,—~G'CH'—-G' = W*

The point a(P). Since P is in D, a(P) is in H'. Since a(P) # P,
a(P) is not in the set D,,, because D, is pointwise invariant
under a. Hence

(14.9) a(P)eH'—-D,,CH' —G' = W*
The set M* A D. Note that
(1410) M*AD =D—P—G'; a(M* n D) = H'—G'—a(P)

peos pe

DEFINITION OF X}. The composite manifold X* was defined in
§ 12. We here introduce the subset
(14.10)’ X} = [M* A D, #', X*]
of X*. This set is u*-represented. In fact the Condition (1.14) here
takes the form
(14.11) w¥M* AD A W*)=H" nW*

Since W* is included in M* and in D, and since ¢’ D #'*,
Condition (14.11) reduces to the form u*(W*)= #"* and is
satisfied.

The point P** ¢ YY. In (12.8) we have introduced the set

(14.12) Y* = [H'—G', #', X¥] = a(#") [Cf. (18.11)]
Observe that X} D Y§ since M* n DD H'—G’. Set
(14.12) n¥.a(P) = P¥* ¢ Y* [Cf. (14.9)]

We shall prove the following lemma.
LeEMMA 14.1. There exists a C*®-diffeomorphism
(14.18) D: X} > Y§—Px*

onto Y§—P**,
In defining D the procedure of Lemma 2.8 will be followed.
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We identify 2’ of Lemma 2.8 with Y§ —P**, define two C*-
diffeomorphisms into Yg§—P**

(14.14) f:M* D > Yy—P** [ - Y§—P**,

and show that Conditions (i), (ii), (iii) of Lemma 2.8 are satisfied.
The set which should replace W in Lemma 2.8 is

(14.15) (M* N D)n W* = W*
so that Conditions (i), (ii), (iii) of Lemma 2.8 will take the form
(14.16)(i) (fu*)|W* = flW*

(14.16)(ii) J[(M* A D)—W*] A §(#') = O
(14.16)(ili)  f(M* A D) U f(#') = Y*—P**

Once f and £ have been defined and shown to satisfy the relations
(14.16), we shall define D in accord with Lemma 2.8 by setting

(14.17) D . 2}(p) = f(p) (p e M* n D)
(14.18) D . z3(g) = #(9) (qest)

DEFINITION OF f. Since (14.10) holds we can define f by setting
(14.19) f(p) = af . a(p) (pe M* D)

and conclude that
(14.20) f(M* A D) = af(H'—G')—P** = g} (W*)—P**
(x) Thus f is a C®-diffeomorphism of M* n D into Y§—P**.
DEFINITION OF /. Since 5’ is the union of the disjoint sets
W* and ¥’, £ can be defined over 5’ by setting

(14.21) (fu*)|W* = flw*
in accord with (14.16)(i), and by setting
(14.22) Y = af|Y

Definition (14.22) taken with (14.18), implies that D reduces to the
identity over n7(¥9’). We continue by proving (B).

(B) The mapping f is a C*-diffeomorphism of #' into Y§ —P**.

Note first that /|#"* is a C>-diffeomorphism of #™* into
af(H'—G’) in accord with (14.21) and (14.20). To show that £is a
C>-diffeomorphism into Yg it will be sufficient to recall that
H' =W* U g, and to exhibit an open neighborhood A of ¥’
relative to & such that #” C 5’ and /|4 is a C*-diffeomorphism
of # into Y¥.

To that end recall that D,,—G’ C W* by (14.8). It follows
from (14.21) and (14.19) that



140 Marston Morse (58]

(14.28) £ .u*(p) =ai.a(p) [peDy—G']
Since a(p)=p for peD and since D,,—G'C W* we
conclude from (14.28) that
(14.24) {£.u*(p) =af(p) =7 .p*(p) [peD,—GC']
We introduce an open neighborhood A~ of ¥’ relative to & by
setting
N =H"—o'(Clg[H'—D,,]) =#"—w'(H'—D,,) (Cf.Lemma?7.2)
=[#'"—0'(H—=G")]v o' (D,—G') = ¥ np*(D,,—G")CH'
Relations (14.24) and (14.22) imply that
HAN = ng| N
Thus £ is a C®-diffeomorphism of A" into 73 (#) = Y.
Finally / maps 5’ into Y§ —P**, In fact /(#*), as defined by
(14.21) and (14.20), does not contain P**. Nor does /(¥’) =3 (¥9’)
as defined by (14.22), since
P** — #¥ . a(P) e nf(W*) = af(#'*) [Cf. (14.9)]

This completes the proof of (8).
Now that f and / are admissibly defined we shall verify Condi-
tions (14.17). Of these conditions (14.16)(i) is implied by (14.21).

VERIFICATION OF (14.16)(ii). Since
L) = f(W*) 0 {(F') = (W*) v 23(F)
by (14.21) and (14.22), Condition (14.16)(ii) is equivalent to the
pair of conditions
(14.25) fl(M* AD)—W*]nj(W*) =0
(14.26) f((M* AD)—W*] naf(9')=0
Condition (14.25) is satisfied since f is a homeomorphism. With

the aid of (14.20) we see that the left member of (14.26) is included
in

pes

E(W*) A (F) =} (#H*F) =0

so that (14.16)(ii) holds.

VERIFICATION OF (14.16)(iii). The left member of (14.16)(iii)
is included in Y§—P** in accord with (x) and (8), and in turn
includes

[AF(W*)—P**] U af(9') = nf(W* U G')—P** = Y5 —P**,

[Cf. (14.20), (14.22)

Thus (14.16)(iii) holds.
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It follows from Lemma 2.3 that D is a C®-diffeomorphism of
X} onto Yy—P**,

This completes the proof of Lemma 14.1.

We shall be explicit in describing D.

LEmMA 14.2. The C*-diffeomorphism D of Lemma 14.1 is such
that

(14.27)’ D.af(p) = af.a(p) [p e M* A D]
(14.27)" D . 73(q) = =3 (q) [ge?’]
The relations (14.27) define D at each point of X3. For X}
equals
A} (M* n D) v af(#') = af(M* n D) v n%(G’)

by virtue of the relation s’ = #* U ¥’ and the inclusion in
a¥ (M n D) of af(W*) = af(#*).

§ 15. Neighborhoods of P ¢ Ext X and P* ¢ Ext X*.

The point P ¢ E and the point 2 = I(P) € & have their ordinary
cuclidean neighborhoods. We shall extend X and X* by adding
ideal points P and P* respectively. These extensions of X and X*,
topologized as below, will be denoted by

(15.0) ExtX, ExtX*

The C®-diffeomorphism t of X onto &—2 was defined in § 11.

Let t* be an extension of t to Ext X such that t*(P) = 2. After

having defined a base (N,,) for neighborhoods of P relative to

Ext X, we shall show that t* is a homeomorphism of Ext X onto &.
The neighborhoods N,, of P, m =0, 1, . ... Set

(15.1) N,, = [R™(M n D), Z™(#), X] (m=0,1,...)
(15.2) N, =N, uP

We first show that

(15.8) R*"(M nD)CM, #™(M)C M [Cf. (10.1)]

so that (15.1) defines a subset of X. Set D— P = D’ and note that
(154)  R™(D') D R*(K); R™(D) n R*(K) = @
for m < r and 0 < p < m respectively. We have
R*(M n D) = R™"(M n D’)
(15.5) = R"[D' — ,§o R"(G)]

= [R™(D)— O R*(G)]C M.
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Moreover
(15.6) R (M) = ,?,,. R(H)C M

This establishes (15.8).

It is readily shown that N,, is u-represented in (15.1). We
leave the proof to the reader. We shall set I(D) = 2, I(D’') = @’
and prove the following.

LemMA 15.1. t(N,,) = Z™(2') (m = 0).
To prove this lemma we need the relations, (r = 0)
(15.7) X,nN, =X, (m<Zr)
(15.8) X,AnN, =0 (m>r)
(15.9) t(X, nN.,) = &' (o) (m<r)
(15.10) t(X,nN,)=0 (m >r)
(15.11) t(X_,AN,)=R(D')— r§m R(A) (m = 0)

where the subsets X, of X are defined in § 10.

Equations (15.7) and (15.8) are valid since the first and second
components of X, in its u-representation as a subset of X are
included in the corresponding components of N,, when m <,
while corresponding components do not meet when m > r. This
follows readily from (15.4), and (15.5) in the case of first compo-
nents, and is immediate in the case of second components.
Relations (15.9) and (15.10) follow from (15.7) and (15.8) respec-
tively, recalling that t(X,) = #"(4"). § 11.

To verify (15.11) recall that X_;, = n,(A4) where
(15.12) = E—P—'(:)o R"(K) [Cf. (10.16)]
Now A4 n W = @, so that whenever a point 7,(p), (p € 4) is in N,,
p must be in the first component of N,,. Hence

X_,nN,, =n(4 o [R*(M n D)])
15.13 e .
(15.13) = m(R™(D')— S R(K))

using (15.5) and (15.12). Relation (15.11) follows from (15.13)
since t.m,(p) = I(p) for pe A. Cf. (11.11).
Now the union of the sets X, fort = —1,0, 1, .. .,1is X, so that
D, X, 0 Np) = tN,) = (D)
using (15.9), (15.10) and (15.11). This establishes the lemma.
The space Ext X is topologized giving the points of Ext X—P
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= X their neighborhoods in X and taking the ensemble (NV,,)
as a base for the neighborhoods of P. The reader will verify that
Ext X is a Hausdorff space.

CoroLLARY 15.1. The mapping t¢ is a homeomorphism of Ext X
onto &.

Since t is a homeomorphism of X onto £—¢ it is sufficient to
note that

t{N,)) = Z™(D) m=0,1,...)

and that R™(2) is a base for neighborhoods of £ relative to &.

The neighborhoods N}, of P*. As a base for the neighborhoods of
P* relative to Ext X* we shall take the subsets N} of Ext X* of
the form N*' U P* where

(15.14) N* = [R™(D'), @, X*] m=1,2,...)

Before coming to the fundamental Lemma 15.2, we establish two
relations.

(15.15)’ T,(K) n R™(D') = T,(K). (m <r —1)
(15.15)" T,(K) n R™(D') = @. (m =r+1)
Proor oF (15.15). From (9.6)

T(K)ClInt [K U R(K)]CD’

By definition T,,, = R'T, so that for r > 0
T,(K) C R-Y(D’) C R™(D’) (m <r—1)

establishing (15.15)'. Further

T,(K) C Int[R™Y(K) U R'(K)]

The last set does not intersect R"+}(D’) and hence does not inter-
sect R™(D') for m = r+1. Thus (15.15)" holds.
By definition (10.21)

(15.16) Y, = [T(K—G), T,(#), X] (r=12...)
Concerning Y, we shall prove the following

(15.17) Y,AnN, =Y, (m <r—1)
(15.17)" Y,AnN, =0 (m =r+1)

ProoF oF (15.17)’. To establish (15.17)" we show that the two
components of Y, relative to X are included in the corresponding
components of N*. Lemma 9.2 implies that

(15.18) T, (K—G) ngo R*G) =0
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It follows then from (15.15)" that

(15.19) T,(K—G)C R™(D’) — ,§m R*(G) (m < r—1)
The right member of (15.19) is the first component of N,, as given
by (15.5). The second component of Y, is

(15.20) T ()= RYH") u.%'(%’)cp\?m RP(H)

provided m =< r—1. Since the right member of (15.20) is the second
component of N,,, (15.17)" follows.

Proor oF (15.17)". If m = r+1 it follows from (15.15)"" that
the members of (15.19) do not intersect, nor do the extreme
members of (15.20). Since Y, is u-represented (15.17)" follows.

The mapping s of X onto X* defined in § 18 will be given an
extension s° over Ext X by setting s¢(P) = P*. With this under-
stood the basic lemma on (N}) follows.

LEMMA 15.2. N}, Cs*(N,)CN}_, (m=2,8,...)

The second inclusion. We shall introduce the set

(15.21) L, = R™D')— O T,(K) (m=1,2,...)

C[E—-P— r§1 T,K)—H'] =L [Cf. (10.28)]

That L, C L is implied by the relations
R"D'YCE—P; H nR™D')=0 (m > 0)
T,K)nR™D')=@ (p=1,..,m—1)(m>1)

of which the last follows from (15.15)". Noting that for m = 0,
1,...
(15.22) N,D. 8+1 Y, [by (15.17)']

we shall show that in accord with Lemma 1.4
(15.28) N/ — ,.S?,,. Y, = [Ln, @, X] (m > 0)

Proor oF (15.28). One verifies the fact that the second compo-
nent of the left member of (15.23) is @ by showing that

[2nd comp N,,] C [2nd comp p§m Y,l, (m > 0)
recalling that the second component of Y, is I ().
It follows that (15.28) holds if
(1524)  [Ist comp N,,]—[lst comp U ¥,] =L, (m>0)
or equivalently, using (15.5) and (15.16), if
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(15.25)  [R™(D')— O R'(G)]— [, [T(K—G)] =L,

That (15.25) holds is verified with the aid of (9.20). Hence (15.23)
is valid.
It follows from (15.28) that

(15.26) N.CI ,§,.. Y,]v [L., 9, X] (m > 0)

We now apply s to the mempbers of (15.26). Recall that L,, C L, so
that s.n(L,) = n7(L,) in accord with (18.24), and that for
p>0

s(Y,) = af . T,(K) [by (18.22)].
Hence (15.26) and (15.15)" imply that
s(Ny,) Caf[ U T,(K) v L,] Ca. R™YD') = N3,

for m =92,8,....
This establishes the second inclusion in the lemma.
The first inclusion. It follows from (15.22) and (15.28) that

N. D [p-§+1 Y,] U [Ln, @, X]
s(N,) D[ O T,K)uL,] [by (18.22), (18.37)]

= nf[Rm(D’)—Tm(k)] Daf . R™Y(D’) = NE,,
by (15.15), (15.21)]
since
R™(D') D R™+Y{(D'); Tm(f{) N R™Y(D")y =@ [by (15.15)"]

The first inclusion in the lemma is thereby established.
CoROLLARY 15.2. The mapping s° is a homeomorphism of Ext X
onto Ext X*,
An extenston D® of D. Observe that

X} = (M* n D, #*, X*] [Cf. (14.10)]
is a subset of X* which includes N}, m > 0, since
(15.27) M* A D = D'—G' D R™(D’) (m > 0)

It is therefore appropriate to extend X3 by adding the ideal point
P* ¢ Ext X to X};. We denote this extension by Ext X}, and
extend the topology of X} by regarding Ext X} as a subset of
Ext X*. Let the C*-diffeomorphism D : X} — Y7 of Lemma 14.1
be given an extension over Ext X} by setting

(15.28) D¢(P*) = P** =nf . a(P)e Yy [Cf.(14.12)]
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We complete Lemma 14.1 by the following.

LemMA 15.3. The extension D° of D is a homeomorphism

D¢ : Ext X} — Y§ [onto Y{].

Let p be given in R™(D’), m > 0. Since p is thenin M* ~ D,
7§ (p) is in X}, and in accord with Lemma 14.2
(15.29) D.x}(p) =} .a(p) e Y§
Since #f (p) represents an arbitrary point in N}’

D'(NY)=af.a.R™D').

Taken with (15.28) this gives
(15.30) D*(N}) = af .a . R™(D) (m=1,2,...)

The base (N) for neighborhoods of P* relative to X3 thus has for
image the ensemble (15.80). This ensemble is clearly a base for
neighborhoods of P**, relative to Y.

The lemma follows.

§ 16. Proof of Theorem 0.1.

It follows from Corollary 4.2 and Lemmas 6.1 and 8.1 that the
first class of problems can be “effectively’’ mapped into the class
of problems of type K. To establish the existence of a solution of
Theorem 0.1, it is therefore sufficient to establish a solution of a
problem.

(16.1) [w’ HI: ‘%I]K

of type K. Such a problem is defined by means of Lemma 7.1. As
observed in a Note in § 7 no generality is lost if the n-cube K on
which the problem (16.1) is defined is the special n-cube

(16.2) (-1=s2,=<1) (t=1,...,mn)
introduced in (9.1). We continue with a lemma.

LemMA 16.1. In order that the problem (16.1) admits a solution it is
sufficient that there exists a Cg’-diffeomorphism

g:H ->Y§ [Cf. (12.8)]

onto the subset Y§ of X* such that for some compact subset 2 of
H' which includes G’

(16.3) 7y (p) = 8(p) (pe H—Q)

Assuming that g exists we shall define a solution 4, of problem
(16.1). Recall that
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Y = [H'—G', #',X*] = af(#’) [Cf.(18.11)]
We can then define 4, by the condition
(16.4) 7y - Au(p) = 8(p) (peH')

So defined 4, is a Cg’-diffeomorphism of H’ onto J#’.

It remains to show that 1, satisfies the boundary condition
(7.18) associated with the problem (16.1). It is thereby sufficient
to show that

(16.5) 44(p) = o(p) (peH'—Q)
for the set Q2 given in Lemma 16.1. Now
(16.6) 7y . o(p) = my . p*(p) = af(p) [p e H'—G' = W*]

by virtue of the definitions of =}, ny, and u*. From (16.8) and
(16.4) we find that

(16.7) w3 - Ay(p) = i (p) (peH'—Q)
A comparison of (16.6) and (16.7) shows that (16.5) holds.

This establishes the lemma.

In terms of the mappings t of § 11, s of § 18 and of I we shall
define a mapping k.

The mapping k. A C*-diffeomorphism

(16.8) k:E—P > X* [onto X*]
results from the sequence of C®-diffeomorphisms,

(16.9) E—P —» -2 - X —» X¥*,

defined by I, t~1, s respectively. The C*-diffeomorphism
(16.10) k=st1]

thereby maps E—P onto X*,

The n-interval Z. We have chosen D in § 14. Referring to (14.2)
let o be a constant with 0 < ¢ < 1 and with |¢—1| so small that
D,, like D, includes K and the point P, and a(D,) D G'. Such a
choice of ¢ is possible since a(D) = H' D G'. The interval D,
is of the form

(-l <2 <c) (t=1,...,mn)
With 7 a constant such that —1 <7 < 0 we introduce the
n-interval
(16.11) Z:m=x; =¢) (t=1,...,n)
Setting { = D,— Z we suppose -1 is so small a positive constant
that
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(16.11a) w(p) = I(p) (pelnK]
(16.11b) a(Z)d G’
(16.11c) {AR(K)=0 (r > 0).
Let y be the complement of { N K in D—Z so that
(16.12) D—Z=(nK)uy.
One sees that y is a subset of each of the sets
A= E——P—-r(?o R(K) [Cf. (10.16)]
L=E—P— '&:1 T, (K)—H’ [Cf. (10.28)]

For our purposes the essential properties of Z may be summarized

as follows.
(o) The n-interval Z, given by (16.11) is closed in E, contains P,
is a subset of D, and is such that (16.11a), (16.11b) and (16.12)
hold with y CA n L.

LeEMMA 16.2. The mapping k is a C®-diffeomorphism of E— P
onto X* such that

(a) k[(D—Z2)=af|(D—-2)

(b) k(D') = [M* n D, #*, X*] = X}.

Proof of (a). It follows from Lemma 11.1 that for pe 4
(16.13)’ t1. I(p) = ny(p).

This relation is also valid for p € { N K in accord with Lemma, 11.1,
since for such p, w(p) = I(p). It follows from Lemma 13.1 that

(16.13)" s. m(p) = = (p) [pPeL v (¢ nK)).
The relation (16.13)" follows from (16.37) for p € L. To establish
(16.18)"" for pel n K observe that

K=(nLuEnH)u (K nT(K))

in accord with the formula for L. For p not in L but in { n f{, P
cannot be in G, since w(p) is defined. Cf. (16.11a). There thus
remain two cases: Case I, p e H'—G’; Case II, p = T(q), q ¢ K.
In Case I, (18.83) serves to establish (16.13)". In case II, Lemma
9.4 implies that ¢ e { n K, hence w(g) = I(q), so that ¢ is not in G.
With ¢ thus in K—G, (18.835) applies to # = p with w(g) = I(q),
and shows that (16.13)"" holds for the given p.

Thus equations (16.13) both hold for pey since y C A4 n L,
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and also hold for p € ¢{ N K. By virtue of (16.12) equations (16.13)
both hold for p e D—Z, so that for such p, k(p) = nf(p). This
establishes (a).

Proof of (b). Note that E—D is included both in 4 and in L,
so that both equations (16.18) hold for

pe E—D. Now E—D = M*—D' so that

(16.14) k(M*—D') = af(M*—D’)
Since M*—D’ does not meet W*, the set
(16.15) =af(M*—D’') = [M*—D’, @, X*] = k(M*—D’)
is a u*-represented subset of X*. We have successively

D'y (M*-D') = E—P,

k(D') uk(M*—D') = k(E—P) = X*,

k(D') = X*—[M*—D’, @, X*] = X},
using (16.15) and Cor. 1.4. This establishes (b) in the lemma.

If use is made of Corollaries 15.1 and 15.2, then on setting

(16.16) ke — se(t*)-11,

we have the following lemma.

LeEmMA 16.8. The C*®-diffeomorphism k of E— P onto X* admits
an extension k® which is a C*-diffeomorphism of E onto Ext X* and
in which
(16.17) k¢(P) = s¢(P) = P*.

We refer to the C*-diffeomorphism a of D onto H' defined in
§ 14, to the point a(P) ¢ H'—G’ of (14.9), and to P** = zf . a(P)
of (14.12)" and prove the following lemma.

LEMMA 16.4. There exists a Cy-diffeomorphism g, of H' onto
Y, of the general nature of § of Lemma 16.1, and in particular such
that 8p defines a C®-diffeomorphism of H'—a(P) onto Yy —P**,

Recall that the inverse of a is a C*-diffeomorphism of H’ onto
D, that k¢|D is a CP-diffeomorphism of D onto Ext X} (Lemmas
(16.2, 16.3), and D¢ is a CP-diffeomorphism of Ext X} onto Y§
(Lemmas 14.1, 15.8) such that the mapping,

(16.18) g, =D . ke.(a)l: H > Y¥
is a CP-diffeomorphism of H’ onto Yg. In particular
(16.19) a(P) - P — P* > P** [Cf. (15.28), (16.17)]

under g,. We shall show that g, satisfies the lemma.
Restricted to H'—a(P), g, maps
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[H'—a(P)] > D’ - X} — [Y§—P**]
as a C*®-diffeomorphism, in accord with the definition of a, and
with Lemmas 16.2 and 14.1. It remains to choose a compact
subset 2 of H' with 2 D G’, such that the boundary condition
(16.8) is satisfied.

The choice of 2. With the n-interval Z given by (16.11) and
conditioned as in («), set 2 = a(Z). The set 2 is compact. More-
over 2 D G’ in accord with (16.11b). Since a(D) = H’, by (14.3)
and (14.6), and D D Z,

H'DQ2D2G, H—-Q =a(D-2).
By definition of g,
(16.19)  gp(p)=D.k.aY(p)=D.xf.a(p) [peH —2]

since a~(p) is in D—Z and Lemma 16.2(a) applies. Since a
reduces to the identity on G’ [Cf. (14.7)], it follows from (16.11Db)
that Z O G', and hence D—Z C M* n D. With a-1(p) e M* n D,
p in (14.27)’ can be replaced by a~!(p) so that the last member of
(16.19)'
reduces to
nf .a.a’l(p) = nf(p) (peH'—Q)

Thus the boundary condition (16.3) is satisfied and Lemma 16.4 is
established.

Lemma 16.4 combined with Lemma 16.1 gives us the fundamen-
tal corollary.

CoroLLARY 16.1. The problem (16.1) admits a solution tmplying
the existence of a solution of each problem of the first class.

As defined in (16.4) the solution 4, of problem (16.1) is such that

(16.20) w3 . Au(p) = 8p(p) = D° . k*. a7Y(p) (peH')
The sequence (16.19) shows that g, and hence 4,, may fail to be
of class C* at a(P) e H'—G’. Under 1, as represented in (16.20),

H - D —>Ext X5 > Yy > [Cf. (18.11)]

and in particular the exceptional point a(P) is transformed as
follows:
a(P) > P - P* > P** > o, a(P)

This is in agreement with (16.19) up to the final image. To verify
this final image recall that

(73)1. ) (p) = w(p) (p e W*)

since u* = w|W*, The final image of a(P) is
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(=) 1(P**) = (nF) L. af.a(P) = ».a(P) [Cf. (14.12)]
since a(P) is in W*. [Cf. (14.9)].

It is not difficult to show that the mapping A4,, affirmed to
exist in Theorem 0.1, may be chosen so that the “‘exceptional
point” at which 4, may fail to be differentiable may be chosen
arbitrarily on the interior of S,_,, and its image under A4 , arbitrarily
on the interior of .#

n—1y
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