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Location of Zeros of Infrapolynomials.1
by

T. S. Motzkin and J. L. Walsh

§ 1. Introduction

If E is an arbitrary point set of the z-plane, the polynomial
q(z) = z"-f- ... is an underpolynomial of p(z) ~ zn+... provided
we have

(1.1) Iq(z)1  ip(z)l on E where p(z) ~ 0,

q(z) = p(z) on E where p(z) = 0. If p(z) has no underpolynomial
on E it is called an infrapolynomial on E.
The importance of infrapolynomials arises from the fact that the

polynomials p(z) .. Z-+.. of given degree n of minimum norm.
llp(Z)II,

are all infrapolynomials on E. In particular the orthogonal poly--
nomials p (z ) ~ zn+... are infrapolynomials on E. The asymptotic
properties of polynomials of minimum norm are closely associated
with the logarithmic capacity of E and with Green’s function for
the infinite component of the complement of E. Best approxima-
tion to an arbitrary function on a set E of n+2 points by a poly-
nomial of degree n is equivalent to the problem of determining the
polynomial zn+1+... of minimum norm on E, where approxima-
tion is measured in an appropriate manner and norm is defined
in the corresponding manner.

In a recent paper [8] the present writers have studied the
totality of infrapolynomials of given degree on a bounded set E,
with especial reference to such properties as closure, connected-
ness, finite generation (i.e. preservation of the property of being an
infrapolynomial on a finite subset of E), convexity, and for a real

1) Presented to the American Mathematical Society, December 27, 1956. Work
supported (in part) by the Office of Naval Research, U. S. Navy, and by the Office
of Scientific Research, Air Research and Development Command.
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set E oscillation or separation properties. In the present paper we
investigate the geometric location of zeros (and of the centers of
gravity of zéros ) of infrapolynomials on both bounded and unbound-
ed sets. The contrast between these two kinds of sets is great and
our methods involve the detailed study of the behavior of un-
bounded sets in the neighborhood of infinity, with especial re-
ference to the level loci of the modulus of a rational function.

Properties of convexity of the set E play a major role. Fejér has
remarked that all zeros of an infrapolynomial zn+... on a set E
(containing at least n points) lie in the convex hull of E, a remark
to which we frequently refer. It is readily shown [8, §6] that if E is
a closed bounded set (of at least n + 1 points), the locus of zeros of
all infrapolynomials of degree n on E is precisely the convex hull of
E. Thus it is not to be expected that one can go beyond Fejér’s re-
mark in determining regions of the plane that are entirely free of
zeros of infrapolynomials. It is for this reason that we emphasize
the behavior of the center of gravity of such zeros, or (for instance)
the determination of regions which can contain at most one zero.
For a closed bounded set there is identity between weak and

strong infrapolynomials, but that is not the case for unbounded
sets; we shall discuss this question in more detail on another occa-
sion. But here we consider the distinction as an important one. By
a weak underpolynomial q(z) of p(z) we mean one for which (1.1)
becomes a weak inequality; by a strong infrapolynomial we mean
an infrapolynomial which has even no weak underpolynomial.

Let us indicate in more detail the contents of the present paper.
In §2 we discuss bounded generation of infrapolynomials and also
finite generation on an unbounded set. In §3 we study the behavior
near infinity of various point sets, especially with regard to the
existence on them of noninfrapolynomials. Sets containing the
boundaries of their convex hulls turn out to be significant and are
considered in §4. Sets consisting of a straight line and a point plus
a straight line are treated in §§5 and 6, and applications in §7.
Subsets of circular discs conclude the paper with §8. We have full
information on the totality of infrapolynomials for some sets:
1) collinear sets [8, §§8, 9]; 2) certain sets containing the bounda-
ries of their convex hulls; 3) an infinite strip plus a point. Suffi-
cient conditions for infrapolynomials on other sets are given in § 3
and necessary conditions in §§7 and 8.
The writers have further results on the location of zeros of infra-

polynomials on a finite set, which are reserved for a later paper.
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§ 2. Sets and Subsets

Here we consider bounded generation of infrapolynomials and
also generation on the boundary of a given set. We say that an
infrapolynomial on an unbounded set E is boundedly generated if
it is also an infrapolynomial on some bounded subset of E.
THEOREM 2.1. Suppose ETc is a bounded set containing at least

n+1 points and that the sequence Ek is monotonic increasing with
limit E. Il p(z) ~ zll+... is a polynomial, there exists a sequence of
polynomials qk(z) ~ zn+... respectively infrapolynomials on Ek
whose limit is a weak underpolynomial po(z) of p(z) on E.
The sets Ek need not be closed. If E is arbitrary, containing at

least n+1 points, such a sequence Ek exists.
By [8, Theorem 8] there exists a weak underpolynomial Pk(Z) of

p(z) on Ek which is an infrapolynomial on Ek: we have
|pk(z)| s Ip(z)1 on Ek; here Pk(Z) ~ p(z) is not excluded. The Pk(Z)
are uniformly bounded on El and hence on any bounded set of the
plane. There exists at least one limit polynomial po(z) ~ zll+...,
the limit of some subsequence pkj(z), where kl = 1. We now define
qk(z) as Pk¡(Z), for kj  k  kj+1’ and the sequence qk(z) satisfies
the required conditions.

There follows at once the
COROLLARY. Il p(z) in Theorem 2.1 is a strong infrapolynomial on

E, it is the limit of infrapolynomials qk(Z) on the respective sets Ek.
THEOREM 2.2. Let E be a closed set and let F be the locus o f ’

centers o f gravity o f the zeros o f all proper boundedly generated in f ra-
polynomials o f f ixed degree n on E. Il the center o f gravity Z of the
zeros of such a polynomial p(z) lies on the boundary C of F, then p(z)
is a finitely generated infrapolynomial on the boundary B o f E.

If F or its boundary is empty, there is nothing to prove.
The polynomial p(z) is [5] finitely generated and a factor of an

infrapolynomial 

on the set {z1, z2, ..., zr+1}, n ~ r ~ 2n.
Let the zeros of q(z) be CI, C2, ..., 03B6r, and those of p(z) be

03B61, C2, ..., 03B6n. For the given Âl, Â2, ...1 03BBr+1, z2, Z3, ..., zr+1, and
continuously varying zl, we define q(z) by (2.1) and still denote the
zeros of q(z) by CI, C2, ..., 03B6r; for z, near its original position these
zeros are determined by continuity from their original positions.
We show that if Z = (03B61+03B62+...+03B6n)/n lies on C then z, lies on B.



53

The function Z = Z(zl) is analytic (except perhaps for branch
points) for all finite values of zl, for the 03B6k lie in the convex hull of
the z;, and this function (which we shall show to be not identically
constant) maps a complete neighborhood of a value zi onto a com-
plete neighborhood of the corresponding value Z. If zl does not lie
on B, Z does not lie on C, contrary to our assumption.

It remains to show Z(z1) ~ const. Since the numbers are all
positive and (as we now assume) z1 does not coincide with any
other xk, z in (2.1) is different from the zk, and since co(z) ~ 0 the
value zl = zl(z) is uniquely determined by q(z)/03C9(z) = 0. Thus
q(z) = 0 can be written 

where s(z) and t(z) are polynomials of respective degrees r-1 and
r, and where s(zo) = t(zo) = 0 is impossible.
Such an equation in z as (2.2) can have no multiple zero z = z(k),

except for a finite number of values z(k)1 of zl. For a multiple zero z
of (2.2) implies z1s’(z)+t’(z) = 0, that is to say

If equation (2.3) were an identity we should have s(z)/t(z) ==
const, an obvious impossibility. To each of the finitely many roots
of (2.3) corresponds but a single value of z1.
We choose a value Zl = z*1 different from z2, z3, ..., zr+1 and

from all z(k)1. For this value of Zl we denote the zeros of q(z) by
03B6*1, C:, ..., 03B6*r. When z, traces any closed path commencing at z*1,
avoiding z2, Z3, ..., zr+1 and the z(k)1, and returning to zi, the zeros
CI, C2, ..., Cr commence at 03B6*1, 03B6*2 , ..., 03B6*r and return to (say)
03B6*p1, ... 03B6*pr, where (pi, p2, ..., pr) is a permutation p of (1, 2,
..., r). The g permutations p for all admissible paths form a group
G. A closed path for z, commencing at z*1 can be defined by requir-
ing that C1 commence at ÇÎ and describe a suitable path ter-
minating in Ci, since (2.2) determines z, = zl(z) uniquely. Thus G
is transitive.

If such a sum as 03B61+03B62+...03B6n were constant, then also every
sum 03B6p1+03B6p2+...+03B6pn would be constant, as would be the

sum 03A3p(03B6p1+03B6p2 +...+C1’ ) over all g permutations of such sums.
Bur 03A3p03B6pk is independent of k, namely

The sum 03B61+03B62+...+03B6r is the negative of the coefficient of zr-1
in (2.2), which contains z, and is not identically constant. This
completes the proof.
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THEOREM 2.3. If E is a closed set, then every (weak or strong)
infrapolynomial p(z) on E with no zero on E is also a (weak or strong)
in f rapolynomial on the boundary B o f E.

If q(z) is a weak or strong underpolynomial of p(z) on B, the
quotient q(z)/p(z) is not greater than unity or less than unity on B
respectively. The quotient is analytic on E, hence by the maximum
principle not greater than unity or less than unity also on E
respectively.

§ 3. Sets bounded or restricted at infinity
The behavior in the neighborhood of infinity of an unbounded

set E may be sufficient to ensure that certain polynomials are
strong infrapolynomials on E.

1 f E is a closed set and il there exists a nonconstant rational /unc-
tion

such that |f(z)|  1 on E then E is called a substar of degree n. 2) As
the reader may verify, in the neighborhood of infinity the locus
|f(z)| = 1, f(z) = 1+A0z-m+..., A o =1= 0, 1  m  n, has m con-
current asymptotes which make successively equal angles with
each other, and the locus |f(z) ~ 1 consists of m alternate curvi-
linear sectors bounded by the branches of |f(z)| = 1; this locus
|f(z)| ç 1 is roughly starlike in shape, and such a locus is to con-
tain E if E is a substar.

This definition of substar is useful in considering q(z) as an
underpolynomial of p (z ) on a given set E. But if q(z) in an
underpolynomial of p(z), we know merely q(z) = p(z) = 0 at an
isolated point of E where p(z) == 0; we cannot deduce |f(z)| ~ 1.
Nevertheless it is possible to adjoin such isolated points (finite in
number) to a known substar.
THEOREM 3.1. Il E is a substar of degree n and zl, Z2, ..., zv are

a finite number of points forming a set El, then E+ El is a substar
of degree n.

In the plane of w = f(z), the image of E lies in the disc Dl:
Iwl ~ 1. There exists an infinité disc D2 : |w-(1+03B5)| ~ 8(&#x3E; 0)
which contains the images of both E and El. A suitable linear

2 ) If this definition is modified so that f(~) is not necessarily unity, a wholly
different circle of ideas appears. This new situation has been considered by S.
Bernstein [1, p. 56; 2] and de Bruijn [3].
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transformation maps D. onto Dl, leaving w = 1 invariant, 3 ) and
this linear transformation of f(z) defines a rational function g(z)
of form (3.1) such that |g(z) ~ 1 on E+E1.

In Theorem 3.1 it is not essential to assume E, finite, but it is
sufficient to assume for some e (&#x3E; 0) the inequality |f(z)-(1+03B5)|
&#x3E; E on El. In particular if the part of a closed set E in the neigh-
borhood of infinity is a substar of degree n, then with the deletion
from E of a finite number of arbitrarily small discs the residual
subset of E is also a substar of degree n.

If there exists a sequence of points z,, in an arbitrary closed set
E such that limk~~(zk/|zk|) = ei03B8, IZkl ~ oo, we say that eie is a
direction point of E. Such direction points form a closed subset a
of the unit circumference and their behavior may be sufficient to

imply that E is not a substar.
THEOREM 3.2. A closed unbounded set E is not a substar under

either o f the following conditions:
1 ) the measure of 03C3 is greater than n;
2 ) (J1 cannot be a set o f direction points o f a substar, where a con-

tains an arc o f length greater than 03C0/(k+1) and 03C31 is the union of a
and an arc o f length less than 03C0/03BA whose endpoints belong to a.
Of course the procedure indicated in 2) can be continued by

iteration. If E is a substar, a must lie on a set A of alternate arcs of
the unit circumference, which is divided into 2m equal arcs. Under
the conditions of 2) we have m  k+1 if E is a substar, and an arc
of length less than Jr jk whose endpoints belong to a must lie wholly
in A. 
Theorem 3.2 gives sufficient but not necessary conditions that

not belong to a substar; this is shown by the example that a con-
sists of arcs 77°, 5°, 5° separated by three arcs of 91° each. A
second example, where 03C3 is countably infinite and hence of measure
zero, is that a consists of the points eio, 0 = 0, yr, ±03C0/2k (k =
1, 2, ... ).

3) Also a suitable linear transformation maps Dl onto the halfplane u ~ 1

(w = u + iv), leaving w = 1 invariant. This linear transformation defines a rational
function h(z) of form (3.1) such that 91 [h(z)] S 1, h( oo ) = 1 on B. Then the function

bas the property R[1-h(z)] ~ 0 on E, 1-h( oo ) = 0; the existence of such a func-
tion h(x) is necessary and sufficient that E be a substar.

If m = n for f(z) defined by (3.1), the locus if(z)l = 1 is a stelloid, a type studied
by F. Lucas.



56

We remark that every finite set a belongs to a substar. Let the
direction points of E be the exponentials of 2niq;;. By Dirichlet’s
theorem [6, p. 169] there exists an integer m such that all mq, differ
from integers by less than 1/4. Then the numbers e203C0im~j lies on the
right half of the unit circumference and the numbers e203C0i~j lie on a
set A of alternate arcs.

If, for given E, a lies interior to a set A of alternate arcs of the
unit circumferencè, which is divided into 2m equal arcs, then the
part ôf E in a suitable neighborhood of infinity is a substar. How-
ever, if a merely lies in a set A of such closed arcs, supplementary
conditions are here necessary.
THEOREM 3.3. Let the set a of direction points o f a closed set E be

a set A o f alternate closed arcs o f the unit circumference, which is
divided into m equal arcs. Then a necessary condition that the part of
E in some neighborhood o f infinity be a substar is that the totality o f
distances be bounded, from points o f E to the set B consisting o f all
hallline.9 from 0 through points of A.

Il a contains A as a proper subset, then E is not a substar in a
neighborhood of infinity.

If a contains A, the number m pertaining to A is the only pos-
sible number characteristic of the locus If(z)1 = 1, f(z) ~ 1+
A0z-m+... used in defining "substar"; the endpoints of A give
the only possible directions of asymptotes. Given e (&#x3E; 0), for Izi
sufficiently large the distance from a possible locus 1/(z)l = 1 to
one of its asymptotes is less than e; the distance from an asymptote
to B is bounded, so the distance from the set |f(z)| ~1 and hence from
E to B is bounded. In particular a can contain no point not in A.
A relation of substars to infrapolynomials is given by
THEOREM 3.4. Let E be a closed set and let F be a union o f com-

ponents o f the complement o f E such that E+F is not a substar o f
degree n. Then every polynomial p(z) ~ zn+... with no zero on F
or at isolated points of the boundary B of F is a strong infrapoly-
nomial on E.

If q(z) ~ zn+...~p(z) is a weak underpolynomial of p(z) on
E, consider f(z) ~ q(z)/p(z). On E and hence on B (contained in
E) we have |f(z)|  1 except perhaps at the zeros of p(z); in the
zeros of p(z) on B (necessarily at non-isolated points of B) we have
also If(z)1 ~ 1. Thus in F we have by the principle of maximum
modulus 1/(z)l  1. On E+F except perhaps at zeros of p(z) we
have If(z)1 S 1. Hence E+F with the possible deletion of some
zeros of p(z) is a substar and by Theorem 3.1 the set E + F is also
a substar of degree n contrary to hypothesis.
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Illustrations of Theorem 3.4 are that E is a parabola or a hyper-
bola of eccentricity less than 2½; we choose F as the exterior of the
curve.

A special case of Theorem 3.4 deserves explicit statement:
THEOREM 3.5. Let E be a elosed bounded set and let F be the un-

bounded component of the complement of E. Then every polynomial
zn+... with no zeros on F or at isolated points of the boundary of F
is an infrapolynomial on E.

§ 4. Sets containing the, boundaries of their convex hulls

If a closed set E is convex the situation is relatively simple:
THEOREM 4.1. I f E is a closed convex set containing more than one

point, the set o f in f rapolynomials o f degree n on E is precisely the set
of polynomials p(z) ~ zn+... having all their zeros on E.
Every infrapolynomial on E has all its zeros on E (Fejér). Con-

versely if p(z) has all its zeros on E, each zero is a zero of the third
kind, namely a zero at a limit point of E, so p(z) is an infrapoly-
nomial on E, by [8, Theorem 2].

If all points of a closed set E (containing more than one point)
are collinear and if E contains the boundary of its convex hull, E
must itself be convex, namely a finite closed interval, a closed half-
line or a line; the infrapolynomials are detailed in Theorem 4.1.

If the points of E are not collinear and if E contains the boun-
dary of its convex hull, there are the following cases: (i) E is bound-
ed ; (ii) E is unbounded and contained in a sector of angle less than
n; (iii) the convex hull of E is a parallel strip; (iv) the convex hull
of E is a halfplane; (v) the convex hull of E is the entire plane.
THEOREM 4.2. Il E is a bounded closed noncollinear set which

contains the boundary of its convex hull H, then the set of infrapoly-
nomials of degree n on E is precisely the set of infrapolynomials of
degree n on H.
Every infrapolynomial on E or H has its zeros on H (Fejér).

Conversely, every polynomial zn+... with all its zeros on H is
(Theorem 3.5) an infrapolynomial on both E and H.
THEOREM 4.3. If E is a noncollinear closed set which contains the

boundary o f its convex hull H, and i f H is a parallel strip or halfplane
or is contained in a sector of angle less than n, then the conclusion of
Theorem 4.2 holds.
Proof as for Theorem 4.2, using Theorem 3.4 in conjunction with

Theorems 3.2 and 3.3.

We have thus established the conclusion of Theorem 4.2 in the
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cases (i)-(iv) enumerated before. This conclusion is not valid in
the case (v). However, we have
THEOREM 4.4. 1 f E is a closed set which is not a substar of degree

n then every polynomial zn+... is a strong in f rapolynomial on E.
Theorem 4.4 follows from the definition of substar in conjunc-

tion with Theorem 3.1 and also from Theorem 3.4 if F is chosen
the null set. Every set E of Theorem 4.4 has the entire plane as its
convex hull, for if the convex hull of a set E is not the entire plane
E lies in some halfplane, so E is a substar of degree unity and of
every higher degree.

The converse of Theorem 4.4 is clearly true, that if every poly-
nomial zn+... is a strong infrapolynomial on a closed set E, then E
is not a substar o f degree n.

If E is a closed set having the entire plane as its convex hull,
and is a substar of degree n (&#x3E; 1), the totality of infrapolynomials
zn+... on E may be quite complicated in character; indeed the
set of infrapolynomials need not be closed, although [8, Theorem
3] this set is closed if E is an arbitrary bounded set.
THEOREM 4.5. If E is the set xy = 0, the set of (strong or weak)

in f rapolynomials on E o f degree two is not closed; this set consists o f
all polynomials 22 + az + b, a =1= 0 and of the polynomials z2-f-b, b real.
The polynomial xz+b, b real, has only zeros of the third kind,

hence is a strong infrapolynomial on E.
Suppose the polynomial p(z) - z2+az+b to have the under-

polynomial q(z) ~ z2+a1z+b1 fl p(z) on E. Then we write

If a1 ~ a the locus |f(z)| = 1 can have but one asymptote, so near
infinity one or the other of the lines x = 0, y = 0 lies partly in
|f(z)|  1 and partly in If(z)1 &#x3E; 1, which is impossible. If a1 = a,
equation (4.1) gives us f(z) ~ 1+(b1-b)/(z2+az+b)+..., b1 =1= b,
and the directions of the two asymptotes of the locus |f(z)| = 1, a
hyperbola with center -a/2, are not the directions of the lines Ox
and Oy unless we have

thus (4.2) and a = 0 are necessary. The polynomial z2+az+b,
a ~ 0 has no underpolynomial.

If the conditions (4.2) and a = 0 are fulfilled, the locus |f(z)| = 1
is a hyperbola with the axes as asymptotes. Consequently either the
locus |f(z)| ~ 1 or the locus If(z)1 ~ 1 must contain E, and the one
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or the other occurs according to which locus contains 0, namely
according as ibllbi ~ 1 or |b1/b| ~ 1. Thus the polynomial z2+b has
the underpolynomial z2+b1 provided merely |b1/b|  1 and

R(b1-b) = 0. Theorem 4.5 is established.
It is striking that each of the polynomials z2+i and z2-i is an

underpolynomial of the other.

§ 5. The straight line: underpolynomials
THEOREM 5.1. Let E be the axis of reals Ox. Let q(z) = zn+b1zn-1

+... be a zveak underpolynomial of p(z) ~ zn+a1zn-1+... on E.
Then 9t(bl-a¡) = 0. Moreover if all zeros of p(z) lie in y &#x3E; 0, and

if q(z) ~ p(z), then J(b1-a1) &#x3E; 0.

Delete the zeros of p(z) and the corresponding zeros of q(z) on E
(i.e. zeros of the third kind). It is sufficient to prove the result for
the remaining factors, which we continue to denote by p(z) and
q(z) respectively, both of degree n. We set Q(z) = q(z)-p(z)
~ Azn-1+..., A = bl-ai, whence on E: Iq(z)/p(z)1 ~ 1,

Then at every z on E we have either Q(z) = 0 or

We have if A =1= 0 approximately arg [Q(z)/p(z)] = arg [A/z]
when z is numerically large, which if R(A) ~ 0, for z ~ -~ and
z ~ + oo gives a contradiction.
We remark too that if we have Q (z) Azn-m+..., A =1= 0, m

odd, then 9t(A) = 0, namely R(bm-am) = 0. If m here is even, we
deduce merely R(A)  0, R(bm-am) ~ 0.

If all zeros of p(z) lie in y &#x3E; 0, with Q(z) fl 0, let r denote the
number of distinct real zeros of Q(z) of odd order, r ~ n-1. Since
p(z) =1= 0 on E, arg [Q(z)/p(z)] is continuous on the set E’, namely
E minus the zeros of Q(z) of odd order; as z traces each of the r + 1
components of E’ from left to right, by (5.1 ) the net change in the
argument is at most n, so the total net increase in the argument is

numerically not greater than (r+1)03C0. However, arg [p(z)] in-
creases monotonically in - ~  x  ~ from -nn to zero.
Let ro denote the number of nonreal zeros of Q(z), ro  n - 1 - r;
the total numerical increase in arg [Q(z)] on E’ is not greater than
ron (~ (n-1-r)03C0). Thus the total algebraic increase on E’ of
arg [Q(z)/p(z)] is not greater than -(1+r)03C0, hence must be pre-
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cisely -(1+r)03C0. All real zeros of Q(z) must be of order one and all
other zeros must be in the open upper halfplane. Also all net
changes in arg [Q(z)lp(z)] in any component of E’ must be precise-
ly -n. Consideration of the component bounded by + oo then
shows 3(A) &#x3E; 0 if A =1= 0.

If Qo(z) ~ zro+... has precisely the zeros of Q(z) in the upper
halfplane, the real values of z at which arg [Q(z)/p(z)] jumps from
303C0/2 to n/2, namely the real zeros of Q(z) are precisely the real
points where arg [Qo(z)/p(z)] decreases as it passes through the
values 03C0/2 and -n/2 in alternation (not including eonceivable
points where +x/2 is a maximum or minimum) as z traces E from
left to right. Thus the real zeros of Q(z) are uniquely determined
by the zeros of Qo(z).

It remains to show that A. = 0 is impossible. If A = 0 our pre-
vious discussion shows that r  n-2, ro ~ n-2-r. The total
algebraic increase in arg [Q(z)/p(z)] is not greater than -(r+2)03C0,
which contradicts the fact that the total net increase is numerically
not greater than (r+1)03C0.
The proof as given establishes also the
COROLLARY. Il under the conditions o f the first part of Theorem 5.1

all zeros of p(z) lié in y ~ 0, then we have J(b1-a1) ~ 0. Moreover,
if the zeros of p(z) (~ q (z» are not all real, we have J(b1-a1) &#x3E; 0.

§ 6. Point plus straight line

THEOREM 6.1. Let E be Ox plus i. Il p(z) ~ zn+a1zn-1+... has
its zeros Ci in y &#x3E; 0 and J(-a1)  1, then,p(z) is an infrapoly-
nomial on a finite subset of E consisting o f n+1 points.
For real z we consider arg [Q(z)], where Q(z) = p(z)/(z-i). For

large |z|, arg (z-i) behaves like -1/z, whereas arg [p(z)] behaves
like - 03A3J(03BEi)/z = 3(a1)/z. As z traces the entire x-axis from left to
right, arg (z-Ci) increases continuously from a limit of -03C0 to a
limit of zero, so arg [Q(z)] varies continuously from a limit of
-(n-1)03C0 to à limit of zero; moreover arg [Q(z)] approaches these
two limits’ from below and above respectively. Then for certain
values zl, Z2’ ..., zn we have arg [Q(zk)] = -(n-k)03C0. The poly-
nomials 03C9k(z) ~ 03C9(z)/(z-zk), where 03C9(z) ~ 03A0n0(z-zk), zo = i,
are linearly independent and any polynomial p(z) - all+... can
be expressed as
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(mod 03C0), k =1= 0; consequently (03A3 03BBk = 1) arg Âo = arg [p(zo)]
- arg [cvo(xo)] = 0 (mod n). From this last equation it follows
that the zl, z2, ..., z. are unique; otherwise there exist at least
n+ 1 such points, say two sçts of such points differing only in zl,
which contradicts the unique determination of arg [03C90(z0)] (mod
n).
From the uniqueness of the zk follows the order zl  z2  ...

 zn. We have also (k &#x3E; 0) arg [03C9k(zk)] = arg (zk-i)+(n-k)03C0,
arg Âk = arg [p(zk)/(zk-i)-(n-k)03C0 = 0 (mod 2z), and hence
Âk &#x3E; 0. The number Âo varies continuously with p(z) and since
P(Zk) =1= 0, is never zero. When the zeros of p(z) are symmetric in
Oy, the numbers zk will also be symmetrie, whence arg 03BB0 =

arg [p(1)/mo(1)] = 0 (mod 2n), Âo &#x3E; 0, and thus we have Ao &#x3E; 0

for every p(z).
Since all the 03BBk are positive, p(z) is [7] an infrapolynomial on the

set zo, z1,..., zn.
We shall prove also the

COROLLARY. Il in Theorem 6.1 we replace y &#x3E; 0 by y &#x3E; 0, it

follows that p(z) is an infrapolynomial on a closed bounded subset
o f E.
The factors of p(z) corresponding to zeros of the third kind are

clearly infrapolynomials on a bounded subset of E, namely on a
suitable closed interval of Ox. The remaining factor of p(z) is by
Theorem 6.1 an infrapolynomial on a finite subset of E, so p(z) is
[8, Theorem 2] an infrapolynomial on the set consisting of this
interval of Ox plus the finite subset of E.
THEOREM 6.2. Under the conditions of the Corollary to Theorem 6.1

except that 3( -a¡)  1, p(z) is a strong infrapolynomial on E.
Suppress [8, Theorem 2] the real zeros (if any) of p(z).
We suppose 3( -a¡) = 1, as is allowable by Theorem 6.1. If the

conclusion of Theorem 6.2 is false, there exists a weak underpoly-
nomial q(z) ° zn+b1zn-1+...~p(z) of p(z) on E. By Theorem
5.1 we have 3( -b1)  1.

Consider P(z) == (1-03B5)p(z)+03B5q(z) and Q(z) 1 (1-2e)p(z)-j-
2Eq(z) for e (0  a  1/3) so small that the zeros of P(z) lie in
y &#x3E; 0. Then Q (z) is a weak underpolynomial of P(z) on E; for
w = 0 lies in the closed half of the w-plane containing = q(z)
bounded by the perpendicular bisector of the segment from
w = p(z) to w = q(z), hence = 0 also lies in the closed half of
the w-plane containing = Q(z) bounded by the perpendicular
bisector of the segment from = P(z) to w = Q(z). But this
contradicts Theorem 6.1.
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THEOREM 6.3. Let E be Ox plus the point i. If p(z) - zn+a1zn-1
+... is a boundedly generated proper infrapolynomial on E, then
its roots lie in 0  y  1 and 3( -a¡)  1.

A fundamental polynomial zr+... on a set has only simple
zeros, and those on the given set. A proper polynomial has no zeros
on the given set.
The polynomial p(z) is [5] a factor of some infrapolynomial of

degree r on a subset of r+1 points of E, hence a weighted sum of
fundamental polynomials with positive weights whose sum is uni-
ty. For each fundamental polynomial but one the sum of the pure
imaginary parts of its zeros is unity, and for that one the sum is
zero, whence J(-a1)  1. Since the convex hull of E is 0 S y S 1
and p(z) is proper, it follows that the zeros of p(x) lie in 0  y  1.

COROLLARY. If the word proper is omitted in Theorem 6.3., the
zeros of p(z) lie in 0 ~ y ~ 1 and J(-a1) ~ 1.

If p(i) = 0, we write p(z) ~ q(z)(z-i), where [8, Lemma 5]
q(z) is an infrapolynomial on Ox, so the conclusion of the Corollary
follows.

If p(i) ~ 0, let p(z) be an infrapolynomial on a bounded subset
El of E. We can suppress the zeros of p(z) of the third kind on El;
the remaining factor is a proper infrapolynomial on El and there-
fore on E, and the conclusion of the Corollary follows from Theo-
rem 6.3.

We note that in the Corollary the zeros of p(z) lie in 0 ~ y  1

and we have 3( -il¡)  1 unless p(i) = 0.

THEOREM 6.4. Let E be ox plus the point i. Il p(z) - zn+a1zn-1
--f-... is a (weak or strong) infrapolynomial on E, then its zeros lie in
0 ~ y ~ 1 and J(-a1) ~ 1.

Delete the zeros of p(z) on Ox, without change of notation. Sup-
pose J(-a1) &#x3E; 1, whence n &#x3E; 1. Let the set E’ consist of the line

L : y = e (&#x3E; 0) plus the point i, where e is chosen so small that no
zeros of p(z) lie on or below L, and the sum of the distances of their
zeros from L is greater than 1 - e. By Theorem 2.1 and by the
Corollary to Theorem 6.3 applied to E’, there exists a weak under-
polynomial po(z) ~ zn+b1zn-1 +... of p(z) on E’ for which the
sum of distances of its zeros from L is not greater than 1-e.
Hence we have p0(z) ~ p(z) and J(b1-a1) &#x3E; 0. Consider

f(z) ~ po(z)/p(z) in the halfplane n : y ~ s. On n the function f(z) is
analytic and we have |f(z)| ~ 1. In n, max I/(z)1 is attained only on
the boundary, whence |f(z)|  1 interior to n, in particular on y = 0.
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If ipo(i)l  [p(i)| or if p(i) = 0, then po(z) is a strong under-
polynomial on E, contrary to hypothesis.

If lpo(i)l = lp(i)l ~ 0, we write

so the locus li(z)l = 1 has but one asymptote. This asymptote is
parallel to Ox since it has no point interior to n. The asymptote
depends continuously on f(z) and remains parallel to Ox and dis-
joint from the halfplane y ~ 0 if we modify po(z) slightly without
changing 91(al-bl) = 0. This change can be made so that IPo(i)1 is
decreased, and also so that the entire locus |f(z)| = 1 (which is
originally disjoint from y  0) remains disjoint from y  0.
Theorem 6.4 follows.
The proof just given contains also the proof of the
COROLLARY. Let E be the hal f plane y ~ 0 plus the point i, and let

the zeros of the polynomial p(z) ~ zn+a1zn-1+...,J(-a1) &#x3E; 1, 
lie in the halfplane y ~ 0. Then there exists a strong underpolynomial
of p(z) on E.

§ 7. Point plus strip, and applications

THEOREM 7.1. Let E denote the point set 0 &#x3E; y &#x3E; A (where
0 ~ A ~ - oo ) plus the point i. Then p(z) ~ zn+... is a boundedly
generated in f rapolynomial on E i f and only i f all zeros o f p(z) lie in
1 &#x3E; y ~ A and those zeros in 1 &#x3E; y &#x3E; 0 either have the sum of
ordinates less than unity or consist of the single point i, a simple zero.

If p(z) satisfies the given conditions, the bounded generation
follows by the method of proof of the Corollary to Theorem 6.1.

Conversely, if p(z) is a boundedly generated infrapolynomial on
E, namely an infrapolynomial on a bounded subset El of E, its
zeros lie in the convex hull of El, hence in 1 ~ y ~ A. We assume, as
is allowable without loss of generality, A = -co. If p(i) = 0, the
polynomial p(z)/(z-i) is an infrapolynomial on El-i and its zeros
lie in the convex hull of El-i, hence in 0 ~ y ~ A. If p(i) ~ 0,
we suppress (without change of notation) the factors of p(z) cor-
responding to zeros of p(z) on or below Ox. The sum of ordinates of
the zeros of p(z) is now not greater than unity, by the Corollary to
Theorem 6.4; we may assume this sum equal to unity. By Theorem
2.2 the polynomial p(z) is finitely generated for the boundary of E,
which contradicts Theorem 6.3.
THEOREM 7.2. If the words "boundedly generated" in Theorem 7.1
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are replaced by "weak" or by "strong" the condition is valid i f modi-
fied to read "all the zeros of p(z) lie in 1 &#x3E; y &#x3E; A and those zeros

in 1 ~ y &#x3E; 0 have the sum of ordinates not greater than unity."
If p(z) satisfies the given conditions, it is a strong infrapoly-

nomial on E, as follows from Theorem 6.2 after there are deleted

from p(z) the zeros of the third kind in y  0.

Conversely, if p(z) is a weak infrapolynomial on E, it remains
such a polynomial after deletion of zeros of the third kind in y  0.

The conclusion now follows from the Corollary to Theorem 6.4.
If E is the set of Theorem 7.1 and if the points z1, z2, ..., zn lie

on E, then any polynomial

or any factor of p(z) is [8, Theorem 13, Lemmas 3 and 6] an infrâ-
polynomial on E. Thus we have by the method of proof of Theorem
6.3 the following consequence of Theorem 7.1:
THEOREM .7.3. 1 f the points zl, Z2, ..., zn lie on the set E of

Theorem 7.1, then all zeros o f p(z) defined by (7.1) or o f any factor of
p(z) lie in the strip 1 &#x3E; y &#x3E; A, and those zeros in 1 &#x3E; y &#x3E; 0 have
the sum of ordinates less than unity. Il all zeros of p(z) lie in y ~ 0,
the sum of their ordinates is not greater than 1-Âl, where Zl = i.
Theorem 7.3 is of particular interest because the zeros of p(z)

are precisely the zeros of the derivative of the function Il",
(Z-Zk)Àk, and the zeros of p(z) may be precisely the zeros of the
derivative of a polynomial with the exception of the zeros of the
original polynomial [cf. 7].

Still ànother application of Theorem 7.1 is
THEOREM 7.4. Let E be the union of a point 0 and a convex set El

to whieh 0 is exterior. Il p(z) ~ zn+... is a boundedly generated
in f rapolynomial on E, the center of gravity of the zeros of p(z) lies in
0 or in the convex hull H o f El plus the set E2 f ound by shrinking El
toward 0 in the ratio n: n-1.
A variable line L separating 0 from El separates the zeros of

p(z) (other than perhaps 0 itself) from 0 and the center of gravity
of all zeros of p(z) lies in the halfplane containing El bounded by
the line found by shrinking L toward 0 in the ratio n: n-1. The
center of gravity of all zeros of p(z) also lies in the convex hull of E,
from which the conclusion follows.
We also have the
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COROLLARY-1. If E is the set of Theorem 7.4, and if the points
zi, zz, ..., z. lie on E with z, = 0, then the center o f gravity o f the
zeros o f p(z) defined by (7.1) lies in the set E3 found by shrinking
El toward 0 in the ratio n - 1 : n - 2 + Âl.
We add the related remark that if E contains at least n+1 points

and consists of a set El plus a point P: z = zo not in the convex
hull H of El, and if an infrapolynomial p (z ) ~ zn+ ... on E19P
vanishes in P, then all other zeros of p(z) lie in H; indeed [8,
Lemma 5], the polynomial p(z)/(z-z0) is an infrapolynomial on
El and its zeros lie in H. In particular P is not a double zero of
p(z); also a suitably chosen neighborhood of P cannot contain a
double zero of p(z) (Theorem 7.2; for bounded E also Theorem 8.2,
rl-0).

In the present study of zeros of infrapolynomials, the following
theorem due to De Bruijn and Springer [4] is significant:
THEOREM 7.5. For n &#x3E; 1 and 03BBk &#x3E; 0, i f 03B21, 03B22,..., 03B2n-1 are the

zeros of

then we have

Theorem 6.3 follows at once from Theorem 7.5.

A corollary of Theorem 7.5 is that the sum of the distances of the
Pk to Ox (or to any other line) is not greater than the sum of the
distances of the Mk to Ox (or to the other line).
From the definition of p*(x) in Theorem 7.5 we may write

and by taking pure imaginary parts

We introduce the notation 2J+(z) == 13(z)I+3(z), so 3+(z) == 3(z)
if J(z) ~ 0, J+(z) = 0 if J(z) ~ 0. Addition of (7.2) and (7.3)
yields

whence we have (this result is implicit with De Bruijn and Springer)
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THEOREM 7.6. Under the conditions o f Theorem 7.5, the sum of the
positive ordinates o f the pk is not greater than the sum o f the positive
ordinates of the oc, and is less than the latter sum unless the latter sum
is zero.
An easily formulated corollary applies to the sums of the

distances of the ak and pk lying on one side of any line.
An application of Theorems 7.5 and 7.6 is
THEOREM 7.7. Let E be a point set consisting o f a non-empty subset

Eo in the halfplane y &#x3E; 0 plus the subset El = E-E. in the half-
plane y  0. If p(z) is a finitely generated proper infrapolynomial
on E, the sum of the absolute values of the ordinates of the zeros of p(x)
is less than the sum o f the absolute values o f the ordinates of the points
o f E; the sum of the positive ordinates of the zeros o f p(z) is less than
the sum o f the ordinates o f the points o f Eo.
Theorem 7.7 can be sharpened if the structure (7.1) of p(z) is

known, that is, if the Âk are known; compare (7.2) and (7.4).
If Eo consists of the single point z = i, we deduce from Theorem

7.7 the second part of’Theorem 7.1, and with (7.4) deduce also
Theorem 7.3. Moreover, in the first part o f Theorem 7.3 it is true
that the sum o f the ordinates o f the zeros o f p(z) in the strip 1 &#x3E; y &#x3E; 0
is not greater than 1 - Âl, where z, = i; that the ordinate o f each zero o f
p(z) is not greater than 1-ÂI follows also by a limiting case of Theo-
rem 8.1; compare [9, § 1.5].

§ 8. Subsets of several circular discs

The frequently used result of Fejér can be expressed in the fol-
lowing form, so far as concerns bounded sets: 1 f a set E consists of
at least n points and lies in the (circular) disc C, then all zeros of an
infrapolynomial zn+... on E lie in C. More general situations of
interest, where E may lie in several circular dises, are now to be
considered. These new results are analogous to, and derived from,
known results on the location of zeros of the derivative of a poly-
nomial.
We state first a theorem dus to Walsh [9, §1.5], in a form suited

to our present discussion:
THEOREM 8.1. Il the points zi, z’2, ..., 1 2m lie in the disc Ci

|z-03B1’| ~ r’ and the points z"1, z"2, ..., il lie in the disc C2 :
|z-03B1")  r", then all zeros of the function
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lie in Cl, C2, and the disc

Il any o f the discs Cl, C2, C is disjoint from the other two discs, it
contains precisely m-1, n-1, or 1 zero o f f(z) respectivel y.

If CI and C2 have two external tangents, C also is tangent to
them; indeed for fixed 03B1’ and 03B1" but variable Â’ and 03BB"k, the class
of discs C is precisely the totality of discs with centers on the seg-
ment 03B1’03B1" tangent to those external tangents.
We may state at once the
COROLLARY. Under the conditions o f Theorem 8.1, i f a zero Zo o f

f(z) lies exterior to Cl and C2, some disc o f the class C containing z.
contains all zeros o f f(z) exterior to Cl and C2; in particular, i f no
disc o f the class containing Zo intersects Cl or C2, no other zero o f f(z)
lies exterior to Cl and C2.
Under the conditions of the Corollary, if r’ and r" are small

relative to |03B1’ - 03B1"|, there exists a region D bounded by a segment
of each of the external tangents to Cl and C2 and by the arcs A
(assumed not to intersect, not tangent to Cl or C2 ) intercepted by
them on the two circles of the class C which are tangent respectively
to Cl and C2; if the two arcs A intersect, the region D becomes
the sum of two disjoint regions; if Zo lies in D, no disc C containing
z. can intersect Cl or C2, so no zero of f(z) other than Zo lies
exterior to Cl and C2. Otherwise expressed, the convex hull of CI
and C2 minus D contains all zeros of f(z) except perhaps one.
Although the Corollary is less precise than Theorem 8.1, it has

the present advantage of not involving the 03BB’k and the Â"’, and thus
can be applied to the study of arbitrary infrapolynomials.
THEOREM 8.2. Let Cl: |z-03B1’|  r’ and C2: IZ-(t"1  r" be discs

having two common external tangents, and let C denote generically an
arbitrary dise having with Cl and C2 these same external tangents and
whose center lies on the segment 03B1’03B1". Il a closed set E containing at
least n + 1 points lies in Cl and C2, then all zeros o f an arbitrary in f ra-
polynomial p(z) ~ zn+... on E lie in C1, C2, and some C depending
on p(z). Thus i f a zero Zo o f p(z) lies exterior to Cl and C2, some dise
C containing Zo contains all zeros of p(z) exterior to Cl and C2; more-
over, i f no dise C containing Zo intersects Cl or C2, no other zero o f f(z)
lies exterior to Ci and C2.
The zeros of p(z), which we may assume proper, are [5] among

those of some function f(z) defined by (8.1), where the zk and Zk "’ lie
on E, so Theorem 8.2 is a consequence of Theorem 8.1 and its
Corollary. The degenerate case r’ = 0 is not excluded in Theorem
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8.2; in this case a suitably chosen neighborhood of oc’ cannot con-
tain two zeros of p(z).

If the set E possesses various kinds of symmetry, Theorem 8.1
and therefore also Theorem 8.2 may be capable of improvement
[cf. 9, §3.7].
THEOREM 8.3. Under the conditions o f Theorem 8.2 suppose

03B1" = 03B1’, r’ = r", |03B1’-03B1"| &#x3E; 4r’. Then p(z) cannot have more than
one real zero. An infrapolynomial p(z) cannot have two conjugate
nonreal zeros exterior to Cl and C2. A real infrapolynomial has at most
one zero, necessarily real, exterior to Cl and C2.

If p(z) has two real zeros, necessarily on the interval

|x-(03B1’+03B1")/2| ~ r’, they are zeros of an infrapolynomial of degree
two, hence [5] zeros of some f(z) defined by (8.1), where the points
z’k and Zk " lie on E. Then these zeros are zeros also of the function

and are zeros of the function f(z)+f1(Z). The notation can be chosen
so that the points zl, and lie in Ci and the points z"k and z’ in C2.
For the function f(z)+f1(z) the center of the disc C of Theorem 8.1
is (03B1’+03B1")/2 and C is disjoint from Ci and C2, so C contains precise-
ly one zero of f(z)+f1(z). Thus C cannot contain two zeros of p(z).
This proof shows also that p(z) cannot have a real zero of multi-
plicity greater than unity.

If p(z) has two conjugate nonreal zeros exterior to Ci and C 2e
these zeros are zeros also of some f(z) defined by (8.1), and zeros of
f(z)+fl(z) defined as before. These zeros must lie in C, yet C can-
not contain two zeros of /(z)+tl(z).
Theorem 8.3 is stronger than Theorem 8.2 with the present

hypothesis, for a disc C (of Theorem 8.2) may intersect Cl and still
contain a segment of Ox. In Theorem 8.3 the set E need not be
symmetric in Ox.
Another case of symmetry is [cf. 9, § 3.7]
THEOREM 8.4. Under the conditions of Theorem 8.2 suppose

a" - -a’, r’ = r", lai &#x3E; 2r’. Then any pair (03B6, -03B6) of distinct
opposite zeros of p(z) lies in Cl and C2.

If e and -03B6 are zeros of p(x), they are zeros of an infrapolyno-
mial of degree two, hence zeros of f(z) defined by (8.1), where the
points zl and 1 lie on E. Then 03B6 and -03B6 are zeros also of
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and are zeros of f(z)+f1(z). We may assume that the points z’k and
-z"k lie in Ci, the points z"k and -z’k in C2. The function f(z)+f1(z)
obviously admits the zéro 2=0, and has (by Theorem 8.1) no
other zero exterior to Ci and C2, so 03B6 and -03B6 lie in C1 and C2. If
z = 0 is a zero of p(z) it is necessarily a simple zero. The set E need
not be symmetric in 0. Fekete [5] proved that for E symmetric in
0, under the conditions of Theorem 8.4, the zeros other than 0 of
all odd infrapolynomials lie in C1 and C2, a conclusion which is
contained in Theorem 8.4.
Theorem 8.1 admits an extension, which we formulate in a

special case [cf. 9, § 3.3] :
HEOREM 8.5. If the points z(j)1, z(j)2, ..., z(j)nj lie in the discs

Cj: |z-03B1(j)| ~ r, where 03B1() is real, i = 1, 2,..., m, then all zeros
o f the function

lie in the discs C; and in the dises C; o f common radius r whose centers
are the zeros OEi, 03B12, ..., am-1 of

I f any o f the dises C, or c; is disjoint from all the other discs, it con-
tains precisely nj-1 zeros or 1 zero o f f(z) respectively.

Let us suppose the notation 03B1(1)  03B11  03B1(2)  ...  03B1m-1
 03B1(m). A corollary to Theorem 8.5 is readily formulated ana-
logous to that of Theorem 8.1; we proceed directly to the analogue
of Theorem 8.2:
THEOREM 8.6. Let the dises C,: Iz-cx(J)  r be given, where

03B1(j) is real, i = 1, 2, ..., m, 03B1(j+1) &#x3E; 03B1(j), and let Cl denote generically
an arbitrary dise o f radius r whose center lies on the segment
03B1(j)  x  03B1(j+1), j = 1, 2, ..., m-1. Il a closed set E containing
at least n +1 points lies in the discs C,, then all zeros o f an arbitrary
infrapolynomial p(z) ~ zn+... on E lie in the C, and some fixed
set C’j (j = 1, 2, ..., m-1). I f a zero zo o f p(z) exterior to Ci and
Cj+1 lies in the infinite strip 03B1(j)  x  a(j+1), some dise C’j contains
Zo and all the other zeros o f p(z) in that strip exterior to C, and Cj+1; in
particular, i f no disc C’j containing Zo intersects C, or Ci+l’ no other
zero o f p(z) lies in the strip mentioned.
Of course all zeros of p(z) lie in the strip lyl s r. Theorem 8.6

follows from Theorem 8.5; details are left to the reader. Both
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theorems extend to discs C, which are not equal but have two
common external tangents. Theorem 8.6 is analogous to, and in-
deed a generalization of, the separation properties [8, §§8, 9] for
real infrapolynomials.
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Harvard University.
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