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Three Theorems on Products of Power Series.

by

A. M. Ostrowski 1)

1. All numbers considered in the following are real. By a
well-known theorem of Cauchy, from the relations

follows

More generally we have

This can be interpreted in the following way. Put

and

then we have

We are first going to prove that this result remains true if the

séries 1 1-z is replaced by

1) The preparation of this paper was sponsored in part by the Office of Naval
Research.
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provided that we have

We then obtain the following theorem which appears to be quite
useful although very easy to prove.

2. THEOREM 1. Consider the power series (1) and (3) with posi-
tive S)1’ T" and assume that

and (4) holds. I f me then put

zve have the relation (2).
3. We prove first the
LEMMA. Undef the hypothesis of the theorem 1 we have for any

fixed integer m

PROOF. We have by (4) for any fixed k &#x3E; 0

and therefore

It is therefore sufficient to prove that for m ~ 0

Choose an integer k &#x3E; m, then we have by (8)

and our assertion follows from (5).
4. PROOF OF THE THEOREM 1. It is sufficient to prove the right

hand inequality in (2), since we can replace .9, by -s"; thus we
have to prove
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We can assume that the right hand side of (9) is  oo. But then

(9) follows at once if we prove:
Il for a constant c and an integer m we have

then we have also

To prove (11) under the condition (10), put

and consider

But by our Lemma each of the m+ 1 terms Tn-03BC D on the rightn
tends to 0 and (11) follows.

5. If one of the conditions (4) or (5) of the theorem 1 is not
satisfied sometimes the following corollary can be used.
COROLLARY 1. The relation (2) of the theorem 1 remains true if

the conditions (4) and (5) are replaced by

To prove this choose a positive y such that

and put

Then in multiplying (13) by y we obtain from (14)
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00

But then it follows that the radius of convergence of 1 S’vzv is  1

and therefore Y S’v = oo. The theorem 1 can be applied to the

séquences (l’4) and we obtain, putting

from

again (2).
6. If we take in the theorem 1, Sv =1, then our result contains

a ,,suminability" statement; the corresponding transformation is
then in Hardy’s terminology 2 ) a regular and positive tran,9/orma-
tion (Hardy p. 52). If the theorem 1 is applied twice starting with
Sv ~ 1 we obtain an "inclusion theorem" (Hardy p. 66) with a
statement more special and more general than that given by
Hardy (Hardy p. 67, Theorem 19), since this inclusion theorem
does not assume the convergence of the S" but refers to the more

general situation (2).
7. We obtain another corollary from theorem 1 if we put there

Sv = Sv+1. Then we have

But hère we have by the lemma of No. 3, v+1 Rv ~ 0 ( v - ~),

therefore

and obtain from (2) the
COROLLARY 2. Consider the power series

1) G. H. Hardy, Divergent Series, Oxford (1949).
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and assume that Sv and Tv are positive and the relations (4) and (5)
hold. Then we have

8. If we drop now the assumption (5) we can still prove a result
in the direction of the Corollary 2 though considerably weaker.
THEOREM 2. Consider two power series with positive coefficients

and assume that we have

then putting

zve have

9. PROOF. Assume a arbitrary with 0  e  1; then there
exists an no = no ( e ) such that for v &#x3E; no

For an integer m &#x3E; no and for n &#x3E; m+n0 we use

Apply the right hand inequalities of (22) and (23) in the first resp.
the second parenthesis; then we have

which gives

Applying the left hand sides of inequalities (22) and (23) in the
same way, we get
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Take an arbitrarily great but fixed integer K and assume 8
and m such that

.Then for any n &#x3E; m+K+n0 we have

hence from (24)

and (21) is proved.
10. We .give finally a third theorem on products of power

series which follows easily from the theorem 1.

THEOREM 3. Consider the four series

put

and assume that S, and T, are positive and

Assume further that we have as v ~ oo

with finite oc and 03B2. Then we have
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11. PROOF. Since rv Rv is homogeneous both in s,, S, and in
t", T, of dimension 0, each of the constants a, 03B2, which is =1= 0, can
be assumed as 1. We have therefore only three cases to consider

a) 03B1 = 03B2 = 1; b) 03B1 = 1, 03B2 = 0; c) 03B1 = 03B2 = 0.

(The case b’ ) a = 0, j8 = 1 is by symmetry equivalent to the
case b)).

Consider first the case a).

In applying then the theorem 1 we have

On the other hand it follows from (28) that

We can therefore, assuming that all s, are &#x3E; 0, apply the theorem 1
in replacing there 99(z) by y(z), O(z) by 03A8(z) and Y(z) by ~(z). We
obtain then

In multiplying (31) and (32) we obtain rn ~ 1, that is (29),n

proved now in the case (30) under the additional assumption that all
s,, are &#x3E; 0.

12. It is now easy to prove the case a) zvithout the assumption
that all s, are positive. Indeed we can find in any case a positive
number A, such that under the assumption (30) the sums

Sv Sv+ASv 1+A are positive for all v = 0, 1, .... But then we have,.
since s’v ~ 1,

Sy
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Here the second term on the left tends to A by the theorem 1
(applied in interchanging the S, and the Tv) and we obtain again
rn ~ 1. The case a) is now completely proved.
R. SI, t,13. Assume now the case b), that is s’’ ~1, tv Tv ~ 0. If we then
put t’ IV = tv+Tv we have tv Tv ~ 1 and it follows by the first part of
our theorem, already proven,

Here the second term on the left tends to 1 by the theorem 1 and

we obtain 
rn 
- 0 (n - ~). Thus our theorem is proved in the

Rn
case b).

The case c) sv Sv ~ 0, tv Tv ~ 0 is reduced to the case b) by exactly
the same argument. The theorem 3 is proved.

14. If we take in the theorem 3 e.g.

we obtain

It follows therefore, that if we have
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then

This is the theorem 41 in Hardy (l.c. p. 98).
15. The above results are probably valid under much more

general conditions. Here we have gone into them only as far as
they arose naturally in the course of other investigations.
(Oblatum 3-3-58).
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