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An Extremum Problem for Polynomials 1
by

I. J. Schoenberg and Gabor Szegö

1. Introduction

Let [a, b] be a finite interval and let the measure dx(x) define
a positive mass-distribution which does not reduce to a finite
number of point-masses. The natural integer n being given, we
denote by H,, the class of polynomials f(x) of degree not exceeding
n and subject to the following two conditions:

Now z being an arbitrary but fixed real number, we wish to deter-
mine the range Rx of variability of f(z) as the polynomial f(x)
roams tlirough the class H,, defined above. Since H,, is a convex
class, it is clear that Rx is convex, hence an interval which is

clearly also bounded and closed. It may therefore be described by

On page 181 of his book [3] Szegô determines the quantity

We reproduce here his brief analysis which also readily describes
the interval (3). Let

be the orthonormal sets of polynomials associated with the mass-
distributions

respectively. The leading coefficients of the polynomials (4) are
assumed to be positive. An important theorem of Lukâcs [3,
p. 4] allows to describe the most general f(x) E Il n as

1) This paper was prepared partly under the sponsorship of the United States
Air Force, Office of Scientific Research, ARDC, and partly under the sponsorship
of the National Science Foundation, NSF-G 11296.
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or

where the uv, vv, are real parameters satisfying the single relation

The relations (6), (7) express the condition (1), while (8) is

equivalent to the normalization (2) as seen from the orthogonality
properties of the sets (4).

Let us use the abbreviations

Applying Cauchy’s inequality to one or to both terms on the
right-hand sides of (6) and (7), as required by the location of
x = z, we readily obtain the range Rz as stated in the following

THEOREM 1. I f n = 2k then

2. Two identities and their applications
We see that min i(z) is well described by the formulae (10)

and (12). The purpose of this note is to improve on the descrip-
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tion of max f(z) as given by the formulae (11), (13), for the case
when z is in [a, b]. This will be done by exhibiting ail the crossing
points of the graphs of tP1(z), tP2(z) and also those of the graphs
of ’Fl(z) and P2(z).

These crossings are described by

LEMMA 1. The following identities hold:

where A k, Bk are positive constants.
Let us establish the identity (14). As a matter of fact the more

general identity in the two independent variables x and e holds:

It might be described as arising from (14) by "polarization."
To show (16) we use the reproducing property of the kernel
polynomial

which is as follows [3, pp. 38-39] : If 03C0k(x) is an arbitrary po-
lynomial of degree k then

Also the other kernel polynomials

have similar properties with respect to their corresponding mass-
distributions. Denoting by 03A6(03BE, x) the left-hand side of (16)
we find

But then

Similarly
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and therefore

Clearly (17) and (18) imply (16).

Similarly (15) generalizes to

Indeed, denoting the left side by 03A8(03BE, x) we find

hence

Likewise

and therefore

Both results imply (19) and our identities (14), (15) are thereby
established.
An improvement of our relations (11) and (13) is now described

by
THEOREM 2. 1. Let 03B1v and /3v be the zeros in increasing order

of the polynomials rk(x) and sk(x) respectively. Between these zeros
we have the inequalities

The real axis may therefore be decomposed into the following two
sets of alternating intervals

2. Let y,, and 03B4v be the zeros in increasing order o f the polynomials
pk+1(x) and qk(x), respectively. Between these zeros we have the

inequalities
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These points divide the axis in two sets of alternating intervals

Indeed, if for the moment we take for granted the inequalities
(20), then it is clear by (14) that oc,, P, are all the zeros of

03A61(z) - 02(Z) and that all these zeros are simple. But then
03A61(z) &#x3E; 02(Z) or 03A61(z)  f/J2(z), depending on whether z is in
the interior of an interval (21) or (22). Now (23) follows from
(11). A similar argument establishes (27).

3. Proofs of the inequalities (20) and (24).
We sliall use the known fact [3, pp. 46-47] that if cl and c2

are real constants, Cl  c2, then the zeros of each of the poly-
nomials

are real and simple, that they separate each other so that the
least zero of the first polynomials is below the least zero of the
second polynomial. Naturally, the zeros of the polynomials

enjoy similar properties.
We observe next chat our polynomials satisfy the following

two pairs of identities

for appropriate constants ci, c’i having signs as indicated. It

should be clear that the inequalities (20), (24) are easily established
if we apply to the pairs of identities (30), (31) our introductory
remark concerning the zeros of the polynomials (28) and (29).

Let us finally establish the identities (30)-(31’), for instance
(30’). To this purpose we expand rk(X) in terms of the qv(x) in
Fourier-fashion. If v  k - 1 we find
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because the degrees of qv(x)(b - x) does not exceed k - 1. There-
fore we indeed have an identity (30’). Now -cz has the same
sign as

which is negative. Therefore C2 &#x3E; 0. A similar argument proves
(30) and that cl  0. There is no need to reproduce the proofs
of the remaining identities which use similar arguments.

4. Another extremum problem.
We consider the analogue of the previous problem for the

interval [0, + ). Let d~(x) be again a measure not reducing to
a finite number of point-masses. For each n we form the set 17,,,
of all polynomials of that degree satisfying the following relations:

If z is arbitrary real, we may ask for the interval Rz representing
the range of the values f(z).
We can be brief. Let us denote by

the orthonormal sets of polynomials associated with dz(x) and
xdx(x) respectively, the highest coefficients of these polynomials
being positive. We have then [cf. 3, p. 182]

where uv, vv are arbitrary complex numbers subject to the con-
dition

We introduce the abbreviations
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We deal only with the case z &#x3E; 0 and only with the determination
of max f(z). The result is:

In order to distinguish between the quantities in the curly
brackets, we employ the following identities:

More generally we shall prove the "polarized" identites:

For the proof of (39) we denote the left-hand side by 0(e, x)
and show as in the case of the finite interval:

Similarly, denoting the left-hand side of (39’) by 03A8(03BE, x), we have

This yields the assertions.
Further we point out [1, pp. 29-30] that

so that r,(x) = 0 is equivalent with

Thus denoting by oc,,, 03B2v, 03B3v the zeros in increasing order of the
. 
polynomials rk(x), pk(x), pk+1(x) respectively, we have

This furnishes
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THEORFM 3 2). We decompose the real axis into the following
two sets of alternating intervals:

Il n = 2k, then.

Similarly we decompose the real axis as follows :

1 f n = 2k + 1, then

In conclusion we add a few words on the background of the
problems of this note. The first paper devoted to such problems
is due to F. Lukâcs [2]. Already Lukàcs was in possession of the
two methods available for their solution: 1) The parametric
representation of the polynomials, 2) Formulae of mechanical
quadrature. In [2] Lukâcs uses the second method, while we have
just used the first one. However, our results such as (23) were
first derived by the second method. The evident continuity of
the left-hand sides of (23) and (27) as functions of z, immediately
furnishes as a byproduct the identities (14), (15), as was kindly
pointed out to one of us by N. G. de Bruijn. Subsequently the

2) The problem discussed in this section is a limit case of our original extremum
problem (§§ 1,3) if a = 0, b = + oo. It clearly required the separate discussion
which it received in the present § 4. However, the following remark is in order:
All polynomials, identities and results of §§ 1, 2 go formally over into the corresponding
ones of § 4 if we set a = 0 and simply supress everywhere where it appears the factor
b - x.

Following this convention we see from (5) that the old polynomials defined
by (4)

now become

respectively; also the 03A6i, 1J’i of (9) turn into the similar symbols of (36). Moreover,
the identities (14), (15) reduce to (38) and (38’) respectively. Finally Theorem 2
reduces to Theorem 3. However, these interesting formal relationships make our
separate discussion of the case of the interval [0, + oo) no less necessary.
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following soon became apparent: Once these identities are estab-
lished directly (as we did), the parametric method proved to be
a much more efficient way of establishing Theorems 2 and 3.
In a forthcoming paper [1 ] L. Brickman discusses the problem of
determining the domain Dz of variability of f(z) (1 £ 03A0n), where z
is a given complex (non-real) number. In this case it seems

appropriate to turn once more to the method of mechanical
quadratures.
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Stanford University
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