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The Jordan-Hölder-Schreier Theorem for
General Algebraic Systems

by

N. J. S. Hughes

Introduction

We wish to give an axiomatic proof of Zasseiihaus’ Lemma and
the Jordan-Hôlder-Schreier Refinement Theorem which will

apply to such systems as groups, rings and lattices as well as to
abstract algebraic systems.
A set G is an algebraic system with set of operators (or an

03A9-system) if every co in 03A9 is an operator on G.

By a type of algebraic system (of which the systems mentioned
above, each with given notation, are examples) we mean a class
of algebraic systems, with a prescribed set of operators,1 ) so that,
for example, we consider additive and multiplicative groups as
distinct types.

yVe shall consider systems of some (unspecified) type T with
set of operators 03A9(T) and we require that, if G is a system of type
T (or T-system), then any 03A9(T)-system isomorphic to G shall
also be of type T.
We obtain for T-systems an analogue of normal subgroup or,

more exactly, of the relation "H is a normal subgroup of K"
by defining the binary relation N to be a T-normality relation if,
whenever H and K are in the relation N (denoted by HNK),
then H and K are T-systems, such that H  K (or H is a T-
subsystem of K) and also there exists a T-system (the factor
system), denoted by K/H, and a mapping 03C8H,K, single valued but
not assumed to be a homomorphism, of K onto KfH.
N, KfH and 1pH,K are to be well-defined in the sense that,

whenever H is a T-subsystem of K, whether or not HNK is

determined and, if so, K/H and 03C8H,K are uniquely determined.
In order to prove Zassenllaus’ Lemma and the Jordan-Hôlder-

Schreier Theorem, we require further axioms. It is convenient
to place these not on N but on a lattice, whose elements are T-
subsystems of G. The proof of Zassenhaus’ Lemma, which

1) This restriction is for convenience only.
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generalises that of Jacobson (1) for groups, does not use homo-
morphisms (except isomorphisms ) or homomorphic equivalences
(Goldie ( 1 ) ).

Finally, the general results are applied to the particular cases
of groups, rings, quasi-groups and modular lattices.

1. Algebraic Systems

We say that (a set) G is art algebraic system with respect to
(a set of operators ) S2 (or an 03A9-system), if every element co of 03A9
is an operator of definite order (not necessarily finite) on G.
That is, if co has order r, for every xl, ..., x,, in G, there is defined
a (possibly empty) subset of G, denoted by

Thus G is a groupoid when 03A9 consists of one single-valued
binary operator.

If H is a subset of G (denoted by H ~ G or by H  G if the
subset is proper), it is a subsystem (or 03A9-subsystem) of G if, for
any co in Q of order r and zi, ..., x,. in H,

so that H is itself an Q-system.
If G and G’ are both 03A9-Systems, they are 03A9-isomorphic (denoted

by G ~ G’ ) if there exists a one-one mapping of G onto G’,
such that, for any (J) in 03A9 of order r and xl, ..., x,. in G,

Isomorphic systems are algebraically identical.
We shall write

to show that G and G’ are isomorphic by a specific isomorphism y.
A type T of algebraic systems defines a set S2(T) of operators

and the algebraic systems of type T (T-systems) form a (well-
defined) class of S2(T)-systems. We require that, if G is a T-

system and G’ an Q(T)-system, such that G - G’, then G’ is
also a T-system.
A T-subsystem of the T-system G is an 03A9(T)-subsystem, which

is itself a T-system.

2. Normality relations and N-lattices

We shall say that the relation N is a T-normality relation if,
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whenever H and K are in the relation N (denoted by HNK), H
is a T-subsystem of the T-system K and there is defined a T-
system, denoted by K/H and called the factor system, and a single
valued mapping 1JlH,K of K onto K/H.

If G and G’ are T-systems and

HNG and H’ - Hep, then H’NG’ and

Let G be a T-system and L be a lattice whose elements are T-
subsystems of G, the partial ordering being set inclusion, and, for
A, B e L, the glb. (which need not be the set intersection) be
denoted by A n L B (or A n B ) and the lub. by A U L B (or Au B
ir, if multiplication is not otherwise required, AB).

If N is a T-normality relation, we say that L is an N-lattice
on G if GEL and, for any A, B, CE L, the following conditions
are satisfied.

1) If ANB and A  C  B, then

i ) ANC,
ii) x03C8A,C = x03C8A,B (x ~ C),

(we will write Ax for ae1pA,B when there is no risk of ambiguity:
if n L is set intersection, then x03C8A,B is independent of B)

iii) CNB if and only if (C/A)N(B/A) and then
B/C - (B/A)/(C/A); Cx ~ (C/A)(Ax) (x ~ B).

2) If ANB and CNB, then (A u C)NB.

3) If ANB and C  B, then
i) (A n C)NC,
ii) C1jJA,B = (A ~ C)/A,
iii) CI(A n C) ~ (A u C)/A; (A n C)x ~ Ax (x ~ C).

3. Zassenhaus Lemma

THEOREM 1. Il G is a T-system, N a T-normality relation, L
an N-lattice on G and A, B, C, D are in L and such that ANB
and CND, then
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In §§ 3, 4 and 5, we shall write HK for H u K.

By symmetry, we need only prove i ), iii) and the left hand
isomorphism in iv).

Since

i) is satisfied, by 1), provided that

and then

and we have an isomorphism 99

By symmetry, (C n B)N(B n D) and, if E = (A n D)(C n B),
by 5) and 2), EN(B m D) and iii) is satisfied.

Since A n D s E s B n D, by 5) and 1), EI(A n D)N(BnD)/
(A n D) and also

Now

and therefore, since ~ is an isomorphism and isomorphic systems
are algebraically identical,

and i) is satisfied. We also have

The left hand isomorphism in iv) now follows from 6), 7)
and 4).
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4. (L, N)-series and refinements

If G is a T-system, N a T-normality relation and L an N-
lattice on G, we say that the series

is an (L, N)-series for G if Ho = G and, for i = 1, ..., m, Hi E L
and HiNHi-1.
The T-systems Hi-llHi are the factors of the series and two

series are equivalent if their factors (arranged in suitable order)
are isomorphic in pairs.
TIIEOREM 2. Any two (L, N)-series for G have equivalent

refinements.
Let the two series be Ho, ..., Hm and K0, ..., Kn and let

We clearly have

By Theorem 1, for i = 1, ..., m, j = 1, ..., n, we have
HijNHi,j-1, KiiNKi,i-1’ Hi,j-1/Hij ~ Ki,i-1/Kii.
For 1,..., n, Hm+1,j-1 ~ Kj-1 and Hm+1,j-1 ~ ici = Hm+i,f

and also KjHm+1,j-1 = Kim, so that, by 3),
Hm+l,f NHm+1,i-1 and Hm+1,j-1/Hm+1,j ~ Kjm/Kj.

Similarly, for i = 1, ..., m,
Kn+1,i NKn+1,i-1 and Kn+1,i-1/Kn+1,i ~ Hin/Hi.

If we interpolate Hi1’...’ Hin between Hi-1 and Hi, for

i = 1, ..., m, and add Hm+1,1, ..., Hm+1,n after Hm, with the

corresponding operations for the series Ko, .. , Kn, we obtain the
required equivalent refinements.

5. Jordan-Hôlder-Schreier Theorem

We say that the (L, N)-series Ho, ..., Hm is non-repetitive if,
for i = 1, ..., m, Hi  Hi-1.
We wish to be able to drop repeated terms from two equivalent

series and obtain non-repetitive equivalent series.
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If A, B e L and ANB, by 1), ANA and (A/A)N(B/A) and also

If ANA and C  A, by 3), CNC and C/C ~ A /A .
By taking C = A n B, we deduce that, whenever A, B E L,

ANA and BNB, A/A ~ B/B.
This T-system therefore is determined to an isomorphism

(except when the relation ANB, A, B E L, is never satisfied) and
may be denoted by U = U(L, N). Every repetition in an (L, N)-
series has U as factor system.

If we assume that, whenever A, B E L, ANB and A  B,
B/A is not isomorphic to U, then two equivalent series must
have the same number of repetitions and, by omitting the repeated
terms, we obtain equivalent non-repetitive series.
The following results may now be deduced from Theorem 2.

THEOREM 3. (Jordan-Hôlder-Schreier). Il G is a T-system,
N a T-normality relation and L an N-lattice on G, such that, i f
A, B ~ L and ANB, then B/A ~ U(L, N) only if A = B, then
any two non-repetitive (L, N )-series for G have equivalent non-
repetitive relinements.
COROLLARy 1. Any two (L, N)-composition series (non-repetitive

series without proper refinement) for G are equivalent.
COROLLARy 2. Il G has at least one composition series, then any

non-repetitive (L, N)-series for G may be re f ined to a composition
series.

6. Applications
To prove a Jordan-Hôlder-Schreier Theorem for an algebraic

system G of definite type, it is sufficient to define a suitable

normality relation N and an N-lattice L and to verify that con-
ditions 1), 2) and 3) are satisfied.2)
Groups and Rings.

Let G be a group (operation +).
We define ANB if and only if A is a normal subgroup of B,

B/A is the usual factor (difference) group and yA,B given by

We may take L to be the lattice of subgroups of G which are
invariant under any set of endomorphisms of G.

2 ) In each of the systems concerned below, K/H has exactly one element if and
only if H = K.
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For rings (not necessarily associative but with operations +
and ) we define ANB to mean that A is an ideal of B, B/A
is the difference ring and yA,B given by 8).
For a ring G, we may take L to be the lattice of all subrings

or any sublattice of this.
If A is an ideal of B and C is a subring (ideal) of B, then

A + C is a subring (ideal) of B and we need only verify that the
isomorphisms in 1) and 3) are ring (and not merely group)
isomorphisms.

Quasigroups

By a right quasigroup we mean a (multiplicative) groupoid
G, such that, for any a, b e G, the equation

has a unique solution, denoted by bla, in G.

An equivalent condition is that the right multiplications of
G shall be permutations.
We shall denote ala by ea and the set of all ed (a E G) by EG.
We call G a right loop if it has a left identity e.
A subset H of G is a subright quasigroup if, for any a, b in H,

both ab and b/a are in H.
A subright quasigroup H of K is normal in K (HNK) if, for

any h1, h2 E H and x, y E K, we have

i) (h1x)(h2y) = h(xy) (for some h ~ H),
ii) h1(xy) = (hx)y (for some h ~ H),
iii) Ek ~ H.

The relation y/x E H (or y E Hx) is easily seen to be a homo-
graphic equivalence on K, the equivalence classes (H-cosets )
form a right loop K/H, with identity H, when multiplication is
defined by

and then the mapping 03C8H,K, defined by

is a homomorphism.
Conversely, if y is a homomorphism of the right quasi-group

G onto the right loop G’ (with left identity e’ ) and H is the inverse
image of e’, then HNG and
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For any right quasigroup G, we may take L to be the lattice
of all subright quasigroups containing some fixed element of G.

If A, B, C E L, ANB and C  B, we may verify that

and that, if also CNB, then (AC)NB.
Conditions 1) and 3) are also satisfied and the Jordan-Hôlder-

Schreier Theorem for right quasigroups follows.
The Theorem for quasigroups may now be deduced, H being

normal in K (considered as a right and left quasigroup simul-
taneously) if and only if it is the inverse image of the identity
in a homomorphism of K onto a loop.3)
We easily verify that the right and left cosets, Hx and xH

(x e K ), coincide.

Modular Lattices

Let G be a modular lattice with operations u and n and with
a greatest element.
For any a e G, [a] denotes the principal ideal consisting of

all x, such that x ~ a and, for any b, b &#x3E; a, [a, b] denotes the
interval consisting of all x, such that a ~ x ~ b.
We define a sublattice H of K to be normal in K (HNK) if

and only if H is a principal ideal [a] of K and then

We take L to be the lattice of all principal ideals of G and may
identify L with G by defining

so that aNb if and only if a ~ b, b/a = [a, b] and

The conditions 1), 2) and 3) are easily verified, the isomorphism
in 3), for a, c  b, being given by

with the inverse isomorphism

The Jordan-Hôlder-Schreier Theorem in this system is equiv-
alent to the theorem that two chains with the same greatest
and least elements have refinements, whose intervals are lattice
isomorphic in pairs.4)

3) Albert 1), 2).
4) Birkhoff 1), pp. 72-73.
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