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Introduction

Let ~(x) be a real valued non-decreasing function with infinitely
many points of increase in the finite or infinite interval (a, b ), and
let the moments

exist. Then there exists a set of polynomials {~v(x)}~0 uniquely
determined by the following conditions:

(a) ~v(x) is a polynomial of precise degree v in which the co-
efficient of xv is positive.

(b) The system {~v(x)} is orthonormal, i.e.,

The natural number n being given, we denote by 03A0n the class
of real polynomials f(x) of degree at most n satisfying the following
two conditions:

This class has received much attention in connection with the

problem of determining

where z is a real number usually, but not always, assumed to be
in (a, b ).

F. Lukàcs determined in 1918 the value of Mn(+1) for all n for
the special case (a, b ) = ( -1, +1) and ~(x) = x.2) For this pur-

1) G. Szegô, Orthogonal Polynomials, pp. 24-25.
2) F. Lukàcs, Verschärfung des ersten Mittelwertsatzes der Integralrechnung

für rationale Polynome", Mathematische Zeitschrift, 2: 295-305, 1918. See also
G. Polya and G. Szegô, Aufgaben und Lehrsdtze aus der Analysis, Problem 108, p. 96.
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pose Lukàcs rediscovers the quadrature formulae of Radau [5],
apparently unaware of Radau’s memoir of 1880. Slight variations
of the Radau formulae appear in this paper in (1:1.10), (1:1.12),
and (1:2.7) and play an important part in the discussion.
M. Riesz, in 1922, without the use of mechanical quadratures,

determined Mn(z) for all n and all z for the case (a, b) = (- oo, + ~),
dx(x) arbitrary.3) See also O. Bottema [1] for an approach with
quadrature formulae.

In 1925 G. Polya and G. Szegô extended Lukâcs result to a
variety of intervals and distributions in a series of problems.4)

Using a method based on a parametric representation of poly-
nomials belonging to lln, G. Szegô in 1939, computed max |f(z)|,
f(x) E 03A0n, where (a, b) is finite and z is any real number.5)

Finally, in a paper [7] of 1959, 1. Schoenberg and G. Szegô
completely determine the set

for any real z and for arbitrary (a, b) and dx(x). Their method
involves the parametric representation mentioned above.
The situation for real z thus being completely described, it is

the purpose of this paper to determine the set (8) when z is

imaginary. Two properties of R.. can be established immediately.
Firstly, since Iln is evidently a convex class, Rx is a convex set of
complex numbers. Secondly, Rz is compact. To see this we first
show that IIn , regarded as a subset of n+1 dimensional Euclidean
space, is compact. We need the Gauss-Jacobi quadrature formula:

where the x, are the zeros of ~n+1(x), 03BBv &#x3E; 0 (v = 0, ..., n), and
f(x) e n2n+m 6) (Following Szegô, [8], we write f(x) ~ n,. to indicate
that f(x) is a polynomial of degree not exceeding m.) To indicate
that (9) is valid if f(x) E Jt’2n+1 we shall say that (9) is of degree
2n-f-1. Applying (9) to an arbitrary member of IIn, we obtain

3) 1B1. Riesz, "Sur le problème des moments," 3me Note, Arkiv for Matematik,
Astronomi och Fysik, 17: 19-20, 1922.

4) G. Polya and G. Szegô, op. cit., Problems 103-13, pp. 95-97.
5) Szegô, op. cit., pp. 173-78.
8) Ibid., p. 46.
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a condition equivalent to (2). Since all Xv are in (a, b), it follows
that

Now, a variable polynomial f(x) ~ 03C0n which is bounded at n+1
points must have bounded coefficients.’) Hence lIn is bounded

in En+1, Properties (1) and (10) are evidently preserved in passing
to the limit of a sequence in En+1, and so IIn is compact. Finally,
since the mapping 

from 03A0n to Rz is continuous, Rz is also compact.
As a consequence of the possession of these two properties, Rx

can be completely described by its function of support. This will
be obtained with the aid of quadrature formulae especially con-
structed in terms of z. We shall prove that for n &#x3E; 2, Rx is the set
bounded by a certain ellipse with a focus at zero if (a, b) =

( - oo, oo ), and is the convex hull of the union of two such sets
otherwise.
We shall make use of four orthonormal systems, depending on z,

with properties analogous to (a) and (b). Viz.

defined by

respectively. These systems exist (provided that the quantities
a and b which appear in the integrands are finite) because the
weight function in each case is a polynomial which is positive in
(a, b).
The paper contains four sections. In § 1 we assemble all the

necessary quadrature formulae; several classes of formulae are
needed depending upon whether (a, b) is a finite interval, a half-
line, or the whole real axis, and upon whether n is odd or even.

7) C. de la Vallée Poussin, Leçons sur l’approximation des fonctions d’une variable
Téelle, p. 74.
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In § 2 these formulae are applied to obtain a description of Rz.
In particular, the value of

(which appears in [6] for the special case (a, b ) = ( - oo, + ~) 8)
is obtained in terms of the system {~v(x)}. The third section con-
tains a discussion of the exceptional cases n = 1, 2, and the con-
cluding section is devoted to a proof that Rz varies continuously
with z, for all complex z.

§ 1. Some Spécial Classes of Quadrature Formulae

1:1 A class of formulae o f open type o f degree 2k.
THEOREM I. Let - ~ ~ a  b  + oo, let {pv(x)} be the ortho-

normal system defined by (11). Then for any real number c, the
zeros e, of

are real and distinct. To these knots there corresponds a formula

The coefficients Pv satisfy

P is a linear fractional function of c which maps the real axis onto
a circle of the complex plane containing the origin as an interior
point. For increasing c, P moves clockwise if /Av z &#x3E; 0, counter-
clockwise if Sm z  0.

PROÔF. The zeros of (1:1.1) are readily studied: 9) pk(x) and
px-1(x) have only real and simple zeros, all lying in (a, b), the
zeros of pk_1(x) separating those of pk(x). Hence if

we have the partial fraction decomposition

where K and all av are positive. Moreover

8) Riesz, op. cit., pp. 20-21.
9) Ibid., pp. 14-18. See also Szegô, op. cit., p. 45, Theorem 3.3.4.
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for all real x where the derivative exists. A graph now reveals
the following facts which we state as a lemma for repeated
future use.

LEMMA 1. The zeros e, of (1:1.1) are real and simple for all
real c. Letting el  03BE2  ...  03BEk, we have the further inequalities

-00  03BE1  03B3’1  03BE2  03B3’2  ...  03BEk-1  03B3’k-1  03BEk  +00.
As c increases from - oo to + oo, each e, increases continuously
taking on all values in the open interval to which it is restricted.
For any real c and f(x) E nk+1’ let us write the Lagrange inter-

polation formula based on the k+2 points

as

where Lv(x) is a polynomial independent of f(x) of degree k+1.
Integrating this identity we obtain formula (1:1.2) of degree k+1,
where

To show that (1:1.2) is actually of degree 2k, we use Jacobi’s
classical argument. Let f(x) E 03C02k and let

be the result of dividing f(x) by 03C9(x)(x-z)(x-z), subscripts
indicating maximum degree. By (11), (1:1.2), and (1:1.4),

The decisive point in Jacobi’s proof is that m(z) is orthogonal
to an arbitrary gk-2(x) with respect to the "distiibution"

(x-z)(x-z)d~(x). Hence we may notethat the zeros e, of (1:1.1)
are the only knots for which (1:1.2) is of degree 2k.
To prove (1:1.3), apply (1:1.2) to
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There results

and (1:1.3) follows.
Next we study the mapping

To this end, let c’and c" be unequal real numbers, and let

and

be the corresponding quadrature formulas. Applying both of these
to

we obtain

From (1:1.3) and Lemma 1 it follows that

Hence the transformation (1:1.5) is non-constant. Another appli-
cation of the lemma shows that the pole of (1:1.5) is imaginary.
Therefore, (1:1.5) maps the real axis onto a bounded circle. The
origin is not outside this circle, for then we could choose c’ and c"
so that DP’ = P" with D &#x3E; 1, and this would contradict (1:1.7).
To prove that the origin is not on the circle, we first observe by
means of (1:1.6) that P’ ~ 0 i. e. P does not vanish for finite c.
Hence we need only show that

However, this is precisely the expression for P(0) if k is replaced
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by k-1. (If k = 1, there is no "lower" formula but then the in-
equality is obvious.)
The orientation of the circle depends only on the location of the

pole Pk(z)/pk-1(z) of (1:1.5). Namely, if Jm pk(z)/pk-1(z) &#x3E; 0, P
moves clockwise with increasing c, and if Pm Pk(Z)/Pk-1(Z)  0,
P moves counterclockwise. The partial fraction decomposition of
pk(x)/pk-1(x) shows that

and this completes the proof.

REMARK 1. For c = 0 and f(x) E 1t2k+l’ (1:1.4) becomes

It follows that (1:1.2) is of degree 2k+1 for this value of c. This
formula is especially important and is here recorded as

03B3v being the zeros of pk(x). We shall refer to (1:1.8) as Gauss’s
formula because of the similarity with (9).

REMARK 2. There are two other formulae in the class (1:1.2)
which are especially noteworthy. If - oo  a, Lemma 1 shows
that there exists cl  0 for which 03BE1 = a. (In fact cl = pk(a)/pk-1(a).
Denoting the remaining zeros of (1:1.1) by

we write the special formula so obtained as

The a,, are evidently the zeros of

But fk-1(x)(x-a) is clearly orthogonal to any polynomial of
degree k-2 with respect to (x-z)(x-z)d~(x). Therefore fk-1(x)
= rk-1(x) up to a numerical factor, and the oc, are the zeros of

rk_1(x). Similarly, if b  + oo, there exists c2 &#x3E; 0 for which

03BEk = b. Writing
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the corresponding formula will be written

of degree 2k.

By an argument similar to the one just used we see that the knots
fi, are the roots of sk-1(x). We shall call (1:1.10) and (1:1.12) the
left-sided and right-sided formulae of Radau because quite similar
formulas were first discovered by Radau.10) Finally, let us record
here the following inequalities which are evident in view of

Lemma 1.

1 :2 A class of formulae of closed type of degree 2k.

THEOREM II. Let - ~  a  b  + oo, let {qv(x)} be the
orthonormal system defined by (12). There are two real numbers
dl and d2, dl  0  d2, such that the zeros Ô, of

agree with the knots and av of the Radau formulae (1 :1.12) and
(1:1.10) for d = dl and d = d2 respectively. For every d in the
range

the c5 v satisfy

To thèse knots there corresponds a formula

of degree 2k.
The coefficients Q, satisfy

Q is a linear fractional function of d which maps the real axis onto
a circle of the complex plane containing the origin as an interior
point. For increasing d, Q moves clockwise if Pm z &#x3E; 0, counter-
clockwise if Sm z  0.

1°) R. Radau, "Étude sur les formules d’approximation qui servent à calculer la
valeur numérique d’une intégrale définie," Journal des Mathématiques pures et ap-
pliquées, 3me série, 6: 296, 1880.
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The circles described by P and Q intersect at A = P(cl) = Q(d2)
and B = P(c2) = Q (dl ) forming a lens containing the origin. The
sides of the lens correspond to the ranges cl  c  c2 and (1:2.2)
respectively.

PROOF. To demonstrate the existence of numbers dl and d2
having the stated properties, we use an argument found in [7].
Expanding rk-1(x) in terms of the system {qv(x)} yields

By the orthogonality properties of rk-1(x), only the last two terms
survive. Thus

where E &#x3E; 0 and

But on expanding qk-2(X)(b-x) in terms of the system {rv(x)} we
find

Thus F  0 and d2 = -F/E &#x3E; 0. A similar argument deals with
dl. Now the polynomial (1:2.1) has properties analogous to (1:1.1).
Hence, by Lemma 1, (1:2.3) holds for d in the range (1:2.2). For
any such d, integration of Lagrange’s formula based on the k+3
points

leads to (1:2.4) of degree k+2. For f(x) ~ 03C02k we have

(1:2.6) f(x) = 03A8(x)(x-a)(b-x)(x-z)(x-z)gk-3(x)+hk+2(x).

By (12), (1:2.4), and (1:2.6) we obtain

Thus (1:2.4) is of degree 2k.
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Applying (1:2.4) to

yields

Since a  03B4v  b, f(03B4v) &#x3E; 0. Therefore

Now

Notice that the denominator vanishes only for a value of d less
than dl. Recalling that the zeros of (1:2.1) are the /3v for d = dl, we
obtain

and by applying (1:1.10) we obtain

(Observe that the degree of the integrand does not exceed 2k. )
But a real linear fractional function is monotone in any range not

including the pole. Hence (1:2.2) implies

A similar argument shows that Qk decreases from Bk to 0 in the
range (1 :2.2).

This is the same type of transformation as (1:1.5) with dx(x)
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replaced by (x-a)(b-x)d~(x) and k replaced by k-1. Hence the
stated properties of Q are consequences of Theorem I. Now

the integral being evaluated by (1:1.12), and

by (1:1.10).
To prove the existence of a lens with the described properties,

choose d in the range (1:2.2) so that arg Q(d) ~ arg P( co ). Next
choose a real c so that

Applying the corresponding formulae (1:2.4) and (1:1.2) to

we obtain

By (1:2.3) and (1:2.5) we conclude

or

Therefore

Stated geometrically, Q describes one side of the lens formed by the
intersecting circles, going from B to A as d increases from dl to d2.

It is possible to prove in a similar way that

if P corresponds to c satisfying Cl  c  C2 and arg Q = arg P.
However, the rest of the theorem now follows easily from the fact
that both circles have the same orientation. Namely, as c increases
from cl to c2, P describes a circular arc from A to B. Since the
orientation is the same as that of the arc described by Q, this arc
must be the other side of the lens.
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REMARK 3. For d = 0 and t(X)E n2k+l (1:2.6) becomes

It follows that (1 :2.4) is of degree 2k+l for d = 0. The knots are
then the zeros of qk_1(x) which we denote by r,. Also writing
Q, = Tv, Q = T if d = 0, (1:2.4) reduces to

of degree 2k + 1.
We shall refer to (1:2.7) as Radau’s two-sided formula, for a similar
one was first derived by Radau for (a, b) = (-1, +1).11)

1 :3 Two classes of formulae of half-closed type of degree 2k+1.
THEOREM III. Let - ~  a  b ~ + ~, let {rv(x)} be the

orthonormal system defined by (13). There exists el  0 such

that the zeros n, of

are identical with the zeros Y, of pk(x) for e = el. For every e in
the range

the ~v satisfy

To these knots there corresponds a formula
1.

of degree 2k+1.

The coefficients R, satisfy

R is a linear fractional function of e which maps the real axis onto
a circle of the complex plane containing the origin as an interior
point. For increasing e, R moves clockwise if Sw z &#x3E; 0, counter-
clockwise if /w z  0.

The circles described by P and R intersect at A = P(C1) =
R(~) and G = P(0) = R(e1) forming a lens containing the origin.

11) Idem.
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The sides of the lens correspond to the ranges cl  c  0 and

(1:3.2) respectively.
If b  + oo, there exists e2 &#x3E; 0 for which

and (1:3.4) is then identical with Radau’s two-sided formula

(1:2.7). In particular

PROOF. The existence of a negative el, for which the zeros of
(1:3.1) are the y" is proved by expanding pk(x) in terms of the
system {rv(x)}. (See [7]). Hence, by Lemma 1, (1:3.2) implies
(1:3.3). For any e in the range (1:3.2), integration of Lagrange’s
formula based on the k+3 points

leads to (1:3.4) of degree k+2. For f(x) ~ Jt2k+1 we have

By (13), (1:3.4), and (1:3.7) we obtain

Thus (1:3.4) is of degree 2k+1.
Applying (1 :3.4) to

yields

Since r¡" &#x3E; a, we obtain

Therefore

Now
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Observe that the denominator vanishes only for a value of e less
than el. To prove that (1:3.2) implies Ro(e) &#x3E; 0, we examine two

special values. First

Next we see from (1:3.7) that (1:3.4) is of degree 2k+2 for e = 0.
Applying this formula to

we obtain

and the rest of (1:3.5) follows

This is the analog of (1:1.5) with dx(x) replaced by (x-a)dx(x).
Hence the stated properties of R are consequences of Theorem I.
Now

the intégral being evaluated by Gauss’s formula (1:1.8). (Observe
that the degree of the integrand does not èxceed 2k+1.)

this integral evaluated by Radau’s left-sided formula (1:1.10).
Next, choose e in the range (1:3.2) so that arg R(e) ~ arg P(oo).
Then choose a real c so that

Applying the corresponding formulae (1:3.4) and (1:1.2) to

we obtain
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By (1:3.3) and (1:3.5)

or

Therefore

Thus, as e increases from el to + oo, R describes one side of the
lens formed by the circles of P and R. Since both circles have the
same orientation, P describes the other side of this lens as c in-
creases from cl to 0.

Finally, suppose b  + oo. Then Lemma 1 implies the existence
of e2 &#x3E; 0 for which ~k = b. But then (1:3.4) has the same form and
degree as Radau’s two-sided formula (1:2.7) and hence must be
identical with it. Also directly it can be shown that

for suitable positive numbers E and F (See [7]).

THEOREM IV. Let - ~ ~ a  b  + ~, let {sv(x)} be the

orthonormal system defined by (14). There exists m2 &#x3E; 0 such

that the zeros ,uv of

are identical with the zeros y,, of pk(x) for m = m2. For every m in
the range

the 03BCv satisfy

To these knots there corresponds a formula

of deg 2k+1.
The coefficients S,, satisfy

S is a linear fractional function of m which maps the real axis onto
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a circle of the complex plane containing the origin as an interior
point. For increasing m, s moves clockwise if Sm z &#x3E; 0, counter.
clockwise if Jm z  0.

The circles described by P and S intersect at B = P(c2) =
S(~) and G = P(0 ) = S(m2) forming a lens containing the origin.
The sides of the lens correspond to the ranges 0  c  C2 and

(1:3.9) respectively.
If - oo  a, there exists m1  0 for which

and (1:3.11) is then identical with Radau’s two-sided formula

(1 :2.7). In particular

The circles described by R and S intersect at G = R(el) = S(m2)
and T = R(e2) = S(ml) forming a lens containing the origin. The
sides of the lens correspond to the ranges el  e  e2 and

m1  m  m2 respectively. The formulae (1:3.4) and (1:3.11)
corresponding to these ranges have positive coefficients and knots
contained in (a, b).

PROOF. The only new feature is the statement concerning the
sides of the lens formed by R and S. To prove this it is necessary
first to observe that the class of formulae (1:3.4 ), which corresponds
to the range (1:3.2), can be extended (at the sacrifice of (1:3.5)).
Indeed, the proof of Theorem III shows that (1:3.4) holds for any
real e except ea = rk(a)/rk-1(a), for which ~1 = a. Now choose m
in thé range Ml  m  m2 so that arg S(m) ~ arg R(oo),
arg S(m) =1= arg R(ea). Next choose a real e so that

Applying tlie corresponding formulae from (1:3.11) and the
extended class (1:3.4) to

we obtain

Since the 03BCv are all strictly betvveen a and b, we conclude by means
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of (1:3.12) that

or

Therefore

Also

if el  e  e2 and arg R = arg S. This follows either from a

similar argument or from our usual considerations of orientation.
The proof is now complete.

1 :4 Two classes o f formulae involving the leading coefficient o f the
integrand.
THEOREM V. Let - ~ ~ a  b ~ + ~, k ~ 1. Then for any

real c there is a formula

where

of deg 2k+1,

and c, P, e,, Pv (v = 1, 2, ..., k) are the quantities defined in
Theorem I. Pk+i satisfies

and (1 :4.1) follows with

But applying (1:4.1) to

yields

where Cx_l, Ck are the leading coefficients of pk-1(x) and pk(x)
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respectively. Since these coefficients are positive, (1 :4.3) is proved.
THEOREM VI. Let - oo  a  b  + oo, let {rv(x)} be the ortho-

normal system defined by (13). There exists e’  0 such that the

zeros q’ of

are identical with the zeros 03B3’v of pk-1(x) for e’ = ei. For every e’
in the range

the ~’v satisfy

To these knots there corresponds a formula

where

The coefficients R’v satisfy

R’ is a linear fractional function of e’ which maps the real axis
onto a circle of the complex plane containing the origin as an
interior point. For increasing e’, R’ moves clockwise if fm z &#x3E; 0,
counterclockwise if Pm z  0.

The circles described by P and R’ intersect at A = P(cl)
= R’(0) ànd G’ - P(~) = R’(e’1) forming a lens containing the
origin. The sides of the lens correspond to the ranges cl  c and

(1 :4.5) respectively.
PROOF. By Theorem III, with k replaced by k-1, there exists

ei  0 such that the zeros ~’v of (1:4.4) are identical with the zeros
03B3’v of pk-1(x) for e’ = ei. For e’ = 0 the n’ are the zeros oc, of

rk-1(x). Thus (1:4.5) implies (1:4.6). For any e’ in the range

there is a class of formulae

completely described in Theorem III.
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and (1:4.7) follows with

Applying (1:4.7) to

yields

where Ek-2 and Ek-, are the leading coefficients of rk-2(x) and
rk-1(x) respectively. Hence (1 :4.5) implies (1 :4.9). All that remains
is to discuss the relations between P and R’.

By Theorem III

But this is precisely the expression for R’(0). Also by Theorem III

Replacing k by k - 1 we obtain

Finally, choose e’ in the range (1:4.5) and a real c so that

Applying the corresponding formulae from (1:4.7) and (1:1.2) to

we obtain

By (1:4.9)

or
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Therefore

The rest follows from the fact that P and R’ describe identically
oriented circles.

§ 2. Applications of § 1 to the Determination of Rz

THEOREM VII. Let (a, b) = (- 00, + ~), n = 2k, k ~ 1. Then
Rz is the solid ellipse with principal circle described by 1/2P, and
a focus at the origin.
PROOF. We use only Theorem I. If f(x) ~ IIn and c is any real

number, we have by (2) and (1:1.2)

By (1) and (1:1.3) we obtain

with equality if and only if

for an appropriate positive constant D.
Since P describes a circle about the origin, the same is true of

1/2P, and if we let

(2:1.2) becomes

for all 0 corresponding to finite values of c. But the function of
support, h(03B8), of Rx is given by

Since equality is possible in (2:1.5) we obtain

and this holds for all 0 by the continuity of a function of support.
It follows that Rx is as described. We shall denote such an elliptical
set by Ep. It is constructed from the circle described by P, which
in turn depends upon (a, b), d~(x), n, and z.
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REMARK 4. Rz reduce to a circular disk if and only if the circle
described by P is centered at the origin. Since oo corresponds to
Pk(z)/pk-1(z) under the mapping (1:1.5), the center of this circle
corresponds to pk(z)/pk-1(z). Therefore a necessary and sufficient
condition for a circular disk is 

or

This is a polynomial equation in z of degree k + 1 (with roots
situated symmetrically about the real axis). Hence Rz is a circular
disk if and only if z is one of the imaginary roots of this equation.
THEOREM VIII. The circle described by 1/2P is given by

where

PROOF. The "kernel polynomial" Kk(x, w) is characterized by
the reproducing property

Therefore

Hence Kk(x, z) is a quasi-orthogonal polynomial of the form

where C and D are complex constants. Similarly K(x, i) and hence
all linear combinations

are quasi-orthogonal. Moreover any polynomial of the form
(2:1.7) can be written in the form (2:1.8), for Kk(x, z) and Kk(x, 2)
are linearly independent in the two dimensional vector space
defined by (2:1.7). To see this multiply the equation

by (x-z) and (x-z) and integrate. In (1:1.5), however, we are
concerned with real polynomials. If in (2:1.8) E and F are com-
plex conjugates, then (2:1.8) is real. Conversely if C and D are
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real in (2:1.7) and if

then

and

Thus E = F Therefore (1:1.5) becomes

and the theorem follows.

COROLLARY 1.

PROOF. By Theorem VII we have

and by Theorem VIII we obtain

This result agrees with the remark

of M. Riesz,12 ) for

12) Riesz, op. cit., pp. 20-21.
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2:2 (a, b) finite, n even, n &#x3E; 4

THEOREM IX. Let - ao  a  b  + ~, n = 2k, k ~ 2. Then
Rz is the convex hull of the union EP ~ EQ. (See Fig. 1).
PROOF. We use Theorems I and II. The analog of (2:1.1) is again

valid for f(x) ~ 03A0n. If ci  c  c2, then by Lemma 1 all e, are in
(a, b). Hence (2:1.2) and (2:1.3) follow as before but only for
these values of c. Therefore

Fig. 1. R, in the case (a, b) finite, n even, n ~ 4.

If d is the range (1:2.2), we have by (1:2.4)

By (1:2.3) and (1:1.13) the knots ô, are in (a, b), and by (1:2.5)
the coefficients Q,, (v = 0, 1, ..., k) are positive. Therefore

with equality if and only if

for an appropriate D. Setting
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we obtain

From the relationship between P and Q described in Theorem II
it follows that k(O) is now described for all values of 0 except
arg 1/2A and arg 1/2B. Furthermore, since p(O) and q(O) are re-
lated inversely as |P| and IQI, (2:2.1) and (2:2.6) can be combined
as

and this holds for all 0 by continuity of h(O). But the function
(2:2.7) is the function of support of the smallest convex set

containing both Ep and EQ, the sets associated with p(O) and
q(O ).13)
REMARK 5. It could have been proved directly that (2:2.1) holds

for c1 ~ c  c2. For example, let c = cl. Then (2:1.2) follows as
before but (2:1.3) is now replaced by a whole set of extremal poly-
nomials. This follows from the fact that e, = a so that a double
zero here is no longer necessary. (The plurality of extremal func-
tions indicates tha.t the boundary of Rz is straight in the direction
0=arg 1/2A.) In the future, however, it will sometimes be

necessary to rely on the continuity of h(0) in similar situations.

COROLLARY 2.

where Kk-1 is the kernel of degree k -1 of the distribution

PROOF. From Corollary 1 and the formula for Q, we obtain

Since

the assertion is proved. The results of corollaries 1 and 2 are gene-

13) G. Polya, "Untersuchungen über Lücken und Singularitâten von Potenz-
reihen," Mathematische Zeitschrift, 29: 577, 1928-9.
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ralizations of formulae for real z.14). Similar corollaries hold for
the remaining theorems of § 2.

THEOREM X. Let - ~  a  b = + ~, n = 2k+1, k ~ 1.
Then Rz is the convex hull of the union Ep u ER.
PROOF. We use Theorems III and V. For f e 03A0n and e in the

range (1:3.2) we have by (2 ) and (1:3.4)

By (1:3.3) and (1:3.5) we obtain

with equality if and only if

Setting

there follows

For any real c we obtain by (1:4.1)

Since f(x) &#x3E; 0 for x ~ a, we observe that

For c in the range

the knots e, are in (a, b ) and the coefficients P v(’V = 1, 2, ..., k+1)
are positive by (1:1.3) and (1:4.3). Therefore

with equality if and only if

14) Riesz, op. cit., p. 20. See also Szegô, op. cit., p. 178.
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and hence

Therefore

By Theorem III and the continuity of h(0 ) we now can combine
(2:3.5) and (2:3.11) into

and the theorem follows.

TIIEOREM XI. Let - ~ = a  b  + ~, n = 2k+1, k &#x3E; 1.
Then Rz is the convex hull of the union Ep w Es.
PROOF. We use Theorems IV and V. The analog of (2:3.6) is

again valid, but (2:3.7) becomes

For c in the range

the knots e, are in (a, b ), and the coefficients are positive with the
exception of Pk+,, which is negative. Therefore the appropriate
version of (2:3.9) again follows. The remainder of the proof has
no new feature.

THEOREM XII. - ~  a  b  + ~, n = 2k + 1, k ~ 1. Then
Rx is the convex hull of the union ER u Es.
PROOF. We use Theorems III and IV. For f(x) E IIn and e in the

range (1 :3.2), the analog of (2:3.1) again holds. If e also satisfies

then all the knots ~v are in (a, b). Therefore we obtain

Similarly, from (1:3.11) and (1:3.12) there follows

where
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By the conclusing statements of Theorem IV, (2:4.2) and (2:4.3)
can be combined into

and the theorem follows.

2:5 (a, b) hal f infinite, n even, n &#x3E; 4

THEOREM XIII. Let - ~  a  b = + ~, n = 2k, k ~ 2.
Then Rz is the convex hull of the union EP ~ ER’.
PROOF. We use Theorems I and VI. Proceeding as in Theorem

VII we obtain

the restriction on c making all knots lie in (a, b). For e’ in the range
(1:4.5) and f(x) ~ 03A0n, we have by (1:4.7)

where the coefficients R’v (v = 0, 1, ..., k) are positive according
to (1:4.9). Since Cf ~ 0 and ail knots are in (a, b) by (1:4.6), there
follows

with equality if and only if

and

It follows that

where

By the concluding statements of Theorem VI, we have

and the theorem follows.

REMARK 6. A similar theorem holds in the case - oo = a  b
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§ 3. The Special Cases n = 1, 2

3:1 n = 1

THEOREM XIV. For n = 1, Rz is the line segment joining
(z-a)/ba(x-a)d~(x) and (b-z)/ba(b-x)d~(x), where either
fraction is to be interpreted as its limit 1/bad~(x) if the appro-
priate number a or b is infinite.

PROOF. We use a direct method not involving quadrature for-
mulae : Let f(x) = cx+d ~ 03A0n. Using the abbreviations

we have

Elimination of d yields

a condition equivalent to (2). Assuming first that (a, b) is finite,
we observe that property (1) of the class IIn is equivalent to the
pair of inequalities

This in turn is equivalent to

or

By (3:1.1) we conclude that Rz is the line segment

where c assumes all values in the range (3:1.3), and this is equiva-
lent to the statement of the theorem.

If - ~  a  b = + ~, then (1 ) is equivalent to

from which we obtain

By the above convention, (3:1.1) and (3:1.6) together are equi-
valent to the statement of the theorem. In a similar way the theo-

rem is seen to hold if - ~ = a  b  + ~.
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If both a and b are infinite, 03A01 reduces to the trivial class Ho,
and the line segment defined above reduces to the single point
1/bad~(x) as it should.

THEOREM XV. Let - ~  a  b  + ~, n = 2. Then Rz is
the convex hull of the union

(See Fig. 2)
PROOF. Proceeding as in Theorem IX, we employ the formula

to conclude

Fig. 2. R, in the case n = 2, (a, b) finite.

However, since Theorem II holds only for k ~ 2, a new class of
formulae is needed to obtain h (0) for other values of 0. We construct
a "convex" one-parameter family of formulae which "joins con-
tinuously" with the Radau formulae

and
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associated with c = cl and c = c2 respectively. For d in the range

we apply (3:2.3) to df(x), and (3:2.4) to (1-d)f(x), and add. There
results

where

Thus the coefficients Ko and K, of (3:2.6) are positive, while K
describes the line segment between A and B. This line does not
pass through the origin as is evident on applying (3:2.6) to

Applying (3:2.6) to the members of 03A02 and setting

we obtain

These values of 0 must be disjoint from those in (3:2.2). Therefore
h(03B8) is now described for all 0. Finally, since the extremal poly-
nomial associated with (3:2.9) is

independent of 0, (3:2.2) and (3:2.9) combine to give the stated
result.

THEOREM XVI. Let - oo  a  b = + oo, n = 2. Then Rz is
the convex hull of the union

PROOF. Beginning as before we use formula (3:2.1) to obtain

Next, we observe that there is a formula

where
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(3:2.13)

derived as in Theorem V. Applying this formula to

we obtain

For any e in the range

we apply (3:2.3) to ef(x), and (3:2.12) to (1-e)f(x), obtaining

(3:2.16) M0f(a)+M1Cf+Mf(z)+M(z)=baf(x)d~(x) of degree 2,
where

Thus the coefficients Mo and Ml of (3:2.16) are positive, while M
describes the line segment between A = P(c1) and L = P( oo ).
Applying (3:2.16) to

we see that this line does not pass through the origin. The rest
follows as in Theorem XV.

REMARK 7. For the case - oo = a  b  + oo, n = 2 a similar

argument shows that Rz is the convex hull of the union

The case (a, b) = (-~, +~), n = 2 is of course included in
Theorem VII.

§ 4. The Variation of Rz with z

4:1 A lemma on continuity
LEMMA 2. Let zo be any complex number, let 03B5 &#x3E; 0. Then there

exists ô = 03B4(03B5, zo) &#x3E; 0 such that |z-z0|  03B4 implies |f(z)-f(z0)|  03B5
for any f ~ 03A0n and any complex number z.

PROOF. Suppose the lemma is false. Then for some complex
number zo there exist e &#x3E; 0, a sequence {zv}, and a sequence
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{fv} C IIn such that {zv} ~ zo, and |fv(zv)-fv(z0)| &#x3E; e for all v.

Since 03A0n is compact in En+1’ we can assume {fv} ~ 1,E IIn. The
inequality

now shows that {fv(z)} ~ f(z) uniformly in any bounded set.
It follows that f(z) is discontinuous at z = zo. Indeed, let

N(zo) be an arbitrary neighborhood of zo. Choose v so that z"eN(zo)
and so that |f(z)-fv(z)|  e/3 for all z in some compact set con-
taining {zv}. Then

This absurdity being reached, the lemma is established.

4:2 A continuity theorem 

THEOREM XVII. If h(03B8) and ho(0 ) are the functions of support
of Rz and Rz0 respectively, then

PROOF. Let e be an arbitrary positive number. For any 0 there
exist appropriate polynomials f(x) and fo(x) in the class 03A0n such
that

and

If |z-z0|  03B4(03B5, zo), then by Lemma 2 and the definition of a
function of support we obtain

or

Similarly

Thus

implies
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