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Higher-Dimensional field Theory
I. The integral closure of a module

by

E. Snapper

Introduction.
Let E/F be a finitely generated field extension, i.e. E and F

are commutative fields and there exist a finite number of elements

el, ..., en in E, such that E = F(el, ..., en). If the, necessarily
finite, degree of transcendency of E/F is at least 2, we possess
only very little coherent theory of E/F, even though many of the
theorems of higher-dimensional algébraic geometry can be inter-
preted in terms of these higher-dimensional field extensions. One
of the reasons for this is that the theorems concerning algebraic
varieties are formulated and proved by means of models and
homogeneous coordinates, while the importance of these theorems
for abstract algebra, whenever they have any, can only be detected
if they are formulated and proved by means of notions and
methods which belong in the style of modern algebra. Think for
a moment of Lüroth’s theorem, whose geometric importance for
curve theory is beautifully brought out, by the use of homo-
geneous coordinates, in section 5 of Severi’s Vorlesungen. Never-
theless, unless we observe that the algebraic content of this
theorem is the well-known statement concerning the intermediate
fields of a simple transcendental field extension and prove this
statement directly by means of some simple argument of modern
algebra, we have missed the importance of Lüroth’s theorem for
field theory.
The purpose of the present three articles, entitled Higher-

Dimensional Field Theory 1, II, III, is to give a start to higher-
dimensional field theory, by developing the theory of linear
systems of algebraic varieties intrinsically in terms of a finitely
generated field extension E/F. Instead of using models and homo-
geneous coordinates, we use only notions and methods which can
properly be regarded as to belong in the style of a modern al-
gebraic treatment of E/F. The articles are consequently self-
contained and require no knowledge of algebraic geometry from



2

the reader. The terms have been chosen in such a way as to con-
form with the terminology of the underlying geometry. No result,
which the author considers as being of only secondary importance,
has been labeled theorem. We now give a short introduction
to each of these articles, listed by subtitle.

I. The intégral closure of a module.

(Referred to as FI.) The notion of the integral closure of a
module was introduced in [1]. (Square brackets refer to the

références). The whole field-theoretic approach to linear systems
is based on this notion. In order to keep the present articles self-
contained, the pertinent material of [1] is reviewed, without
proofs, in the first section. The author does not feel happy about
the proof of the theorem discussed in [1] and of statement 2.2
of the present paper FI. The reason is that the trick of adjoining
a variable to E is nothing but a sly way of using homogeneous
coordinates and this trick does not belong in the style the author
has set for these papers. Probably, both these facts can be proved
without the adjunction of a variable to E, but the author possesses
no such proofs at this moment. The remainder of the three articles
is completely in the style of an intrinsic theory of E/F.

II. Linear systems. (Referred to as FII.)
Here we establish the notion of the divisors of the first kind of a

projective class of modules and then study the connection between
the integral closure of a module and the divisors of the first kind
of a projective class. This valuation-theoretic treatment of the
integral closure of a module gives the correct field-theoretic inter-
pretation of Zariski’s theorems on linear systems without base
points. These theorems occur in two, as yet unpublished, ma-
nuscripts of Zariski, entitled "On Arithmetically Normal Varieties"
and "Algebro-geometric interpretations of the 14th problem of
Hilbert"; these manuscripts are referred to as respectively Z
and ZH. 1)

III. Normalization. (Referred to as FIII.)
Here we derive, again purely field-theoretically, the principal

theorems on normalization which Zariski obtained in [2] and Z.
The author wants to say explicitly that all theorems on linear

systems which occur in these articles belong to Professor Zariski;

1) ZH has appeared in print in "Bull. Sci. Math. (2), 78, pp. 155-168 (1954)".
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for each such theorem it is stated where Zariski’s formulation

and proof can be found. The author also wishes to use this op-
portunity to thank Professor Zariski for the great help he received
from him, several times per week, during 1953-1954.

It is not intended that the present articles convey the idea that

algebraic geometry is to be considered as a part of field theory
and should be developed without the use of models and homo-
geneous coordinates. The content of these articles is not geometry,
but is higher-dimensional field theory. And although this theory
is logically independent of the geometry from which it arose, it

could never even have been started if the geometry had not been

developed first. On the other hand, it is hoped, that this higher-
dimensional field theory may provide further useful tools for

geometry.

1. Review of [1]. Let E/F be as in the introduction. A module
3f = (al, ..., am ) of E consists of the linear combinations

c1a1+ ... + Cm am , where a,, ..., am are fixed elements of E and
ci, ..., cm are arbitrary elements of F. Only this type of modules,
i. e. modules which are finitely generated over F, will occur in
this paper and hence "module" will always mean finitely generated
module." The sum (Ml, ..., Mh ) of the modules M1, ..., Mh is
the module which consists of the sums bi + ... + bh , where
bj E Mj, and the product M1 ·...·Mh is the module which is

generated by the products b1 ·...·bh; the product of just two
modules Mi and M2 is written as Mlm2 instead of Mi M2.
Both addition and multiplication are commutative and associative
and these operations combine under the law of distributivity. In
particular, defining M° = F when M ~ 0, the powers Mi of a
nonzero module are well defined for all nonnegative rational
integers j; of course, when M = 0, Mi = 0 when i ~1.

The integral closure |M|i of a module M is the module which
consists o f the elements e E E, for which there exiqts a nonzero
module L, such that eL ~ LM; the finite generation of |M|i z was
proved in [1]. Always, M ~ |M|i ~ F~M~, where F~M~ denotes
the ordinary integral closure of the ring F [M] in E. Precisely,
e E 1 Mli if and only if e satisfies an equation xm+a1xm-1+... +am=0,
where m &#x3E; 1 and aj E Mi for j = 1, ..., m. We will often use that
for any a ~ E, a|M|i = |aM|i, an equality which follows im-
mediately from the definition of 1 MI i - 
We can prove as follows that F~M~ is always Noetherian, a

fact which we omitted to observe in [1]. If F(M) denotes the
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field of quotients of F[M] and A the algebraic closure of F(M)
in E, F(M) is also the integral closure of F[M] in A. The field
extension A/F(M) is, as an intermediate extension of a finitely
generated f i eld extension, itself finitely generated and hence has a
finite field degree. Consequently, according to a classical theorem,
F(M) has a finite number of generators when considered as a
module over F[M], which proves the assertion.

2. Adjunction of a variable to E. Consider the field extension
E(x)/F, where x is transcendental with respect to E. When M
is a module in E, M is also a module in E(x) and, since E is
algebraically closed in E(x), the integral closures IMI, i of M in
E is identical with the integral closure of M in E(x); consequently,
when forming integral closures, we can completely forget about
E and consider only E(x). Furthermore, xM is a module of

E(x) and we denote again by F~xM~ the ordinary integral
closure of the ring F [xM] in E (x ).
STATEMENT 2.1. Let M be a module of E and e an element o f E.

Then, for any h~0, e ~ |Mh|i Z i f and only i f xhe E F~xM~.
PROOF. If e ~ |Mh|i, xhe~xh|Mh|i = |(xM)h|i ~ F«aeM)k), where

F~(xM)h denotes of course the integral closure of the ring F [(xM)h]
in E(x). Now F[(xM)h] ~ F[xM] and every element of xM is
integral with respect to the ring F[(xM)h], which shows that
F~(XM)h~ = F~xM~; hence xhe E F~xM~. Conversely, let

xheE F~xM~, say (xhe)n + al(xlle)n-1 + ... + a n = 0, where

a; E F [xM] . Then, each aj is a polynomial c0+c1x + ... +csx8
with cu E Mu, and if we equate the coefficient of xhn in this equation
to zero, we find that en+b1en-1 -f - ... + bn = 0 where b; EMki;
hence e~|Mh|i and we are done.

Since F[xM] ~ E[x] and E[x] is integrally closed in E(x),
F~xM~ ~ E[x]. Let f = e0+e1x + ... + enxn be a polynomial
of E [x] which lies in F~xM~. We can prove, by means of the
following argument of Zariski, that then each individual term
ejxj belongs to F~xM~. (See footnote 24 of [2].) If c is a nonzero
element of F, the substitution z-cz gives rise to an automorphism
Sc of E [x] which maps F~xM~ onto itself and hence Sc(f) ~ F~xM~.
If F contains n+1 distinct, nonzero elements co,..., cn , we
conclude from Sc0(f),...,Scn(f) ~ F~xM~ that each ejxj E F~xM~.
Otherwise, we go over to the algebraic closure F* of F, which is
contained in an extension field E* of E and we consider the tower

F*[xM] ~ F*~xM~ ~ E*[x], where F*~xM~ denotes the integral
closure of the ring F* [xM] in E* (x). Since F* has infinitely many
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elements and our 1,E F*~xM~, each ejxj ~ F*~xM~. Furthermore,
every element of F* [xM] depends integrally on F [xM], and hence
ejxj E F~xM~, which proves the assertion.

Consider the contraction in F~xM~ of the prime ideal (x) of
E[x]; i.e., we consider the prime ideal p of F~xM~, which consists
of the polynomials of F~xM~ with zero constant term. Since
E(x)/F is still finitely generated, F~xM~ is again Noetherian
and hence p has a finite ideal basis, say p = ( fl, ..., fn) where
fj E F~xM~. According to the just completed argument, each term
of each polynomial fj belongs to p and hence we can use these
terms also as an ideal basis for p. In other words, p possesses an
ideal basis whose elements are of the form ejxj, where j ~ 1 and
e; E IM’li ’

It is only for the proof of the following statement, that the
variable x was adjoined to E.
STATEMENT 2.2. Let M be a module of E. There exist a finite

number of rational integers ul, ..., un, where each uj~1, such that
for all h~1, imhli = (|Mh-u1|i|Mu1|i, ..., Mh-un|i|Mun|i). Only
those terms |Mh-uj|i|Muj|i are written down on the right hand side
for which h &#x3E; U; .
PROOF. Let e1xu1, ..., enxun, where e, E 1 Mui and uj~1, be

an ideal basis for p. We will show that these integers ul, ..., u.
satisfy the requirement of statement 2.2. If Li, ..., Lh are any
h modules of E, it follows immediately from the definition of the
integral closure of a module, that the following rule holds for
products : |L1|i·...· |Lh|i ~ |L1·...· Lkli. Consequently, each
term |Mh-uj|i|Muj|i ~ |Mh|i and all we have to show is that

1 Mk/iC (1 |Mh-u1|i |Mu1|i, ..., I Mh-u" Ii IMUnl i)· If e E IMkli’ xhe E F~xM~
and since h~1, xhe = f1e1xu1 + ... + fnenaeun, where f ; is a

polynomial of F~xM~. Since e, e1,..., en and the coefficients
of each f ; all belong to E, we may assume that fj = d;aek-uJ,
where dj ~ 1 Mh-ui 1, i and where we consider only those terms for
which h &#x3E; u;. We cancel xh at both sides and obtain that
e = dl e1 -E- ... + dnen and we are done.

3. Proof of the principal theorem. It is easy to draw the following
consequence from statement 2.2.
STATEMENT 3.1. Let M be a module o f E and let the integers ul, ..., un

be as in statement 2.2. Then, if h ~ tMax(u1, ..., un ) where t is a
positive rational integer, 1 Mh Ji = 03A3|Mh-j1u1-... -i.un li (|Mu1|i)j1·...·
(|Mun|i)jn, where the sum is extended over all nonnegative rational
integers j1,..., jn f or which il + ... + jn = t.
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PROOF. When t = 1, statements 3.1 and 2.2 coincide, since then

h~uj for j = 1, . ..., n and hence all the terms on the right hand
side of the expression for |Mh|i, given in statement 2.2, occur.

Suppose then that the present statement has been proved for
t = 1, 2, ..., to-1 and that h~ to Max (ul, ..., un). Then, cer-
tainly li (t0-1)Max(u1, ..., un) and hence

|Mh|i = 03A3|Mh-j1u1-...-jnun|i(|Mu1|i)j1· (|Mun|i)jn,

where j 1 + ... + jn = to -1. Furthermore, h-j1u1-...- jnun
&#x3E; h-(t0-1)Max(u1, ..., un) ~ Max (u1, ..., un). Hence each

coefficient |Mh-j1u1-...-jnun|i in this expansion for |Mh|i can itself
be expanded according to the case t = 1 and we are done.

We now introduce a new fact concerning integral closures of

modules.
STATEMENT 3.2. Let M be a module of E. Then there exists a

nonnegative rational integer ho, such that, i f h ~ h0, (|M|i)h+s =
(|M|i)hMs for all s ~ 0.
PROOF. All we have to show is that, when h ~ h0, (|M|i)h+1 =

(|M|i)hM. Namely, this means that our statement has been

proved for s == 0, 1. We can then assume that it has been

proved for s == 0, 1, ..., so -1 and conclude that (|M|i)h+s0=
(|M|i)(h+1)+(s0-1) = (|M|i)h+1Ms0-1 = (|M|i)hMMs0-1 = (|M|i)hMs0.
The inclusion (|M|i)hM ~ (|M|i)h+1 is trivial since, for any h~0,
(|M|i)hM ~ (|M|i)h|M|i = (|M|i)h+1. In order to show that

(|M|i)h+1 ~ (|M|i)hM, when h is large enough, let e E 1 M 1 i. Then
en+a1en-1 + ... + an --- 0, where n~1 and a, E Mi. It follows

that, when j~1, ajen-j~Mj(|M|i)n-j = MMi-1(|M|i)n-j ~
M(|M|i)j-1(|M|i)n-j = M(|M|i)n-1, which shows that

en~M(|M|i)n-1, Let IMII = (a1,..., ak), where anjj ~ M(|M|i)nj-1
and m = Max(n1,.,,,.nk). Then am E M(|M|i)m-1 for j = 1, .. , k,
since am = anjj am-njj ~ M(|M|i)m-1. For

any h &#x3E; 0, the monomials ail..... a§k, where ql -f- ... + qk = h,
generate (|M|i)h. There exists of course an ho such that, when
h &#x3E; ho, each one of these monomials factors out at least one

amj for some 1~j~k; we now show that this ho has the required
property. Namely, if h &#x3E; ho, aq11·...· ak = amj aq11·...· aqj-mj
·...·aqkk ~ M(|M|i)m-1(|M|i)q1 ..... · (|M|i)qj-m·..... (IMli)qk =
M(|M|i)h-1 and consequently, (|M|i)h ~ M(|M|i)h-1. We multiply
this last inclusion on both sides with |M|i and we are done.
We now prove the principal theorem concerning integral

closures of modules.
THEOREM 3.1 Let M be a module of E. Then there exisis a non-
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negative rational integer ko, such that, i f k~k0, |Mk+s|i = |Mk|iMs
for all s~0.

PROOF. Again, all we have to show is that, when k ~ ko,
IMk+lli = |Mk|iM. Namely then we can, as in the proof of
statement 3.2, assume that our theorem has been proved for
s = 0, 1, ..., so -1 and conclude that

|Mk+s0|i = |M(k+1)+(s0+1) M So.
Furthermore, |Mk+1|i = |Mk|iM is proved, as soon as we have
shown that there exists some module N such that |Mk+1|i = NM.
Namely then, using the definition of |Mk+1|i together with the
fact that NM is finitely generated, we first conclude that there
exists a module L such that NML c LMk+1 = LMMk; then,
using the definition of |Mk|i, we see that Ne |Mk|i and hence
that |Mk+1|i~ |Mk|iM. The inverse inclusion is trivial, since

for any k~0, always IMkliMc IMk/iIMli’ and, using the

rule for products expressed in the proof of statement 2.2,

|Mk|i|M|i ~ |Mk+1|i. We now return to the modules 1 Mul Ji, ..., |Mun|i
of statement 3.1, in order to show that there exists an integer ko,
such that when k~k0, |Mk+1|i factors out M. Using Mlli as the
module M of statement 3.2, we denote by h(j)0 the integer which
this last statement associates to Mui; let ho = Max (h(1)0, ..., h(n)0).
We then choose an integer to, such that when j1+ ... +in = 10
where jl, ..., j n are nonnegative rational integers, at least one
jm~h0+1. ive will show that k0 = tomax(ul, ..., un) has the
required property. Namely, according to statement 3.1, when

k~k0, IMkli can be written as a sum of terms each one of which
factors out (|Mu1|i)j1· ..... (|Mun|i)jn with j1+... +jn=t0; hence,
each of these terms factors out at least one (|Muj|i)h0+1 =
(|Muj|i)h0Muj. Since uj~1, this shows that IMkii factors out M;
of course, if k~k0, also k+1~k0, and hence 1 Mk+l Ji also factors
out M and we are done.

4. The dimension of IMhli . Let M be a module of E. The dimen-
sion of M is of course the maximum number of elements of M

which are linearly independent with respect to F. If M = (a1,..., am)
and p is the prime ideal of the polynomial ring F[x1, ..., xm]
which consists of the polynomials which vanish for Xi = aj,
j - 1, ..., m, the residueclass ring F[x1, ..., xm]/p is F-isomor-

phic with the ring F[M]. Hence, the maximum number of poly-
nomials of F[x1, ..., xm] of degree at most s, which are linearly
independent modulo p, is equal to the dimension of the module
(M°, M, M2, ..., Ms). We assume momentarily that 1 E M,
which implies that Mh ~ Mk when h  k, and hence that
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(M°, M, M2,..., M3) = M8. We can then conclude from the

theory of the Hilbert characteristic function of p that there
exists a polynomial f(x) with rational coefficients, whose degree
d is equal to the degree of transcendency of the field extension
F(M)/F, and which is such that dim(Ms) = f(s), when s is large
enough. Since Ms ~ M8+l, f(s) is a nondecreasing function for
large s and hence its leading coefficient co must be positive.
Furthermore, f(x) is a polynomial which takes on integral values
for all large integral values of x. Consequently, when we write

this polynomial as f(x) = a0(x d) +a1(x d-1) + ...+ad-1(x 1) -f-aa,
where Ixl is the usual binomial coefficient x!/j!(x-j)!, the coef-

ficients ao,..., ad are all rational integers; this general property
of polynomials can be proved in a few lines by induction on d,
as observed by Zariski in Z. Clearly co = ao/d ! and hence also
a0&#x3E;0. We call ao the degree of M and f(x) the Hilbert characteristic
function of M. If 1 ~ M but M:A 0 (i.e., M does not consist of
only the zero element of E), we choose any nonzero element
a e M and apply the above reasoning to the module (l/a)M;
this is permitted since 1 e (1 la)M. Furthermore, because (1/a)M)3
= (1/a3)MB, we see that dim(((1/a)M)s) = dim(M8), and hence
the Hilbert characteristic function of (l/a)M gives the dimen-
sion of M8 for large values of s. It follows in particular that this
polynomial is independent of the choice of a, which is further

clarified by the observation that the field F((1/a)M) is evidently
independent of a. Since clearly, F(M) = F(a,(l/a)M), the degree
of transcendency of F(M)/F is either equal to that of F((1/a)M)/F
or exceeds it by unity. We have now arrived at the following
formulation of the classical theorem concerning the Hilbert

characteristic function.

STATEMENT 4.1. Let M be a nonzero module o f E. The Hilbert
characteristic function of M is the rational polynomial f(x) =

a0(x d)+a1(x d-1) +... +ad, which is such that dim (M8) = f (s),
when s~ so; here, go is some rational integer associated with M.
The degree d of f(x) is the degree of transcendency of the field ex-
tension F((1/a)M)/F, for any nonzero a E M. The coefficients
ao,..., ad are rational integers and the positive integer ao is called
the degree of M.

In order to prove theorem 4.1, we have to consider a slight
generalization of statement 4.1, since we have to deal with the
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dimension of MsN, where both M and N are nonzero modules
of E. Let M = (ai, ..., am), N = (bl, ..., bn ) and let p denote
the prime ideal of the polynomial ring F[xl, ..., xm, y1,...., yn]
which consists of the polynomials which vanish for xj = aj,
yk = bk, where i = 1, ..., m and k = 1, ..., n. Clearly, the

residueclass ring F[x1,..., en, y,, y.]/p is F-isomorphic
with the ring F[M, N] and hence the maximum number of
polynomials of F [xl, ..., xm , yj, ..., yn] of degree at most s in
xl, ..., xm and at most one in Yl’ ..., yn, which are linearly
independent modulo ,p, is the dimension of the module

(MO, M, M2, ..., M8)(N°, N). We assume again momentarily
that 1 E M and 1 E N, which implies that ( M°, M, M2, ..., Ms)
(N0, N)=MsN. Any derivation of the classical theorem on the
Hilbert characteristic function can also be used to prove the
existence of a rational polynomial f(x) which is such that, when
s is large enough, f(s) is the maximum number of polynomials
of F [xl, ..., xm, y1,..., yn] of degree at most s in x1,..., xm
and at most one in y,, ..., y.. which are linearly independent
modulo p. (The author must warn the reader that this is not the
same as to quote the well-known fact that the theory of the
Hilbert characteristic function can be worked out for two sets of

variables xi, ..., xm and yi, ..., yn. In the latter case, we vary
the degree of both the variables xl, ..., xm and the variables

yi, ..., yn freely but, in our case, we only vary the degree of the
variables xl, ..., aem freely while keeping the degree of the variables
y1, ..., yn bounded by one.) Again, the degree d of f(x) is the

degreé -of transcendency of the field extension F(M)/F and,
since f(x) has again the property of assuming integral values for
all large integral values of x, we obtain again an integral polyno-
mial when f(x) is expressed, as before, in terms of binomial

coefficients. The fact that the leading coefficient of f(x) is

positive now follows from the observation that MsN ~ Ms+1N.
Finally, if M and N are arbitrary nonzero modules of E, we
apply this reasoning to the modules ( 1 /a )M and (1/b)N, where
a and b are any nonzero elements of respectively M and N. We
observe that ((1/a)M)s((1/b)N) = (1/asb)MsN and hence that
dim(((1/a)M)s((1/b)N)) = dim(MsN) and we have arrived at

the following formulation of the classical theorem on the Hilbert
characteristic function, which is general enough for our purpose.
STATEMENT 4.2. Let M and N be nonzero modules of E. There

exists a rational polynomial f(x) = ao x + a, x + ... + ad,
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which is such that dim (MsN) = f(s), when s~s0; here, so is .some
rational integer associated with M and N. The degree d of f(x) is
the degree of transcendency of the field extension F((1/a)M/F,
f or any nonzero a E M. The coefficients a0,..., ad are rational

integers and ao is positive.
We now return to theorem 3.1 and to the integer k0 which

occurs there. By using the module IMko 1 i as the module N of
statement 4.2, we see that there exists a rational polynomial
1’(x), which is such that dim (|Mk0+s|i) = f’(s), when s~s0. We
rewrite the polynomial f’(x) as f(x-k0) and have obtained the
following theorem.

THEOREM 4.1. Let M be a nonzero module of E. There exists a

rational polynomial f(x) = a. (d) +a1(x d-1) +... +ad, which is

such that dim (|Ms|i) = f(s), when s~s0; here, so is some rational

integer associated with M. The degree d of f(x) is the degree of
transcendensy of the field extension F((1/a)M)/F, for any nonzero
a E M. The coefficients ao, ..., ad are rational integers and ao is

positive.
The polynomials of both statement 4.1 and theorem 4.1 are

invariantly associated with the module M. The author believes
that the polynomial of theorem 4.1 will turn out to be the im-
portant one.

5. Further relations between |M|i and F~M~. The two statements
of this section are auxiliary results which are needed for FII
and FIII. They are derived here, because they belong in the part
of the theory which is independent of the valuation theory of
our field E.

Let M be a module of E and let us denote by N, the module
(MO, M, M2, ..., Ms), for any s ~ 0. Clearly, the set-theoretic
union uNs of these modules is the ring F [M] and F[M] = F[Ns],

s=o

for s ~ 1. We now derive the corresponding result for the ring
F~M~ and the set-theoretic union ~ INs/i of the integral closures

IN,li. As always, F~M~ denotes the ordinary integral elosure in
E of the ring F [M] .
STATEMENT 5.1. F~M~ = u IN,li and there exists a rational in-s=o

teger so, such that for all s &#x3E; so, F~M~ = F[/Ns/iJ.
PROOF. Let a E Û /Nsli i.e., a ~ |Ns|i for some fixed s ~ 0; then,

according to section 1, a E F~Ns~. If s~1, F[M] = F[Ns] and
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hence F~M~ = F~Ns~; if s = 0, F[NO] = F and hence F~N0~
is then the algebraic closure of F in E, which shows that in this
case F~N0~ ~ F~M~. Consequently, in both cases, a E F~M~.
Conversely, if a E F~M~, an + el an-l + ... + cn = 0, where

n ~ 1 and cj~F[M] for j = 1, ..., n. Since F[M] = UN, and
Nh ~ Nk when h  k, there exists a fixed m such that ci E Nm
for j = 1, ..., n. We then conclude from an = - el an-l- c2an-2
-... -Cn that an E (an-lN m’ an 2Nm, ..., Nm) = (an-l, an-2, ...,1)Nm.
Furthermore, 1 ENm and hence (an-1, an-2, ..., 1)~(an-1, an-2, ..., 1)Nm,
so that we can conclude that (an, an-1, ..., 1)~(an-1, an-2, ..., 1 )Nm.
Clearly, for any j~0, (ai, ai-t, ..., 1) = (a, l)i and hence we have that
(a, 1)n~(a, l)n-INm, Le., since n ~ 1, that (a, 1)(a,1)n-1~(a, 1)n-1Nm.
It now follows from the definition of INm/i i that (a, 1) ~ lV",’ i
and hence that a ~ |Nm|i; this finishes the proof that

F~M~ = U INs/i. Since |Nh|i ~ |Nk|i, when h ~ k, the sequence
F[|N1|i]~F[|N2|i]~ ...~F[|Ns|i]~ ..8 is an increasing sequence
of F[M]-modules of F~M~. We have seen in section 1 that
F~M~ has a finite number of generators, when considered as a
module over F[M], and consequently there exists an so such that

F[|Ns0|i] = F[|N|i], when s ~ s0. Since F~M~ = go |Ns|i, cer-

tainly F~M~ = ~F[|Ns|i], which shows that F~M~ = F[INsliJ
when s ~ s0; done.

REMARK 5.1. In many cases, F~M~ = U IMs/i8 For example,s=o

in most of our applications 1 E M, which implies that Ns = Ms
and hence that statement 5.1 is then valid with N, replaced by
MS. In the case of the ring F~xM~ of section 2, F~xM~ is not

equal to U |(xM)s|i and, no matter how large we choose s, alsos=o

not equal to F[|(xM)s|i]. However, F~xM~ is equal to the in-
finite sum .,.,,I(xM)-ll, .0 (xM)s|i of the modules |(xM)s|i, which follows
from statement 2.1 together with the assertion, proved in section 2,
that if e0+e1x+ ... +e,,x" E F~xM~ fl E[x], each ejxj ~ F~xM~.
In general, although always F[M] ==_Y’o 0 Ms (this is equivalent to
the assertion that F [M] = UNs), F~M~ is not equal to 03A3~s=0|Ms|i,
as the following example demonstrates. Let E = F(t), where t

is transcendental over F, and let M = (t2). Then, F[M] = F[t2]
and F~M~ = F[t]. Furthermore, Ms = (12S) = t28(1), from which
it follows that |Ms|i = t2s|(1)|i = (t2S). (|(1)|i i s always the al-

gebraic closure of F in E which, in our case, is F itself ). Hence
03A3~s=0 |Ms|i = F[t2], which is not equal to F[t].
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We now go over to the second statement of this section. If M
is a nonzero module of E and h a nonnegative rational integer,
we denote by Q(M; h) the module of E which consista of the elements
e o f E which are such that eM8 eM8+h for some s~0. It is clear that
Q(M; h) is closed under multiplication by elements of F while,
if eM8 e M8+h and e’Ms’ ~ Ms’+h where say s ~ s’, also e’ M8 ~ Ms+h
and hence (e:f:e’)M8 e M8+h. Moreover, since M8+h = M8Mh, it

follows from the definition of IMh/i and the fact that M =/:-0, that
Q(M; h) ~ |Mh|i; this shows that Q(M; h) is finitely generated
and hence that Q(M; h) is indeed a module. We also observe, by
choosing s = 0, that Mh ~ Q(M; h). The importance of the

module Q(M; h) is minor as compared to that of |Mh|i. Even so,
these two modules have similar properties, as the following
statement, which is needed for FIII, indicates.
We denote by G a finite or infinite generating system of M.

For example, all elements of M from a G or if, in our notation,
M = (al, ..., am), the elements al, ..., am also form a G.

STATEMENT 5.2. Let M be a nonzero module of E and G any
finite or infinite generating system of M, where 0 f G. Then, for
all h ~ 0, |Mh|i = ~ ahF~(1/a)M~ and Q(M;h) = n ahF[(1/a)M].

PROOF. If e ~ |Mh|i and a is any nonzero element of E,
e/ah ~ (1/ah)|Mh|i = |((1/a)M|h|i ~ F~((1/a)M)h~ = F«l/a)M).
(The fact that for any module N whatsoever, always F~Nh~ =
F~N~, is explained in the second sentence of the proof of state-
ment 2.1.) This shows that e E ~ahF~(1/a)M~ and hence cer-
tainly that e E ~ ahF~(1/a)M~. Conversely, let e E ~ ahF~(1/a)M~.

aEG aEG

Then, for any a E G, e/ah E F~(1/a)M~. Since a E M, 1 E ( 1 /a )M,
which enables us to conclude, according to remark 5.1, that

F~(1/a)M~ = ~|((1/a)M)s|i. Hence there exists an so such that,
if s~s0, e/ah ~ |((1/a)M)s|i = (1/a)s|Ms|i. It follows that eas ~ ah|Ms|i
and therefore, since ah|Ms|i ~ MhlM81i e |Mh|i|Ms|i ~ IMh+8Ii’ that
ea8 E |Mh+s|i. Since M is finitely generated, G contains a finite
generating system a1, ..., am of M; let SÓ1), ..., SÓm) be the rational
integers which are associated, in the above way, to respectively
ai , ..., am and let t = Max (s(1)0,..., s(m)0). The module Mu is

generated by the monomials ait ...·aqmm, where q, + ... + qm = u,
and we assume that u has been chosen so large that each of
these monomials factors out at least one a’ for some 1 ~j  m.

We then have that eafi ..... aj/ = (eatj)aq11· ..... f ...·aqmm
~|Mh+i|iMq1+...+qm-t ~ IMh+t-tt1t+...+t1",-t Ii = |Mh+u|i and hence
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that eM" c |Mh+u|i. Using the definition of |Mh+u|i and the

fact that eMu is finitely generated, we conclude that there exists
a nonzero module L such that eMuL c LMh+" = LMuMh and

hence that e ~ |Mh|i; the first equality of statement 5.2 has now
been established. If e E Q(M; h), eMs ~ Ms+h for some s ~ 0.

Consequently, if a is a nonzero element of M, we conclude from
eas ~ Ms+h that e ~ ah((1/a)M)s+h ~ ahF[(1/a)M]. This shows

that Q ( M; h)~ ~ a hF[(Ila)M], where a runs through all the
a

nonzero elements of M, and hence certainly that Q ( M; h ) e

~ahF[(1/a)M]. Conversely, let e E ~ahF[(1/a)M]. Then, for any
a E G, e/ah E F[(1/a)M] and therefore, when s is large enough,
ela h ~ ((1/a)M)s = (1/as)Ms; this implies that eas ~ ahMs ~ MhMs
= M"+8. In the proof of the previous equality we concluded from
eas E |Mh+s|i for large s, that eMu ~ IMh+ul, Z for large u. We use
precisely the same reasoning here to conclude from eas E Mh+s for

. large s, that eMue Mh+u for large u. This proves that e E Q(M; h)
and we are done.

Observe that section 1 contains two characterizations of the

integral closure of a module and that statement 2.1 contains a
third one. Statement 5.2 gives, if M ~ 0, as fourth characteriza-
tion that IMI, = ~ aF~(1/a)M~. In FII, section 3, we will find
a fifth one in terms of the valuations of E.

6. Extension to several modules. We mention here that each

previous statement and theorem, together with its proof, can be
extended easily to several modules, because this generalization
is.necessary whenever one has to use the field-theoretic equivalent
of the graph of algebraic correspondences. Since the present
section is used nowhere in FII and FIII, we discuss only very
briefly the extension to several modules of the most important
facts of this paper, which however will be enough so that anyone
can carry out this generalization in full détail. 
Let Ml, ..., Mn be modules of E and consider the field-exten-

sion E(x1, ..., xn)/F, where x1, ..., xn are algebraically independ-
ent over E. An element e of E is contained in |Mh11 ..... In li
if and only if exh11·...·xhnn ~ F~x1M1, ..., aenMn), where

F~x1M1, ..., aenM n) denotés the ordinary integral closure in

E(x1, ..., aen) of the ring F[x1,..., xn]; here, h1,..., hn are

arbitrary nonnegative rational integers. (Analogue of statement
2.1. ) This should make it clear how all of sections 2 and 3 can
be extended to the set of modules Ml, ..., Mn and how wf
arrive at the following analogue of theorem 3.1.
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THEOREM 6.1. Let Ml, ..., Mn and L be modules of E. Then
there exist nonnegative rational integers k(1)0, ..., k(n)0, such that, i f
kj ~ k(j)0, |Mk1+s11·...· Mkn+snnL|i = |Mk11·...· MknL 1 Ms11·...· Msn
for all Si &#x3E; 0; here j = 1, ..., n. 0 f course, L may not be present.

Let Mj = «(i) ..., a(j)mj) for j = 1, ..., n and consider, in the
polynomial ring R = F[x(1)1, ..., x(1)m1, ..., xi ,...,x(n)mn ], the prime
ideal p which consists of the polynomials of R which vanish for
x(j)h = a(j)h, where j = 1, ..., n and h = 1, ..., mj. The residue-
class ring R/p is F-isomorphic with the ring F [Ml, ..., Mn] and
hence the maximum number of polynomials of R, of degree at
most si in the variables x(j)1, ..., x(j)mj for j = 1, ..., n, and which,
are linearly independent modulo p, is the dimension of the

module (M01, Ml, Mi , ..., Ms11)·...· (M’, Mn, M2 ..., Msnn); if

we assume momentarily that 1 E M; for j = 1, ..., n, this module
becomes Ms11. Ms-. Hence, when we repeat the arguments
of section 4, using the theory of the Hilbert characteristic function
for n sets of variables x(1)1, ..., x(1)m1, ..., x(n)1, ..., x(n)mn (see [3]), we
arrive at the following analogue of statements 4.1 and 4.2.
STATEMENT 6.1. Let Ml, ..., Mn and N be nonzero modules of

E. There exists a rational polynomial f(x1, ..., xn) = 03A3 aj1,...,jn

(x1 j1 ·...· (xn jn), where we sum over all j1 + ... + jn  d, which

is such that dim (Ms11·..... MsnnN) = f(s1, ...,sn) when s; ~s(j)0

f or j - 1, ..., n; (x1 j1), ..., (xn jn) denote again the usual binomial

coefficients and s(1)0, ..., s(n)0 are rational integers which are associated
with the set of modules Ml, ..., Mn, N. The degree d o f this poly-
nomial is the degree of transcendency of the field extension

F((1/a1)M1, ..., (1/an)Mn) / F, where ai is any nonzero element of
M; for j = 1, ..., n. The coefficients aj1,...,jn are rational in-

tegers, and those coefficients aj1,...,jn for which j1 + ... + jn = d
are nonnegative. If the module N is not present, we refer to these
nonnegative coefficients aj1,...,jn with j1 + ... + jn = d, as the

degrees of the set of modules Ml, ..., Mn and to the polynomial
f(x1,..., xn) as the Hilbert characteristic function of these modules.
We now return to the integers k(l), ..., k(n)0 of theorem 6.1 and

use the module Mlo ..... n0 L I i as the module N of statement
6.1. We then easily derive the following analogue of theorem 4.1.
THEOREM 6.2. Let Ml, ..., Mn and L be nonzero modules of

E. There exists a rational polynomial f (xl, ..., xn) = 03A3 aj1,...,jn

(x1 j1) ·...· (xn jn), where we sum over all j1+ ...+jn  d, which,
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is such that dim (|Ms11. Ms- L |i) 1(sl, s,,) when Si &#x3E; SÓj) for
j = 1, ..., n; here, SÓ1), ..., SÓn) are rational integers which are

associated with the set of modules Ml, ..., Mn, L. The degree d of
this polynomial is the degree of transcendency,of the field extension
F((1/a1)M1,..., (1/an)Mn)/F, where ai is any nonzero ele1nent of
Mi f or j = 1, ..., n. The coefficients ail’ ..., in are rational integers
and those coefficients aj1,..., jn for which il + ... + jn = d are

nonnegative. The module L may of course be absent.
When Ml, ..., Mn are nonzero modules of E and hl, ..., hn

are nonnegative rational integers, we denote by Q(M1, ..., Mn;
hl, ..., hn) the module of E which consists of the elements e of E
which are such that eM’ Msnn ~ Ms1+h11·...·Msn+hnn, for
some set of nonnegative rational integers sl, ..., sn. Then again,
Mh11·...·Mhnn ~ Q(M1,...,Mn; h1,...,hn)~|Mh11·...·Mhnn|i,
and the following analogue of statement 5.2 holds.
STATEMENT 6.2. Let Ml, ..., Mn be nonzero modules of E and

let G; be any finite or infinite generating system o f M,, not containing
0, for j = 1, ..., n. Then, when hl, ..., hn are any nonnegative
rational integers,

and
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