Compositio Mathematica

Joseph Weier
 On the topological degree

Compositio Mathematica, tome 13 (1956-1958), p. 119-127
http://www.numdam.org/item?id=CM_1956-1958__13__119_0
© Foundation Compositio Mathematica, 1956-1958, tous droits réservés.

L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques http://www.numdam.org/

On the topological Degree

by
Joseph Weier

Let n be a positive integer $>1 ; E_{i}$, for $i=n, n+1$, the i dimensional Euclidean space; P_{i}^{*}, for $i=n, n+1$, an orientation of the i-dimensional finite Euclidean manifold $P_{i} ; \mathrm{U}$ an open set in E_{n+1} and V an open set in $P_{n+1} ; A$ a simplicial 1-sphere in U and B such a one in $V ; A^{*}$ an orientation of A and B^{*} an orientation of B.

By g, g^{\prime} denoting continuous maps of P_{n+1} in P_{n}, we call the set consisting of all points p of P_{n+1} with $g(p)=g^{\prime}(p)$, the set of the coincidences of (g, g^{\prime}), the "singular form" of (g, g^{\prime}). The pair $\left(g, g^{\prime}\right)$ be named "normal", if the singular form of (g, g^{\prime}) is either empty or composed of a finite number of pairwise disjoint simplicial 1-spheres.

Suppose φ_{1}, φ_{2} are continuous maps of \bar{U} in E_{n}; the set of the coincidences of (φ_{1}, φ_{2}), the "singular form" of (φ_{1}, φ_{2}), equal to A; moreover B_{1}, \ldots, B_{m} mutually disjoint simplicial 1-spheres of $P_{n+1}, B_{1}=B, B_{i} \cdot \bar{V}=0$ for $i>1$; and (γ_{1}, γ_{2}) a normal pair of maps $\gamma_{i}: P_{n+1} \rightarrow P_{n} ; \Sigma B_{i}$ the singular form of $\left(\gamma_{1}, \gamma_{2}\right)$. Then we designate the B_{i} as the "singularities" of (γ_{1}, γ_{2}) and A as the "singularity" of (φ_{1}, φ_{2}).

The significance of $n, E_{n}, E_{n+1}, P_{n}, P_{n+1}, U, V, A, B, A^{*}$, $B^{*}, P_{n}^{*}, P_{n+1}^{*}, \varphi_{1}, \varphi_{2}, \gamma_{1}, \gamma_{2}$ thus defined remain till the end of this paper.

By the way, I shall prove the following approximation theorem elsewhere. If γ denotes a continuous map of P_{n+1} in P_{n} and ε a positive number, then there are simplicial maps γ^{1} and γ^{2} of P_{n+1} in P_{n} homotopic to γ and having the further properties: the set of the coincidences of $\left(\gamma^{1}, \gamma^{2}\right)$ is either empty or the union of a finite number of mutually disjoint 1 -spheres, $d\left(\gamma, \gamma^{1}\right)<\varepsilon$ and $d\left(\gamma, \gamma^{2}\right)<\varepsilon$. More shortly: one can normally approximate (γ, γ).

In Section 1, we associate with the orientated singularity A^{*} and just so with B^{*} an integer as its "degree" in such a way that degree of orientated singularities and classical degree are
corresponding concepts. Some simpler theorems in Section 2 enumerate properties which both these degrees have in common: topological invariance, invariance at deformations, and a decomposition property.

A known property of coincidences, relative to which we will compare singularities and coincidences, is pronounced in the next paragraph; whereby P signifies an $(n+1)$-dimensional finite Euclidean manifold which possesses an orientation and lies in an Euclidean space.

Let c be a point of V and h_{1}, h_{2} continuous maps of P_{n+1} in P; c the only coincidence of $\left(h_{1}, h_{2}\right)$ on $\sqrt[V]{ }$; the degree of c at $\left(h_{1}, h_{2}\right)$ equal to zero. Then there exists a pair ($h_{1}^{\prime}, h_{2}^{\prime}$) homotopic to (h_{1}, h_{2}), consisting of maps $h_{i}^{\prime}: P_{n+1} \rightarrow P$, and having the property: for $p \nless V$ hold the equations $h_{1}^{\prime}(p)=h_{1}(p)$ and $h_{2}^{\prime}(p)=h_{2}(p)$, on $\bar{\nabla}$ there is no coincidence of ($h_{1}^{\prime}, h_{2}^{\prime}$).

Is there any property of singularities being apt to stand comparison with this property of coincidences? In this problem Section 3 engages. First the following theorem. The singularity B of (γ_{1}, γ_{2}) having the degree zero, there exists a point b in V and a pair (g_{1}, g_{2}) homotopic to (γ_{1}, γ_{2}), composed of maps $g_{i}: P_{n+1} \rightarrow P_{n}$, and of the fashion: $g_{1}(p)=\gamma_{1}(p)$ and $g_{2}(p)=\gamma_{2}(p)$ for $p \notin V$, the point b is the only coincidence of (g_{1}, g_{2}) on \bar{V}. Perhaps you may say in brief: singularities of the degree zero can be contracted on a single point. Yet, an example in Section 3 shows that the resting point cannot always be removed.

Some theorems used in the following easily result from known ${ }^{1}$) properties of the Brouwer degree.

1. The degree of a singularity.

If m is a positive integer and $q=\left(\alpha_{1}, \ldots, \alpha_{m}\right), r=\left(\beta_{1}, \ldots, \hat{\beta}_{m}\right)$ are points of the Euclidean m-space $E_{m}, q+r$ means the point $\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{m}+\beta_{m}\right)$ and $d(q, r)$ the Euclidean distance from q to r. "Simplexes" are Euclidean and open. If C signifies a 2simplex in E_{m} and D the topological (topological and simplicial) image of $\bar{C}-C$, then D is said to be a " 1 -sphere" ("simplicial 1-sphere"). If just one point of the set M is attached to each point p of the set N by the map f, we denote the first point by $f(p)$. The pair $\left(\varphi_{1}, \varphi_{2}\right)$ is said to be a pair of \bar{U} in E_{n}. Let, for

[^0]$i=1,2, g_{i}$ be a map of P_{n+1} in P_{n} homotopic to γ_{i}, then $\left(g_{1}, g_{2}\right)$ is called a pair "homotopic" to (γ_{1}, γ_{2}).

Let a be a point of A, then we will define an "index" of a under (φ_{1}, φ_{2}) relative to A^{*} as follows.

Be denoted by S an n-simplex in U with $a \in S$ and $A \cdot \bar{S}=a$, by E_{n}^{*} and E_{n+1}^{*} the natural orientations of E_{n} and E_{n+1}. Let a_{1}, \ldots, a_{n+1} points of E_{n+1} with the properties: the points a, a_{1}, \ldots, a_{n+1} are linearly independent; the orientation induced by ($a a_{1}, \ldots, a a_{n+1}$) into E_{n+1} concurs with the orientation E_{n+1}^{*}; the 1 -simplex with the vertexes a and a_{1} lies in A; the orientation induced by $a a_{1}$ into A and the orientation A^{*} agree; the points a_{2}, \ldots, a_{n+1} lie in S. Let S^{*} be the orientation induced by $\left(a a_{2}, \ldots, a a_{n+1}\right)$ into S. Furthermore let T be an n-simplex in E_{n}, T^{*} the orientation which E_{n}^{*} induces into T, t an affine map of \bar{T} on \bar{S} with $t\left(T^{*}\right)=S^{*}, b$ the point in T determined by $t(b)=a$. Let f be defined by

$$
f(p)=\varphi_{1} t(p)-\varphi_{2} t(p), p \in \bar{T}
$$

as map of \bar{T} in E_{n}. Then b is the only fixed point of f, the index of b at f is said to be the index of a at $\left(\varphi_{1}, \varphi_{2}\right)$ with respect to A^{*}.

You instantly verify that the last definition is unique and has the further property: if $A^{* *}$ means the orientation opposite to A^{*}, α^{*} and $\alpha^{* *}$ are the indexes of a at $\left(\varphi_{1}, \varphi_{2}\right)$ relative to A^{*} and $A^{* *}$ respectively, then $\alpha^{*}=-\alpha^{* *}$. One easily sces:

There is an integer a such that, for each point p of A, the index of p at $\left(\varphi_{1}, \varphi_{2}\right)$ referring to A^{*} is equal to α. Then we will define α to be the "degree" of A^{*} under (φ_{1}, φ_{2}), more exactly the degree of A under $\left(\varphi_{1}, \varphi_{2}\right)$ with respect to $\left(E_{n+1}^{*}, E_{n}^{*}\right)$. Correspondingly one may declare the "dcgree" of B^{*} under (γ_{1}, γ_{2}) with respect to $\left(P_{n+1}^{*}, P_{n}^{*}\right)$.

2. Elementary properties of a singularity.

From the topological invariance of the fixed point index insues:

Theorem 1. The degree of A^{*} is topologically invariant, more precisely: Let t bc a topological map of E_{n+1} onto itself such that $t\left(E_{n+1}^{*}\right)=E_{n+1}^{*}, t(A)$ a simplicial 1-sphere, $f_{1}=t \varphi_{1} t^{-1}$, and $f_{2}=t \varphi_{2} t^{-1}$. Then (f_{1}, f_{2}) represents a normal pair of mappings $f_{i}: t(U) \rightarrow E_{n}, t(A)$ is the only singularity of $\left(f_{1}, f_{2}\right)$, and the degree of $t\left(A^{*}\right)$ at $\left(f_{1}, f_{2}\right)$ is equal to the degree of A^{*} at $\left(\varphi_{1}, \varphi_{2}\right)$.

We will show:

Theorem 2. Let $\left(\varphi_{1}^{\tau}, \varphi_{2}^{\tau}\right), 0 \leqq \tau \leqq 1$, be normal pairs of maps $\varphi_{i}^{\tau}: \bar{U} \rightarrow E_{n}$ which continuously depend on τ and A, for $0 \leqq \tau \leqq 1$, the only singularity of $\left(\varphi_{1}^{\tau}, \varphi_{2}^{\tau}\right)$. Then the degree of A^{*} at $\left(\varphi_{1}^{0}, \varphi_{2}^{0}\right)$ is equal to the degree of A^{*} at $\left(\varphi_{1}^{1}, \varphi_{2}^{1}\right)$.

Proof. It suffices to show that, given a point a of A, the index of a at $\left(\varphi_{1}^{0}, \varphi_{2}^{0}\right)$ relative to A^{*} and the index of a at $\left(\varphi_{1}^{1}, \varphi_{2}^{1}\right)$ relative to A^{*} are equal.

To prove this, let the significance of S, T, t, and b be the one defined in the first section; moreover $f^{\boldsymbol{\tau}}$, for $\mathbf{0} \leqq \tau \leqq 1$, determined by

$$
f^{\tau}(p)=\varphi_{1}^{\tau} t(p)-\varphi_{2}^{\tau} t(p), p \in \bar{T}
$$

as map of \bar{T} in E_{n}. Then, for $0 \leqq \tau \leqq 1$, the point b is the only fixed point of f^{τ}, so the index of b under f^{0} equal to the index of b under f^{1}. This already yields the assertion.

If A ' is a 1-sphere in U, we denote A and A ' as "neighbouring", provided the statements I and II are true. I. There is a homotopy ($t^{\tau}, 0 \leqq \tau \leqq 1$) of topological maps $t^{\tau}: A \rightarrow U$ such that t^{0} is the identity, $t^{1}(A)=A^{\prime}$, and

$$
d\left(p, t^{\tau}(p)\right)<2 d\left(p, t^{1}(p)\right)
$$

for all (p, τ) with $p \in A$ and $0 \leqq \tau \leqq 1$. II. The homotopies $\left(t_{i}^{\tau}, 0 \leqq \tau \leqq 1\right), i=1,2$, being conditioned like ($t^{\tau}, 0 \leqq \tau \leqq 1$), then the orientations $t_{1}^{1}\left(A^{*}\right), t_{2}^{1}\left(A^{*}\right)$ of A^{\prime} agree. The orientation $t^{1}\left(A^{*}\right)$ of A^{\prime} we name the orientation "induced" by A^{*} into A^{\prime}.

In the last paragraph replacing A, A^{\prime}, A^{*}, U by B, B^{\prime}, B^{*}, V respectively, you obtain the definition of a 1 -sphere B^{\prime} such that B and B^{\prime} are "neighbouring" and the definition of the orientation which B^{*} "induces" into B^{\prime}.

Now let us establish:
Theorem 3. If α denotes the degree of A^{*} under $\left(\varphi_{1}, \varphi_{2}\right)$ and $\alpha_{1}, \ldots, \alpha_{m}$ are integers with $\Sigma \alpha_{i}=\alpha$, then there are simplicial 1-spheres A_{1}, \ldots, A_{m} in U by pairs disjoint and a normal pair $\left(f_{1}, f_{2}\right)$ of maps $f_{i}: \bar{U} \rightarrow E_{i}$ with the properties: $f_{1}(p)=\varphi_{1}(p)$ and $f_{2}(p)=$ $\varphi_{2}(p)$ for $p \in \bar{U}-U$; for $i=1, \ldots, m$, the spheres A_{i} and A are neighbouring; the A_{i} are the singularities of $\left(f_{1}, f_{2}\right) ; A_{i}^{*}$ being the orientation which A^{*} induces into A_{i}, the number α_{i} represents the degree of A_{i}^{*} at $\left(f_{1}, f_{2}\right)$.

Proof. Let T be an n-simplex in E_{n}. Then you easily see that there are points $a^{\tau}, 0 \leqq \tau \leqq 1$, of A continuously dependent on τ and n-simplexes $S^{\tau}, 0 \leqq \tau \leqq 1$, continuously dependent on τ, too, and a homotopy ($t^{\tau}, 0 \leqq \tau \leqq 1$) of affine maps $t^{\tau}: \bar{T} \rightarrow \bar{S}^{\tau}$
with the properties: $a^{0}=a^{1}, \quad S^{0}=S^{1}$, and $t^{0}=t^{1}$; for $0<$ $\left|\tau_{1}-\tau_{2}\right|<1$ there hold $a^{\tau_{1}} \neq a^{\tau_{2}}$ and $\bar{S}^{\tau_{1}} \cdot \bar{S}^{\tau_{2}}=0 ; a^{\tau} \in S^{\tau}$ for all τ; if, for all τ, f^{τ} denotes the map defined by

$$
f^{\tau}(p)=\varphi_{1} t^{\tau}(p)-\varphi_{2} t^{\tau}(p)^{\prime}, p \in \bar{T}
$$

and b^{τ} the point of T where $t^{\tau}\left(b^{\tau}\right)=a^{\tau}$, then the index of b^{τ} at f^{τ} is equal to α. Thus, Theorem 3 easily follows from

Lemma 1. Let S be an n-simplex in E_{n}; and ($a_{i}^{\tau}, 0 \leqq \tau \leqq 1$), $i=1, \ldots, m$, curves of points a_{i}^{τ} of S; for $0 \leqq \tau \leqq 1$, the points $a_{1}^{\tau}, \ldots, a_{m}^{\tau}$ mutually disjoint; ($f^{\tau}, 0 \leqq \tau \leqq 1$) a homotopy of maps $f^{\tau}: \bar{S} \rightarrow E_{n} ; p \neq f^{\tau}(p)$ for all (p, τ) with $p \in \bar{S}-S$ and $0 \leqq \tau \leqq 1$; further $a_{1}^{i}, \ldots, a_{m}^{i}$, for $i=0,1$, the fixed points of f^{i}; and, for $k=1, \ldots, m$, the index of a_{k}^{0} at f^{0} equal to the index of a_{k}^{1} at f^{1}. Then there exists a homotopy ($g^{\tau}, \mathbf{0} \leqq \tau \leqq 1$) of maps $g^{\tau}: \bar{S} \rightarrow E_{n}$ such that: $f^{\tau}(p)=g^{\tau}(p)$ for all (p, τ) where either $p \in \bar{S}$ and $\tau=0,1$ or $p \in \bar{S}-S$ and $0 \leqq \tau \leqq 1$; for $0 \leqq \tau \leqq 1$, the points $a_{1}^{\tau}, \ldots, a_{m}^{\tau}$ are the fixed points of g^{τ}.

Proof. It suffices to show the following simpler proposition.
Let a_{1}, a_{2} be different points of S and f^{0}, f^{1} continuous maps of \bar{S} in E_{n} with the properties: $f^{0}(p)=f^{1}(p)$ for $p \epsilon \bar{S}-S$; for $i=0,1$, the points a_{1}, a_{2} are the fixed points of f^{i}; for $k=1,2$, the index of a_{k} at f^{0} is equal to the index of a_{k} at f^{1}. Then there is a homotopy ($g^{\tau}, 0 \leqq \tau \leqq 1$) of maps $g^{\tau}: \bar{S} \rightarrow E_{n}$ such that the following holds: $g^{\tau}(p)=f^{0}(p)$ for all (p, τ) with $p \in \bar{S}-S$ and $0 \leqq \tau \leqq 1 ; g^{0}=f^{0}$ and $g^{1}=f^{1}$; for $0 \leqq \tau \leqq 1$, the points a_{1}, a_{2} are the only fixed points of g^{τ}.

To establish this, first let T denote an ($n-1$)-simplex with $T \subset S, \bar{T}-T \subset \bar{S}-S$, and the property: if S_{1}, S_{2} are both the components of the set $S-T$, we have $a_{1} \in S_{1}$ and $a_{2} \epsilon S_{2}$. Following a known theorem on the fixed point index, there is a homotopy ($g^{\tau}, \mathbf{0} \leqq \tau \leqq 1 / 2$) of maps $g^{\tau}: \bar{S} \rightarrow E_{n}$ which disposes of the properties: $g^{\tau}(p)=f^{0}(p)$ for all (p, τ) with $p \epsilon \bar{S}-S$ and $0 \leqq \tau \leqq 1 / 2 ; g^{0}=f^{0} ;$

$$
g^{1 / 2}(p)=f^{1}(p) \text { for } p \in \bar{T}
$$

for $0 \leqq \tau \leqq 1 / 2$, the points a_{1} and a_{2} are the only fixed points of $g^{\boldsymbol{\tau}}$.

So it remains to show:
Let a be a point of S and f, f^{\prime} continuous maps of \bar{S} in E_{n} $f(p)=f^{\prime}(p)$ for $p \in \bar{S}-S$, a the only fixed point of f and just so the only fixed point of f^{\prime}. Then there is a homotopy ($h^{\tau}, 0 \leqq \tau \leqq 1$ of maps $h^{\tau}: \bar{S} \rightarrow E_{n}$ such that: $h^{\tau}(p)=f(p)$ for all (p, τ) witl
$p \in \bar{S}-S$ and $0 \leqq \tau \leqq 1 ; h^{0}=f$ and $h^{1}=f^{\prime} ; a$ represents the only fixed point of h^{τ} for $0 \leqq \tau \leqq 1$.

The last proposition, however, is true, as you may easily verify.
Like Theorem 1, 2, and 3 one can prove:
The degree of B is topologically invariant. If $\left(\gamma_{1}^{\tau}, \gamma_{2}^{\tau}\right), 0 \leqq \tau \leqq 1$, are normal pairs of maps $\gamma_{i}^{\tau}: P_{n+1} \rightarrow P_{n}$ which continuously depend on τ and if B, for $0 \leqq \tau \leqq 1$, represents a singularity of ($\gamma_{1}^{\tau}, \gamma_{2}^{\tau}$), then the degree of B^{*} at $\left(\gamma_{1}^{0}, \gamma_{2}^{0}\right)$ and the degree of B^{*} at $\left(\gamma_{1}^{1}, \gamma_{2}^{1}\right)$ are equal. Let β be the degree of B^{*} at $\left(\gamma_{1}, \gamma_{2}\right)$ and $\beta_{1}, \ldots, \beta_{m}$ integers with $\Sigma \beta_{i}=\beta$; then there are mutually disjoint simplicial 1-spheres B_{1}, \ldots, B_{m} in V and a normal pair (g_{1}, g_{2}) homotopic to (γ_{1}, γ_{2}), composed of maps $g_{i}: P_{n+1} \rightarrow P_{n}$, and provided with the following properties: $\mathrm{g}_{1}(p)=\gamma_{1}(p)$ and $\mathrm{g}_{2}(p)=\gamma_{2}(p)$ for $p \notin V ;$ for $i=1, \ldots, m$, the spheres B_{i} and B are neighbouring; the B_{i} are the singularities of $\left(g_{1}, g_{2}\right)$ on V; by B_{i}^{*} denoting the orientation which B^{*} induces into B_{i}, one obtains β_{i} to be the degree of B_{i}^{*} under (g_{1}, g_{2}).

3. Singularities of the degree zero.

The singularity A of (φ_{1}, φ_{2}) be called "unessential" if, for every open set U_{1} of E_{n+1} with $A \subset U_{1} \subset U$, there are continuous maps $f_{i}: \bar{U} \rightarrow E_{n}$ such that: $f_{1}(p)=\varphi_{1}(p)$ and $f_{2}(p)=\varphi_{2}(p)$ for $p \& U_{1}$, $f_{1}(p) \neq t_{2}(p)$ for $p \in \bar{U}_{1}$. We designate A as "essential" singularity if it is not unessential. Correspondingly one defines the "essentiality" and "unessentiality" of B. Hereupon holds:

Theorem 4. The singularity A of (φ_{1}, φ_{2}) being unessential, its degree is equal to zero.

Proof. Let a be a point of A, S and n-simplex of U with $a \in S$ and $A \cdot \bar{S}=a, T$ an n-simplex in E_{n}, and t an affine map of \bar{T} onto \bar{S}. Let f be defined by $f(p)=\varphi_{1} t(p)-\varphi_{2} t(p), p \in \bar{T}$, as map of \bar{T} in E_{n}. To establish that the index of a at (φ_{1}, φ_{2}) and thus the degree of A at $\left(\varphi_{1}, \varphi_{2}\right)$ is equal to zero, it is sufficient to show: there exists a continuous map $f^{\prime}: \bar{T} \rightarrow E_{n}$ which has no fixed point and agrees with f on $\bar{T}-T$.

May U_{1} denote an open set in E_{n+1} with $A \subset U_{1} \subset U$ and $(\bar{S}-S) \cdot \bar{U}_{\mathbf{1}}=\mathbf{0}$. Then the unessentiality of A yields continuous maps $\varphi_{i}^{\prime}: \bar{U} \rightarrow E_{n}, i=1,2$, such that $\varphi_{1}^{\prime}(p)=\varphi_{1}(p)$ and $\varphi_{2}^{\prime}(p)=\varphi_{2}(p)$ for $p \notin U_{1}, \varphi_{1}^{\prime}(p) \neq \varphi_{2}^{\prime}(p)$ for $p \in \bar{U}_{1}$. Now setting $f^{\prime}(p)=\varphi_{1}^{\prime} t(p)-\varphi_{2}^{\prime} t(p)$ for $p \epsilon \bar{T}$, we obtain a map $f^{\prime}: \bar{T} \rightarrow E_{n}$ of the desired kind.

Tike Lemma 1 vou can prove:

Lemma 2. Let S be an n-simplex in E_{n} and a a point of S. Suppose ($f^{\tau}, \mathbf{0} \leqq \tau \leqq 1$) to be a homotopy of maps $f^{\tau}: \bar{S} \rightarrow E_{n}$ with the properties: $p \neq f^{\tau}(p)$ for all (p, τ) where $p \in \bar{S}-S$ and $0 \leqq \tau \leqq 1$; the point a is the only fixed point of f^{0} and just so of f^{1}, the index of a at f^{0} is equal to zero. Then there exists a homotopy ($g^{\tau}, 0 \leqq \tau \leqq 1$) of maps $g^{\tau}: \bar{S} \rightarrow E_{n}$ which have the properties: $g^{\tau}(p)=f^{\tau}(p)$ for all (p, τ) where either $p \in \bar{S}$ and $\tau=0,1$ or $p \in \bar{S}-S$ and $0 \leqq \tau \leqq 1$; for $0<\tau<1$, the map g^{τ} has no fixed point.

A modified inversion of Theorem 4 is given by
Theorem 5. Let the degree of A at $\left(\varphi_{1}, \varphi_{2}\right)$ be zero. Then there exists a point a in U and continuous maps $j_{i}: \bar{U} \rightarrow E_{n}$ with the properties: $f_{1}(p)=\varphi_{1}(p)$ and $f_{2}(p)=\varphi_{2}(p)$ for $p \in \bar{U}-U$, the point a is the only coincidence of $\left(f_{1}, f_{2}\right)$.

Proof. Let $S^{\tau}, 0 \leqq \tau \leqq 1$, be n-simplexes of U continuously dependent on τ such that: for all τ, the intersection $A \cdot S^{\tau}$ consists of a single point $a^{\tau_{2}}$; for $\tau_{1} \neq \tau_{2}$, the intersection $\bar{S}^{\tau_{1}} \cdot \bar{S}^{\tau_{2}}$ is empty. The union of all S^{τ} with $0<\tau<1$ we denote by S.

Following Lemma 2, there are continuous maps $g_{i}: \bar{U} \rightarrow E_{n}$, $i=1,2$, of the condition: $g_{1}(p)=\varphi_{1}(p)$ and $g_{2}(p)=\varphi_{2}(p)$ for $p \notin S, g_{1}(p) \neq g_{2}(p)$ for $p \in S$.

The set $A-S$ is homeomorph to a closed segment. Thus there exists an open set U_{1} in E_{n+1} such that $A-S \subset U_{1} \subset U$ and \bar{U}_{1} is homeomorph to the closure of a simplex. Let a be a point of U_{1}. Then there exists a continuous map w of $\bar{U}_{1}-a$ onto $\bar{U}_{1}-U_{1}$ so that $w(p)=p$ for $p \in \bar{U}_{1}-U_{1}$.

Hereupon we set $\lambda(p)=d(p, a) /\left(d(p, a)+d\left(p, \bar{U}_{1}-U_{1}\right)\right)$ for all. points $p \in \bar{U}_{1}-a$, and $f_{1}=g_{1}$, moreover

$$
f_{2}(p)=g_{1}(p)+\lambda(p)\left(g_{2} w(p)-g_{1} w(p)\right) \text { for } p \in \bar{U}_{1}-a \text {, }
$$

further $f_{2}(p)=g_{2}(p)$ for $p \in \bar{U}-U_{1}$, and $f_{2}(a)=g_{1}(a)$.
For the sake of finishing the argumentation it suffices to show that a represents the only coincidence of $\left(f_{1}, t_{2}\right)$ on \bar{U}_{1} : If p means a point of $\bar{U}_{1}-a$, we have

$$
f_{2}(p)-f_{1}(p)=\lambda(p)\left(g_{2} w(p)-g_{1} w(p)\right),
$$

besides $\lambda(p)>0$, and $g_{2} w(p) \neq g_{1} w(p)$, thus $f_{2}(p) \neq f_{1}(p)$.
Similarly as Theorem 4 and 5 one can prove:
The singularity B of $\left(\gamma_{1}, \gamma_{2}\right)$ being unessential, its degree is equal to zero. The degree of \boldsymbol{B} under $\left(\gamma_{1}, \gamma_{2}\right)$ being zero, there is a point b in V and a pair $\left(g_{1}, g_{2}\right)$ homotopic to (γ_{1}, γ_{2}), consisting of maps $g_{i}: P_{n+1} \rightarrow P_{n}$, and of the further condition: $g_{1}(p)=\gamma_{1}(p)$ and $g_{2}(p)=\gamma_{2}(p)$ for $p \notin V$, the point b is the only coincidence of (g_{1}, g_{2}) on \bar{V}.

The precise inversion of Theorem 4 is not correct:
There exist singularities of the degree zero which are essential.
Proof. Let S be a 4 -simplex in E_{4}, T a 3 -simplex in E_{3}, a a point of S, and b a point of T. Set $f_{1}(p)=b$ for $p \epsilon \bar{S}$. Further, let f_{2} be a continuous map of \bar{S} onto \bar{T} with the properties: $f_{2}(a)=b$,

$$
f_{2}(p) \neq b \text { for } p \neq a
$$

the map $f_{2} \mid \bar{S}-S$ represents an essential map of the 3 -sphere $\bar{S}-S$ on the 2 -sphere $\bar{T}-T$. Following a known theorem ${ }^{2}$), such a map exists.

Now denote by C a simplicial 1-sphere ϵa in S, by R a 3simplex in S with $a \in R$ and $C \cdot \bar{R}=a$. Let S_{1} be an open set in E_{4} such that

$$
C-a \subset S_{1}, \bar{R} \cdot \bar{S}_{1}=a, \text { and } \bar{S}_{1} \subset S ;
$$

further $\zeta(p)=d(p, C) /\left(d(p, C)+d\left(p, \bar{S}_{1}-S_{1}\right)\right)$ for all points p of S_{1}; and $g_{2}(p)=f_{2}(p)$ for $p \in \bar{S}-S_{1}$,

$$
g_{2}(p)=b+\zeta(p)(f(p)-b) \text { for } p \in S_{1}
$$

The pair (f_{1}, g_{2}) thus defined is regular, and C represents its only singularity.

The assumption, C be an unessential singularity of (f_{1}, g_{2}), leads to a contradiction as follows. Then there would exist continuous maps $f^{i}: \bar{S} \rightarrow E_{3}, i=1,2$, so conditioned that: $f^{1}(p)=f_{1}(p)$ and $f^{2}(p)=g_{2}(p)$ for $p \in \bar{S}-S, f^{1}(p) \neq f^{2}(p)$ for all points p of \bar{S}.

We define f by $f(p)=b+\left(f^{2}(p)-f^{1}(p)\right), p \in \bar{S}$, as map of \bar{S} in E_{3}, that disposes of the following properties: 1) the sphere $\bar{S}-S$ is essentially mapped on $\bar{T}-T$ by $f \mid \bar{S}-S, 2)$ for all points p of \bar{S} holds $b \neq f(p)$. Assertion 1) is true, since $f^{1}(p)=f_{1}(p)=b$ for $p \in \bar{S}-S$ and $f^{2}\left|\bar{S}-S=f_{2}\right| \bar{S}-S$ is an essential map of $\bar{S}-S$ on $\bar{T}-T$. From $f^{1}(p) \neq f^{2}(p), p \in \bar{S}$, ensues the correctness of the second assertion. The affirmations 1) and 2), however, contradict to one another.

In order to prove, the degree of C at $\left(f_{1}, g_{2}\right)$ be zero, it suffices to show: the index of a at $\left(f_{1}, g_{2}\right)$ is zero. This to establish, let t be an affine map of \bar{T} on \bar{R}. Determine h by $h(p)=f_{1} t(p)-g_{2} t(p)$, $p \in \bar{T}$, as map of \bar{T} in E_{3}. The point b is the only fixed point of h. We will show that the index of b under h is equal to zero.

[^1]For this purpose let $R^{\tau}, 0 \leqq \tau \leqq 1$, be 3 -simplexes of S continuously dependent on τ such that $R^{0}=R$ and $a \notin R^{\tau}$ for $\tau>0$; further ($t^{\tau}, 0 \leqq \tau \leqq 1$) a homotopy of affine maps $t^{\tau}: \bar{T} \rightarrow \bar{R}^{\tau}$ with $t^{0}=t$; besides h^{τ}, for $0 \leqq \tau \leqq 1$, defined by

$$
h^{\tau}(p)=f_{1} \tau^{\tau}(p)-f_{2} \tau^{\tau}(p), p \in \bar{T}
$$

as map of \bar{T} in E_{3}.
On account of $\bar{R} \cdot \bar{S}_{1}=a$ and $g_{2}(p)=f_{2}(p), p \notin \bar{S}_{1}$, holds $f_{2}(p)=g_{2}(p)$ for $p \in \bar{R}$, hence $h^{0}=h$. For all (p, τ) with $p \in \bar{T}$ and $0<\tau \leqq 1$, one has $t^{\tau}(p) \neq a$, consequently $f_{1} t^{\tau}(p) \neq f_{2} t^{\tau}(p)$; from which it follows that, for $0<\tau \leqq 1$, the map h^{τ} has no fixed point. Thus, the index of b under $h^{0}=h$ is equal to zero. And the proof is complete.
(Oblatum 3-11-55).

[^0]: ${ }^{1}$) See for instance: P. J. Hilton, "An introduction to homotopy theory", Cambridge Univ. Press, vol. 43 (1953).

[^1]: ${ }^{2}$) H. Hopf, ,,Zur Algebra der Abbildungen von Mannigfaltigkeiten", Journal f. reine und angewandte Math., vol. 163 (1930), pp. 71-88.

