Compositio Mathematica

J. DE GROOT

H. DE VRIES

Convex sets in projective space

Compositio Mathematica, tome 13 (1956-1958), p. 113-118
http://www.numdam.org/item?id=CM_1956-1958__13__113_0
© Foundation Compositio Mathematica, 1956-1958, tous droits réservés.

L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Convex sets in projective space

by
J. de Groot and H. de Vries

Introduction. We consider the following properties of sets in n-dimensional real projective space $P_{n}(n>1)$: a set is semiconvex, if any two points of the set can be joined by a (line)segment which is contained in the set;
a set is convex (Steinitz [1]), if it is semiconvex and does not meet a certain P_{n-1}.

The main object of this note is to characterize the convexity of a set by the following interior and simple property: a set is convex if and only if it is semiconvex and does not contain a whole (projective) line; in other words: a subset of P_{n} is convex if and only if any two points of the set can be joined uniquely by a segment contained in the set. In many cases we can prove more; see e.g. theorem 2.
H. Kneser [2] gives a detailed survey of the different scmiconvex sets in P_{2} and P_{3}; see also Haflmeyer [3]. Though, surprisingly enough, he nowhere states the characterizationproperty just mentioned, this property may easily be concluded from the material contained in his paper. However, his method works only for $n=2,3$. Only theorem 3, stated below, serving as a lemma, is due to H. Kneser for all n. Recently we learned that D. Dekker [4] also discovered the mentioned characterization, but only for open sets. Theorem 1, therefore, gives no news in the case of open sets. However, our proof is somewhat different. The authors are indebted to A. Heyting, who drew their attention to this characterization-problem.

It is possible, of course, to state analogous problems for the n-sphere S_{n} (or for certain other spaces as well), replacing lines by great circles. The result is, roughly spoken, that the charac-terization-property holds for open sets in S_{n}, but breaks down for arbitrary ones. However, since the results for the S_{n} may be obtained far easier than for the P_{n}, we do not discuss them here.

We shall denote points by small Latin letters, lines by small Greek letters or two small Latin letters if these denote points of the line, and segments by the end-points of the segment if this is stated explicitly.

Theorem 1. In order than an open or closed semi-convex set V in $P_{n}(n>1)$ is convex, it is necessary and sufficient that V does not contain a whole line. Moreover: if V satisfies this condition, then for every point $q \in P_{n} \backslash V$, there exists an ($n-1$)-dimensional hyperplane, which contains q, and has no points in common with V.

Proof. The necessity of the condition is obvious. To prove the sufficiency and the second part of the theorem, we proceed by induction.

Let $n=2$. Take a point $v \in V$ and let ω be the line $q v$. Let μ_{t} be a variable line through q, always $\mu_{t} \neq \omega$. μ_{t} separates $P_{2} \backslash \omega$ into two disjoint connected parts, I_{t} and $I I_{t}$. We see to it that always $I_{t} \cap I_{t^{\prime}} \neq 0, I I_{t} \cap I I_{t^{\prime}} \neq \mathbf{0}$. We decompose $V_{t}=\mu_{t} \cap V$ into two disjoint sets A_{t} and B_{t} in the following way: we put $a_{t} \in V_{t}$, resp. $b_{t} \in V_{t}$, in A_{t}, resp. B_{t}, if one of the segments $a_{t} v$, resp. $b_{t} v$, of the line $a_{t} v$, resp. $b_{t} v$, lies entirely within $V \cap I_{t}$, resp. within $V \cap I I_{t}$. Since V is semiconvex and does not contain a whole line, we have

$$
V_{t}=A_{t} \cap B_{t}, A_{t} \cap B_{t}=\mathbf{0}
$$

If V is open, then A_{t} is an open set on the line μ_{t}, because, if $a_{t} \in A_{t}$, there is, by applying the Heine-Borel theorem, an open neighbourhood of a segment $a_{t} v$ which is contained in V. But then also B_{t} is open on μ_{t}. Since V_{t} is connected, we may conclude that for a definite t either A_{t} or B_{t} is empty.
[If V is closed, then A_{t} is closed on μ_{t} since the limit of a converging sequence of closed segments $a_{t}^{i} v, a_{t}^{i} \in A_{t}$, entirely lying within $\left(V \cap I_{t}\right) \cup \omega \cup \mu_{t}$ is again a closed segment lying within $\left(V \cap I_{t}\right) \cup \omega \cup \mu_{t}$. Then also B_{t} is closed on μ_{t}, and we may conclude that either A_{t} or B_{t} is empty.]
Now we project $\cup A_{t}$ and $\cup B_{t}$ from q upon a line λ through $v, \lambda \neq \omega$; the projections will ${ }^{t}$ be L_{1} and L_{2} respectively. Then obviously $L_{1} \cap L_{2}=0$.
If V is open, then L_{1} is open on λ : a point $p_{1} \epsilon L_{1}$ is the projection of a point $p \in \cup A_{t}, p$ has on the line $v p$ a neighbourhood belonging to $\bigcup_{t} A_{t}$, so $p_{1}{ }^{t}$ has a neighbourhood on λ belonging to L_{1}. Then also ${ }^{t} L_{2}$ is open, $L_{1} \cap L_{2}=0$, so there exists a point $q^{\prime} \in \lambda$, $q^{\prime} \notin L_{1} \cup L_{2} \cup\{v\}$, and the line $q q^{\prime}$ lies entirely within the complement of V.
[If V is closed, then L_{1} and L_{2} are each closed on $\lambda \mid v$ as can easily be seen. Since $\lambda \backslash v$ is connected, there exists a point $q^{\prime} \in \lambda \backslash v$, $q^{\prime} \notin L_{1} \cup L_{2}$, and the line $q q^{\prime}$ lies entirely within the complement of V.]

So the theorem is proved for $n=\mathbf{2}$.
Now we assume the theorem to be true for $n=k-1$ and prove the theorem for $n=k(k>2)$.

We take $q \in P_{k} \backslash V$ and Ω as a P_{k-1} in P_{k} not containing q. We project V from q upon Ω, thus obtaining $V^{\prime} \subset \Omega$. Then with $p_{1}^{\prime}, p_{2}^{\prime} \in V^{\prime}, V^{\prime}$ contains obviously one of the segments of $p_{1}^{\prime} p_{2}^{\prime}$, and does not contain both segments: the two-dimensional plane generated by $q, p_{1}^{\prime}, p_{2}^{\prime}$ contains a line through q, which avoids V (the intersection of a semiconvex set not containing a whole line with a hyperplane is a similar set), and so this line intersects $p_{1}^{\prime} p_{2}^{\prime}$ in a point, not belonging to V^{\prime}. Using the induction-hypothesis we get that V^{\prime} avoids a P_{k-2} lying in Ω. The ($k-1$)-dimensional hyperplane through that P_{k-2} and q avoids V, q.e.d.

Theorem 2. If V is an open or closed convex set in a $P_{n}(n>1)$, and H is a $P_{n-k}(k>0)$ avoiding V, then there exists a P_{n-1} containing H and avoiding V.

Proof. For $k=1$ the theorem is trivial. We assume further $k>1$. We proceed by induction with respect to n.

For $n=2$ the theorem has been proved in theorem 1. Assuming the theorem to be true for $n-1$, we prove the theorem for n.

Choose an ($n-1$)-dimensional hyperplane S containing H. $S \cap V$ is convex. So, according to the induction-hypothesis, there exists a $P_{n-2} \subset S$ containing H and avoiding $S \cap V$, thus also avoiding V. Let Ω be a P_{n-1} avoiding V. If $\Omega \supset H$ we are ready. Assume $\Omega D H$. Let F_{t} be a variable ($n-1$)-dimensional hyperplane containing the above-mentioned P_{n-2}, thus also containing H. $F_{t} \backslash\left(P_{n-2} \cup \Omega\right)$ is decomposed by P_{n-2} and $\Omega \cap F_{t}$ into two disjoint connected parts of which only one may contain points of V. If V is open, we get by varying F_{t} continuously "a first situation" in which this part contains no points of V. Neither can in this situation the other part contain puints of V, since if it would then that part would also contain points of V in "an earlier situation". If V is closed the theorem is proved similarly.

Theorem 3. (Kneser). If a semiconvex set V in a P_{n} contains $n+1$ linearly independent points $p_{0}, p_{1}, \ldots, p_{n}$, then each of these points, for instance p_{0}, is vertex of an n-dimensional simplex the
interior points of which belong to V. This includes, that every point of V is accumulation point of interior points of V.

Proof. The theorem is true for $n=1$. We assume the theorem to be true for $n=N-1$ and prove it for $n=N$.

The P_{N-1} defined by p_{1}, \ldots, p_{N} contains an ($N-1$)-dimensional simplex Σ, the interior of which belongs to V, according to the induction-hypothesis applied to the semiconvex set $V \cap P_{N-1}$. In the N-dimensional projective space P_{N}, the simplex Σ and the point p_{0} define two N-dimensional simplices Λ_{1}, Λ_{2} of which Σ is a face. Let M_{1}, resp. M_{2}, be the set of points of Σ which can be joined with p_{0} within $V \cap \Lambda_{1}$, resp. $V \cap \Lambda_{2}$. M_{1} and M_{2} are not necessarily disjoint. If one of the sets M_{i} contains interior points, then it contains an ($N-1$)-dimensional simplex P, and hence there exists an N-dimensional simplex, defined by P and p_{0}, contained in V; so the theorem is proved.

We prove that necessarily at least one of the M_{i} contains interior points.

Let L_{1}, resp. L_{2}, be the interior of Λ_{1}, resp. Λ_{2}. The set $P_{N} \backslash V$ is semiconvex as can easily be seen. We distinguish the following three cases: the maximal number of linearly independent points of $\left(P_{N} \backslash V\right) \cap\left(L_{1} \cup L_{2}\right)$ is $1^{\circ} . N+1,2^{\circ} . N, 3^{\circ} .<N$. In the second case we have two possibilities: all points of $\left(P_{N} \backslash V\right) \cap\left(L_{1} \cup L_{2}\right)$ lie on an ($N-1$)-dimensional hyperplane containing either not p_{0} or p_{0}. In case of 1°. and the first possibility of 2°. there exists an ($N-1$)-dimensional hyperplane Q, such that $p_{0} \notin Q$, and $Q \cap\left(P_{N} \backslash V\right) \cap\left(L_{1} \cup L_{2}\right)$ contains N linearly independent points. Using the induction-hypothesis, we easily get that $Q \cap\left(P_{N} \backslash V\right) \cap$ $\cap\left(L_{1} \cup L_{2}\right)$ contains interior points. This implies $Q \cap\left(P_{N} \backslash V\right) \cap L_{1}$ or resp. $Q \cap\left(P_{N} \backslash V\right) \cap L_{2}$ contains interior points, which gives that M_{2} or resp. M_{1} contains interior points. In case of the second possibility of 2°. and $3^{\circ} .,\left(P_{N} \backslash V\right) \cap\left(L_{1} \cup L_{2}\right)$ is included in an ($N-1$)-dimensional hyperplane containing p_{0}, and both M_{1} and M_{2} have interior points.

Theorem 4. An arbitrary semiconvex set V, not containing a whole line, in n-dimensional projective space $P_{n}(n>1)$, avoids an ($n-1$)-dimensional hyperplane. Moreover: if a is an interior point of $P_{n} \backslash V$, then there exists an ($n-1$)-dimensional hyperplane containing a and avoiding V.

Proof. We proceed by induction. First we prove the theorem for $n=2$.

If V is contained in a line, the theorem is trivial. If V is not
contained in a line, then the closure \bar{W} of the interior W of V contains V, according to theorem 3. Clearly W does not contain a whole line. We prove, that W is also semiconvex (and thus convex according to theorem 1).

Choose $p, q \epsilon W, p \neq q$. Join p and q by a segment S within V. Take a point $r \in p q, r \notin V$. Let $O_{p} \subset W$ and $O_{q} \subset W$ be two connected neighbourhoods of p resp. q. Draw a variable line λ_{t} through r meeting O_{p} and $O_{q} . S$ is contained in the interior of the sum of the segments in V on the λ_{t}, joining points of O_{p} and O_{q}, that means $S \subset W$, q.e.d.
$\bar{W}=P_{2}$ implies that $P_{\mathbf{2}} \backslash W$ is a line: the semiconvex set $P_{\mathbf{2}} \backslash W$ cannot contain three linearly independent points by theorem 3, but $P_{\mathbf{2}} \backslash W$ contains at least one whole line by theorem 1, thus $P_{2} \backslash W$ is a line. Then $W=V$, since otherwise V would contain a whole line. So the theorem holds in this case.

If $\bar{W} \neq P_{2}$, there exists an open convex neighbourhood O of a, $O \subset P_{\mathbf{2}} \backslash \bar{W}$. According to theorem 1, we can draw a line α through a, avoiding W. Let β be an arbitrary line through $a, \alpha \neq \beta$. α and β decompose $P_{2} \backslash(\alpha \cup \beta)$ into two connected parts, I and $I I$. If V avoids α, we are ready. α cannot contain accumulation points of $W \cap \beta$. If α only contains accumulation points of $W \cap I$ or of $W \cap I I$, we can find a line α^{\prime} through a avoiding \bar{W}, thus avoiding V, by turning α a little around a. On the other hand, if $s \epsilon \alpha$, resp. $t \epsilon \alpha$, is an accumulation-point of $W \cap I$, resp. $W \cap I I$ while moreover $s \neq t$, we could find a line joining the points $x \in W \cap I$ and $y \in W \cap I I, x$ and y near s resp. t, intersecting α in u and β in v while $v \in O$; but in that case x, y and u, v would form separated pairs, x and y in W, u and $v \notin W$, in contradiction with the semiconvexity of W. If $s=t$ we proceed as follows: W is not contained in a line, so we can find $c, d \epsilon W, s c \neq s d$. Be $I I I$ one of the parts of $P_{2} \backslash(s c \cup s d)$ into which $P_{2} \backslash(s c \cup s d)$ is decomposed by $s c$ and $s d, \alpha$ not lying in III. All points z of $I I I$ belong to W : the interval $I I I \cap c d$ of $c d$ lies in W, so we can connect z with a point z^{\prime} of W sufficiently near to s, such that the points z and z^{\prime} do not separate the intersection-points $z^{\prime \prime}, z^{\prime \prime \prime}$ of $z z^{\prime}$ with α resp. $c d$, thus the segment of $z^{\prime} z^{\prime \prime \prime}$ which contains z lies in W, and therefore $z \epsilon W$. Then certainly a whole line through s minus s lies in W, so $s \notin V$ and $\alpha \cap V=0$, which completes the proof for $n=2$.

If the theorem is assumed to be true for $n=k-1$, we can prove it for $n=k$ in exactly the same way as has been done in the proof of theorem 1. We have only to assume that $P_{k} \backslash V$
contains interior points. If this is not the case, then $P_{k} \backslash V$ is exactly a P_{k-1} using theorem 3 by a reduction ad absurdum and the theorem holds.

Remark. If V is an arbitrary convex set in n-dimensional projective space $P_{n}(n>1)$, and H is an ($n-2$)-dimensional hyperplane lying in the interior of $P_{n} \backslash V$, then there exists an ($n-1$)-dimensional hyperplane containing H and avoiding V. This can be proved in a way analogous to that used in the proof of theorem 4.

Mathematisch Instituut
University of Amsterdam.

REFERENCES.

E. Steinitz
[1] Bedingt konvergente Reihen und konvexe Systeme, J. für die reine und angew. Math. 146, p. 34, (1916).
H. Kneser
[2] Eine Erweiterung des Begriffes "konvexer Körper". Math. Ann. 82, p. 287-296, (1921).
B. P. Hallmeyer
[3] Bijdragen tot de theorie der elementairoppervlakken, Amsterdam, 1917.
D. Dekker
[4] Convex regions in projective space, The Amer. Math. Monthly, 62, no. 6, p. 430-431, (1955).
(Oblatum 29-8-55).

