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Convex sets in projective space

by

J. de Groot and H. de Vries

INTRODUCTION. We consider the following properties of sets in
n-dimensional real projective space Pn(n &#x3E; 1 ): a set is semiconvex,
if any two points of the set can be joined by a (line)segment which
is contained in the set;
a set is convex (STEINITZ [1]), if it is semiconvex and does not

meet a certain P n-l.
The main object of this note is to characterize the convexity

of a set by the following interior and simple property: a set is
convex if and only if it is semiconvex and does not contain a

whole (projective) line; in other words: a subset of Pn is convex
if and only if any two points of the set can be joined uniquely
by a segment contained in the set. In many cases we can prove
more; see e.g. theorem 2.

H. KNESER [2] gives a detailed survey of the different scmi-
convex sets in P2 and P3; see also HAALMEYER [3]. 1’hough,
surprisingly enough, he nowhere states the characterization-

property just mentioned, this property may easily be concluded
from the material contained in his paper. However, his method
works only for n = 2, 3. Only theorem 3, stated below, serving
as a lemma, is due to H. Kneser for ail n. Recently we learned
that D. DEKKER [4] also discovercd the mentioned characteriza-
tion, but ohly for open sets. Theorem 1, theréfore, gives no news
in the case of open sets. However, our proof is somewhat different.
The authors are indebted to A. HEYTING, who drew their attention
to this characterization-problem.

It is possible, of course, to state analogous problems for the
n-sphere 5 n (or for certain other spaces as well), replacing lines
by great circles. The result is, roughly spoken, that the charac-
terization-property holds for open sets in S., but breaks down
for arbitrary ones. However, since the results for the 5 n may be
obtained far easier than for the Pn, vi+e do not discuss thcln hère.
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We shall denote points by small Latin letters, lines by small
Greek letters or two small Latin letters if these denote points
of the line, and segments by the end-points of the segment if this
is stated explicitly.
THEOREM 1. In order than an open or closed semi-convex set V

in Pn (n &#x3E; 1) is convex, it is necessary and sufficient that V does
not contain a whole line. Moreover: i f V satisfies this condition,
then for every point q E PnB V, there exist8 an (n -1 )-dimensional
hyperplane, which contains q, and has no points in common with V.

PROOF. The necessity of the condition is obvious. To prove
the sufficiency and the second part of the theorem, we proceed
by induction.

Let n = 2. Take a point v E V and let a) be the line qv. Let ,ut
be a variable line through q, always Ilt ~ ce, lit separates P2B03C9
into two disjoint connected parts, It and II t. We see to it that
always It~It’ ~ 0, IIt~IIt’ =A 0. We decompose V t = Iltn V
into two disjoint sets A t and Bt in the following way: we put
at E V t, resp. bt E V t, in A t, resp. Bt, if one of the segments atv,
resp. btv, of the line atv, resp. btv, lies entirely within V ~It,
resp. within V ~IIt. Since V is semiconvex and does not contain
a whole line, we have

If V is open, then A t is an open set on the line pi, because,
if at E A t, there is, by applying the Heine-Borel theorem, an open
neighbourhood of a segment atv which is contained in V. But then
also Bt is open on pi. Since Vt is connected, we may conclude
that for a definite t either A t or Bt is empty.

[If V is closed, then A t is closed on pi since the limit of a con-
verging sequence of closed segments aitv, ait E A t, entirely lying
within (V~It)~03C9~03BCt is again a closed segment lying within
(V~It)~03C9~03BCt. Then also B t is closed on 03BCt, and we may
conclude that either A t or B t is empty.]
Now we project U A and U Bt from q upon a line À through

v, À ~ co; the projections will be L1 and L2 respectively. Then
obviously Li ~ L2 = 0.

If V is open, then L, is open on À : a point pl E L1 is the projection
of a point p E U A t, p has on the line vp a neighbourhood belonging
to U A t, so pl t has a neighbourhood on À belonging to Ll. Then
also t L2 is open, L1~L2 = 0, so there exists a point q’ E 03BB,
q’ ~ Ll u L2 U {v}, and the line qq’ lies entirely within the com-
plement of V.
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[If V is closed, then L1 and L2 are each closed on 03BBBv as can

easily be seen. Since 03BBBv is connected, there exists a point q’ E 03BBBv,
q’ ~ Li U L2, and the line qq’ lies entirely within the complement
of V.]

So the theorem is proved for n = 2.
Now we assume the theorem to be true for n = k -1 and prove

the theorem for n = k (k &#x3E; 2).
We take q E PkBV and 03A9 as a Pk_1 in Pk not containing q.

We project Tl from q upon S2, thus obtaining V’ ~ 03A9. Then with
pl, p2 E V’, V’ contains obviously one of the segments of p’1p’2,
and does not contain both segments: the two-dimensional plane
generated by q, p’, p’ contains a line through q, which avoids V
(the intersection of a semiconvex set not containing a whole line
with a hyperplane is a similar set), and so this line intersects
pip2 in a point, not belonging to V’. Using the induction-hypothesis
we get that V’ avoids a Pk-2 lying in D. The (k-1)-dimensional
hyperplane through that Pk_2 and q avoids V, q.e.d.
THEOREM 2. Il V is an open or closed convex set in a Pn (n &#x3E; 1),

and H is a Pn_k (k &#x3E; 0 ) avoiding V, then there exisis a Pn-1
containing H and avoiding V.

PROOF. For k = 1 the theorem is trivial. We assume further

k &#x3E; 1. We proceed by induction with respect to n.
For n = 2 the theorem has been proved in theorem 1. Assuming

the theorem to be true for n -1, we prove the theorem for n.
Choose an (m-1)-dimensional hyperplane S containing H.

S ~ V is convex. So, according to the induction-hypothesis, there
exists a Pn_2 C S containing H and avoiding s r1 Tl, thus also
avoiding V. Let il be a Pn-1 avoiding V. If Q D H we are ready.
Assume 03A9 ~ H. Let Ft be a variable (n -1 )-dimensional hyper-
plane containing the above-mentioned P,-21 thus also containing
H. FtB(Pn-2~03A9) is decomposed by Pn-2 and 03A9~Ft into two
disjoint connected parts of which only one may contain points
of V. If V is open, we get by varying Ft continuously "a first
situation" in which this part contains no points of V. Neither
can in this situation the other part contain puints of V, since
if it would then that part would also contain points of V in
"an earlier situation". If V is closed the theorem is proved
similarly. -

THEOREM 3. (KNESER ). I f a -semiconvex set V in a Pn contains
n+1 linearly independent points po, Pl’ ..., P., then each of these
points, for instance Po, is vertex of an n-dimensional -simplex the
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interior points of which belong to V. This includes, that every point
of V is accumulation point of interior points of V.

PROOF. The theorem is true for n = 1. We assume the theorem

to be true for n = N-1 and prove it for n = N.

The PN-1 defined by pi, ..., pN contains an (N-1)-dimen-
sional simplex E, the interior of which belongs to V, according
to the induction-hypothesis applied to the semiconvex set

V ~ PN-1. In the N-dimensional projective space PN, the simplex
27 and the point po define two N-dimensional simplices 039B1, 039B2
of which 1 is a face. Let Ml , resp. M2, be the set of points of
27 wh ieh can be joined with Po within V ~ 039B1, resp. V ~ 039B2.
Ml and M2 are not necessarily disjoint. If one of the sets Mi
contains interior points, then it contains an (N-1)-dimensional
simplex P, and hence there exists an N-dimensional simplex,
defined by P and po, contained in V; so the theorem is proved.
We prove that necessarily at least one of the 31, contains

interior points.
Let L1, resp. L2, be the interior of 039B1, resp. A2. The set PNBV

is semiconvex as can easily be seen. We distinguish the following
three cases: the maximal number of linearly independent points
of (PNBV)n(LluL2) is 1°.N+1, 2°. N, 3°. N. In the second
case we have two possibilities: all points of (PNBV)~(L1~L2)
lie on an (N-1 )-dimensional hyperplane containing either not
po or po. In case of 1 °. and the first possibility of 2°. there exists
an (N-1)-dimensional hyperplane Q, such that Po 1- Q, and

Q~(PNBV)~(L1~L2) contains N linearly independent points.
Using the induction-hypothesis, we easily get that Q ~ (PNBV) rl
~ (L1 U L2) contains interior points. This implies Q n (PNBV) fl LI
or resp. Q~(PNBV)~L2 contains interior points, which gives
that M2 or resp. Ml contains interior points. In case of the second
possibility of 2°. and 3°., (PNBV)~(L1~L2) is included in an

(N-I )-dimensional hyperplane containing po, and both M1 and
laf 2 have interior points.
THEOREM 4. An arbitrary semiconvex set V, not containing a

whole line, in n-dimensional projective space Pn (n &#x3E; 1), avoids
an (n-1)-dimensional hyperplane. 1.11 oreover: i f a is aiz interior
point 0f PnBV, then there exists an (n-1)-dimensional hyperplane
containing a and avoiding V.

PROOF. We proceed by induction. First we prove the theorem
for n = 2.

If V is contained in a line, the theorem is trivial. If Il’ is not
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contained in a line, then the closure W of the interior W of V
contains V, according to theorem 3. Clearly W does not contain
a whole line. We prove, that W is also semiconvex (and thus
convex according to theorem 1).

Choose p, q E W, p ~ q. Join p and q by a segment S within V.
Take a point r E pq, r 1. V. Let Op C W and Oq C W be two con-
nected neighbourhoods of p resp. q. Draw a variable line 03BBt through
r meeting Op and Oq. S is contained in the interior of the sum of
the segments in V on the Â,, joining points of Op and Oq, that
means S C W, q.e.d.
W = P2 implies that P2BW is a line: the semiconvex set

P2B W cannot contain three linearly independent points by
theorem 3, but P2BW contains at least one whole line by theorem
1, thus P2B W is a line. Then W = V, since other,yise V would
contain a whole line. So the theorem holds in this case.

If W ~ P2, there exists an open convex neighbourhood 0 of a,
O C P2B W. According to theorem 1, we can draw a line oc through
a, avoiding Hl. Let P be an arbitrary line through a, oc ~ 03B2.
oc and P decompose P2B(03B1 u fi) into two connected parts, I and II.
If V avoids ci., we are ready. a cannot contain accumulation

points of W ~03B2. If oc only contains accumulation points of W r1 I
or of W ~ II, we can find a line «’ through a avoiding W, thus
avoiding V, by turning a a little around a. On the other hand,
if s E 03B1, resp. t E a, is an accumulation-point of W ~ I, resp. W rl II
while moreover s ~ t, we could find a line joining the points
x E W ~ I and y E W ~ II, x and y near s resp. t, intersecting oc

in u and in v while v E 0 ; but in that case x, y and u, v would
form separated pairs, x and y in W, u and v e W, in contradiction
with the semiconvexity of W. If s = t we proceed as follows :
W is not contained in a line, so we can find c, d E W, sc ~ sd.
Be III one of the parts of P2B(sc ~ sd) into which P2B(sc ~ sd)
is decomposed by sc and sd, « not lying in III. All points z of III
belong to W : the interval III r1 cd of cd lies in W, so we can
connect z with a point z’ of W sufficiently near to s, such that the
points z and z’ do not separate the intersection-points z", z"’
of zz’ with oc resp. cd, thus the segment of z’z"’ which contains
z lies in W, and therefore z c W. Then certainly a whole line

through s minus s lies in W, so s e V and a ~ V = 0, which

completes the proof for n = 2.
If the theorem is assumed to be true for n = k - 1, we can

prove it for n = k in exactly the same way as has been done in
the proof of theorem 1. We have only to assume that P,BV
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contains interior points. If this is not the case, then P,BV is

exactly a Pk-1 using theorem 3 by a reduction ad absurdum and
the theorem holds.

REMARK. If V is an arbitrary convex set in n-dimensional

projective space Pn(n &#x3E; 1), and H is an (n-2)-dimensional
hyperplane lying in the interior of PnBV, then there exists an
(n-1)-dimensional hyperplane containing H and avoiding V.

This can be proved in a way analogous to that used in the proof
of theorem 4.
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