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On Riemann Integrability and
Almost Periodic Functions

by

Raouf Doss

Let f(x) be a Bohr almost periodic (Bohr a.p.) function. To
every e &#x3E; 0 we can associate a ô &#x3E; 0 and numbers ni, ..., 3tm
such that

(1)

provided

(2)

Conversely, if to every e &#x3E; 0 there corresponds a 03B4 &#x3E; 0 and

numbers j1;1’ ..., j1;m such that relations (2) imply (1), then f(x)
is a Bohr a.p. function.

This suggests the following definition:
DEFINITION 1. A bounded function f(x) is called almost periodic

in the sense of Riemann-Stepanoff 1) (R.S.a.p.) if to every e &#x3E; 0

there corresponds a ô &#x3E; 0 and numbers n,, ..., j1;m such that

provided

Hère j means an upper Lebesgue integral.
To define the R.W.a.p. or the R.B.a.p. classes we just replace

(3)bv

or

respectively.
It will be seen below (theorein 2) that the R.W.a.p. and the

R.B.a.p. classes are identical.

1) The approximation theorem below (theorem 2) justifies the name of Riemann.
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The Stepauoff, Weyl, and Besicovitch distances between two
summable functions f(x), g(x) are defined in the usual manner
and will be denoted by DS(f, g), DW(f, g) and DB( f, g) respec-
tively.
We denote by R the additive group of reals. Let E be a

measurable set in R and let cE(t) he its characteristic function.
We write

The complementary of E with respect to R will be denoted

by E.
We have the following theorem:
THEOREM 1. In order that the bounded function f(x) be R.S.a. p.

it is necessary and sufficient that to every E &#x3E; 0 there corresponds
a measurable set E and numbers l5 &#x3E; 0, nl, ..., nm such that

and such that

provided x ~ E and

To have the corresponding theorem for the R.W.a.p. or the R.B.a.p.
classes we just replace (i) by

or

respectively. 
We introduce the following definition:
DEFINITION 2. A function f(x) is called K,S.a.p. 2) if to every

E &#x3E; 0 there corresponds a measurable set E and numbers à &#x3E; 0,
03C01, ..., J’tm such that 

2) Cf. A. S. Kovanko, "Sur la correspondance entre les diverses classes de
fonctions presque-périodiques généralisées Bull. (Izvestiya) Inst. Math. Mech.
Univ. Tomsk, 3, 1201336, (1946).
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and such that

provided x e E, x’ E E and

To have the corresponding definition for the K.W.a.p. or the
K.B.a.p. classes we just replace (i) by

or

respectively.
We have the following approximation theorems:
THEOREM 2. In order that the function f(x) be R.S.a.p. it is

necessary and sufficient that to every E &#x3E; 0 there corresponds two
trigonometric polynomials p(x), q(x) such that

(here a « b means Re a ~ Re b and la  Ib),

To have the corresponding theorem for the R.W.a.p. or the R.B.a.p.
classes we just replace (ii) by

or

respectively.
Since for polynomials (or Bohr a.p. functions) p(x), q(x) we have

we see that the two classes R.W.a.p. and R.B.a.p. are identical.
THEOREM 3. In order that the function f(x) be K.S.a.p. it is

necessary and sufficient that to every E &#x3E; 0 we can associate a

trigonometric polynomial q(x) and a measurable set E such that

and

To have the corresponding theorem for the K.W.a.p. or the

K.B.a.p. classes we just replace (1) by
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or

respectively 3).
Let 1(x) be a R.B.a.p. function. By means of theorem 2 we

can easily extend to f(x) a classical property due to H. Weyl 4)
of R-integrable, purely periodic functions: we can find two

numbers e and M with the property:
To every e &#x3E; 0 there corresponds an integer n such that

whatever be x.

Combining this property with almost periodicity we obtain
THEOREM 4. Let f(x) be a R. B.a.p. function; then we can find

two number8 e and M possessing the following property:
To every E &#x3E; 0 there corresponds an integer n and numbers

03B4 &#x3E; 0, ni, ..., n. such that

provided

Conversely, il there are two numbers e and M with the above

property, then f(x) is a R. B.a. p. function 5).
There is no corresponding theorem for the R.S.a.p. functions.
Proof o f theorem 1
Necessity. Let f(x) be a R.S.a,.p. function. Let E &#x3E; 0 be given,

and let ô &#x3E; 0, 03C01, ..., 1Cm be such that

provided

3) This theorem is close to the main theorem in E. Folner, "On the structure
of generalized almost periodic functions "Danske Vid. Selsk. Math. Phys. Medd.
21, no 11, 30 p. (1945).

4) H. Weyl, "Über die Gleichverteilung von Zahlen mod. Eins." Math, Ann.
77, 818-852, (1916).

5) This theorem has been stated without proof in Raouf Doss" Sur une nouvelle
classe de fonctions presque-périodiques" C. R. Acad. Sci. Paris, 238, 31?’-318,
(1954).
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Put

where 03C4 is subject to the condition

Then, by (1) and the definition of an upper Lebesgue integral

Let n be a fixed positive or negative integer and call D ft the
set of points t of the interval (n, n + 1) at which p(t) &#x3E; e. Dn
is not necessarily measurable, but there exists a partition of
(n, n + 1) into a finite number of disjoint measurable sets

E1, ... Es such that

where 03BC(Ei) is the measure of E, and M, is the sup. of ~(t) for
t on E,. The set D n above meets a number of E t , say E 1, ..., Er
(r :5: s), so that 

By (2)

The set

possesses therefore the property that

and

Let

and let E = C be the complementary of C. Then, clearly
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Also, by (3) and (1, S)

Since e &#x3E; 0 is arbitrary, relations (4) and (5) show that f(x)
satisfies the condition of the theorem.

If we start with a R.W.a.p. or a R.B.a.p. function, relation
(1, S) should be replaced by

respectively. Relation (4) is still true, but (3) would then give
easily

or

respectively.
The necessity is now proved.
Sufficiency. The sufficiency of the condition of the theorem

is immediate if we take into account the boundedness of f(x).
LEMMA. Let f(x) be a real function and E C E’ be two subsets

of R. Let

Let E &#x3E; 0, ô &#x3E; 0, 03C01, ..., n. be numbers such that

provided x E E, X’ E E’ and

Then there exists a Bohr a.p. function q(x) such that

(i)

and

(ii)

Proof. Denote by Tk the additive group of reals modulo 03C0k.
and let ~k(x) be the canonical homomorphism of R on T k. Tk
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is metrized and the distance between two elements 03BE, 03BE will
be denoted by k(03BE, 03BE). We introduce in R a new distance (x, )
defined as follows

It is clear that to every oc &#x3E; 0 there corresponds a 03B2 &#x3E; 0

such that

implies

Conversely, to every 03B2 &#x3E; 0 corresponds an a &#x3E; 0 such that

relations (2) imply relation (1).
We now put for a positive integer n

We shall show that fn(X) is a Bohr a.p. function. In fact

Hence, for x’ E E’

This relation holding for any x’ E E’, we conclude

In the same way we prove

so that

Let 7y &#x3E; 0 be given; take 03B2 = ~/n and let a &#x3E; 0 be the number

associated to 03B2 in such a way that relations (2) imply relation (1)
Relations (2) imply therefore

and this proves that fn(x) is a Bohr a.p. function.
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It is clear that (whatever be n)

To complète the proof of the lemma we shall show that for
some n we have

In fact, by hypothesis

provided x E E, x’ E E’ and

Let à’ &#x3E; 0 be the number associated to ô in such a way that

implies relations (4). Thus relation (5), combined with x E E,
x’ E E’ implies (3 ).
Take n such that nô’ &#x3E; 2M; then, for a f ixed x E E C E’

we have

We conclude

so that, by (3)

This, combined with (i’) gives the required relation (ii’).
The lemma is now proved.
Proof o f theorem 2
Necessity. Let f(x) be a R.S.a.p. function. It will suffice to

prove that to every e &#x3E; 0 we can associate two Bohr a.p. func-
tions p(x) and q(x) satisfying conditions (i) and (ii) of the

theorem. Moreover, we can suppose that f(x) is real.
Let

Let E &#x3E; 0 be given. By theorem 1 we can find a measurable
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set E and numbers ô &#x3E; 0, 03C01, ..., nm such that

and such that

provided x E E and

By the lemma, taking E’ = R we can find a Bohr a.p. func-
tion q(x) such that

and

In the same way we can find a Bohr a.p. function p(x) such
that

and

Then, by (1)

For R.W.a.p. or R.B.a.p. functions the proof is quite similar.
Sufficiency. Let f(x) satisfy the condition of the theorem.

Let ~ &#x3E; 0 be given and let p(x), q(x) be two Bohr a.p. functions
such that

and

Choose
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provided

Then

Thus, relations (2) imply

The same relations (2), therefore, imply by (1)

This proves, since E is arbitrary, that f(x) is a R.S.a.p. function.
For the R.W.a.p. or the R.B.a.p. classes the proof is quite

similar.

Proof of theorem 3
Necessity. Let f(x) be a K.S.a.p. function and let E &#x3E; 0 be

given. We can find a measurable set E and numbers ô &#x3E; 0,

nl, ..., Jlm for which S(E)  E, and

provided x E E, x’ E E and

| x - x’|  03B4 (mod 03C0k) (k = 1, ..., m).
If we show that there is a constant M such that

then, by the lemma, taking E’ = E we can find a Bohr a.p.
function q(x) such that

and the condition of the theorem will be proved.
So suppose there is a sequence xn of points of E for which

We can extract from xn a subsequence n such that whatever
be p, q
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Then

but this is incompatible with (1).
For the K.W.a.p. or the K.B.a.p. functions the proof is quite

similar.

Sufficiency. Let f(x) satisfy the condition of the theorem. Let
E &#x3E; 0 be given. Let the polynomial q(x) and the measurable set
E be such that

and

We can find a 03B4 &#x3E; 0 and numbers nl, ..., 03C0m such that

provided

If x E E, x’ E E and if relations (3) hold, then, by (1) and (2)

f(x) is thus a K.S.a.p. fiinction.
For the K.W.a.p. or the K.B.a.p. classes the proof is quite

similar.

Proof of theorem 4
Necessity. Suppose that f(x) is a R.B.a.p. function. Let ~l be

a sequence of positive numbers tending to 0 and let pl(x), ql(x)
be the polynomials associated by theorem 2 to El. Let 03BB03BD be a
sequence containing all the non-vanishing exponents of each of
the polynomials pl(x), ql(x), l = 1, 2, ... Choose e such that

03BE03BB03BD/203C0 is never an integer. We may suppose, by considering
separately the real and imaginary parts, that f(x) is real and
that pl(x), ql(x) are real Bohr a.p. functions.

Let 

E &#x3E; 0 being given, let p(x), q(x) be two real Bohr a.p. functions
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chosen among the pi(x), ql(x) such that

We put

Then, by (1) and (2)

We see easily, in view of our choice of 03BE6), that there exists

a number no such that for n h no and every xo

Also we can find a 03B4 &#x3E; 0 and numbers nl, ..., nm such that

provided

We conclude, by (3), (4) and (5) that

provided

Thus these last relations imply

sufficiency. Suppose that f(x) satisfies the condition of the

theorem. We may suppose again that f(x) is real.

6) Cf. A. S. Besicovitch, "Almost periodic Functions", Cambridge, 1932,

p. 44.
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Let E &#x3E; 0 be given, and let n, 03B4 &#x3E; 0, 03C01,..., 03C0m be such that

provided

Let ix be such that

Then, if 03B8x, 03B8’x are two functions which take only the values 0
and 1, we have, whatever be x

Hence

By an appropriate choice of 03B8x and 0’ x we see that

Let a be arbitrary and let L = ne. Then

Relations (1) therefore imply

so that f(x) is a R.B.a.p. function
Remark. The proof shows that f(x) is a R.W.a.p. function.

Thus we see again that the R.W.a.p. and the R.B.a.p. classes
are identical.

(Oblatum 1-10-’54).


