
COMPOSITIO MATHEMATICA

DAVID ELLIS

H. D. SPRINKLE
Topology of B-metric spaces
Compositio Mathematica, tome 12 (1954-1956), p. 250-262
<http://www.numdam.org/item?id=CM_1954-1956__12__250_0>

© Foundation Compositio Mathematica, 1954-1956, tous droits réser-
vés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1954-1956__12__250_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Topology of B-Metric Spaces 1)
David Ellis 2) and H. D. Sprinkle 3)

Gainesv ille, Florida

1. Introduction. Numerous studies (1, 2, 5, 6, 7, 8, 9, 10,
11, 13, 14, 15, 17, 18, 23, 24) have been made concerning geo-
metries and topologies induced in sets by general distance func-
tions. A formulation of the notion "generalized metric space"
has been given (12). In this paper we begin the elaboration of
the topology induced in sets over a-complete Boolean algebras
by the Kantorovitch topologies of the respective algebras. The
work bears mainly on fundamental questions in the topology of
such spaces. Among the more interesting results presented are a
discussion of Birkhoff’s problem 77 (3), the autometrization of
a a-complete Boolean algebra in its Kantorovitch topology, the
analogue for B-metric spaces of the Cantor-Hausdorff completion
(20), and the Boolean metrization of zero-dimensional spaces.
The work was suggested mainly by the interesting comparison
between the distance geometries of ordinary metric spaces and
the autometrized Boolean algebras studied by one of us (10, 11 )
and, more recently, by L. M. Blumenthal and others (5). There
is a hint of the program, however, in a paper of Lôwig around
1936 (22).

2. Preliminaries and property (~~). In this paper, B

shall always denote a (y-complète Boolean algebra. In B w e

denote the operations of join, meet, complement, and symmetric
difference by a V b, a A b, a’, and a E9 b, respectively.

If {xi} is a sequence of points of B, one defines lim xi = A V
and lim xi = V A xi. One also defines lim xi = x if and only

i k=1 i=k i

1) Presented to the American Mathematical Society; June, September, and
December, 1952.

2) Part of the contributions of the senior author to this paper were made while
he was at the Institute for Air Weapons Research, The University of Chicago.

3) The contributions of the j unior author to this paper constitute part of his
University of Florida doctoral dissertation.
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if lim xi = x == lim xi. The K-tôpology (Kantorovitch topology
i i

(16, 21), sequential order topology (3)) of B is the derivative
topology (25) of the sequential topology under the above defini-
tion of lim xi.

We shall need the following well-known and easily verified
facts: 

1. lim xi ~ lim xi for arbitrary sequences (3).

2. lim {xi V Yi) ~ lim xi V lim yi (22).
i i i

3. lim xi = 0 is equivalent to lim xi = 0 (this follows im-
i i

mediately, of course, from 1. above).
4. The Boolean operations of B are continuous in the K-

topology of B (3, 22).
Consider now the following two properties relevant to sequential

topologies:
(~) lim xij = xi, for all i, and lim xi = x imply the existence

of a function j(i) so that lim xij(i) = x.
i

(~~) lim x’ = xi, for all i, and lim xi = x imply the existence

of a function j(i) so that k(i) ~ j(i), for all i, implies
lim xik(i) = x.

i

Garrett Birkhoff’s Lattice Theory (3) proposes an unsolved

problem, No. 77, which may be formulated as: Does every

a-complete Boolean algebra possess Property (~) in its K-topo-
logy ? Clearly (ff) implies (~).
The following Lemma seems to be well-known, but we include

a proof for the sake of completeness. 
LEMMA 1. 1 n the metric topology of a metric space, (~~) subsists.
Proof. Let us consider a metric space in which lim 0 (xij, xi ) = 0,

for all i, and lim 03B4(xi, x) = 0. For each i select j(i) so that

k(i) ~ j(i) implies 03B4(xik(i), xi)  2-2. Now, for each E &#x3E; 0 there
is k so that ~ &#x3E; 2-(k-1) and N so that i &#x3E; N implies 03B4(xi, x)  2-k.

Setting M = max (N, k), we find that for i &#x3E; M and k(i) ~ j(i),
for all i, we have

LEMMA 2. If B is the set algebra of a countable set, it may be-

nzade into a norlned lattice (3).
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Proof. Let B be the set algebra of a countable set. B may be
represented (03C3-isomorphically) as the direct product of countably
many replicas of the two element Boolean algebra. Thus, if

x E B we set x = (lx, 2X, ... ) where ix is either 0 or 1 according
as the ith point in a fixed enumeration of our countable set is

mot in x or is in x, respectively. Define 1 x | = S ix2-i. This

functional is obviously sharply monotone increasing and modular
(3). Hence, Lemma 2 follows.
LEMMA 3. 1 f B is the set algebra of a countable set, the distance

function induced by the f unctional o f Lemma 2 is a metrization
of the K-topology o f B. Thus, B has Property (~~) in its K-

topology.
Proo f . Consider the function d(x, y ) = x ~ y (10, 11 ) in B.

From Property 4 at the beginning of this Section, lim xi = x

implies lim d(xi, x)=d(x, x)=0. Conversely, suppose lim d(xi, x)=0.
i i

Then, again using Property 4 x ~ lim xz = x’ ~ lim xi = 0. This

yields x ~ lim xi and lim xi ~ x, or x == lim xi. Thus, we have
i i i

(1) lim xi = x if and only if lim d(xi, x ) = 0.
i i

Suppose again that lim xi = x and observe that à(x, xi ) =
i

1 ae V Xi | - 1 X /B xi 1 == d(x, xi ) 1, by thc modularity of the

iiorin functional. In view of (1) above and this observation it

will suffice to show

(2) lim yi = 0 if and only if lim 1 xi | = 0
i i

in order to complete tlie proof of Lemma 3. Suppose then that
lim yi =- 0. From the representation employed in Lemma 2, we

i

have that for each k there is N(k) so that i &#x3E; N(k) implies
kxi = 0. Select E &#x3E; 0 and select k so that E &#x3E; 2-(k-1). Then for

i &#x3E; max N(j), |ai, | ~ 03A3 2-i  E. Convcrsely, if |xi| lias limit 0

tliere is an N(k) as described above for each k and lim xi = 0.
i

We observe that Lemma 3 contradicts Exercise 46 on Page
286 of (25).
LEMMA 4. Il B is an algebra with Pro perty (tt), and if J is a

03C3-ideal (3) i-n B, then B/J has Property (tt) (I(-topologies under-
stood).
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Proof. Assume the hypotheses and denote elements a of B
mod J by {a}. 

Let lim {xij} = {xi}, for all i, and lim {xi} = {x}. Then lim xij =
i i i

xi ~ ui and lim xij = Xi V vj, for all i, and lim xi = x V z,

lim xi = x V w, where ui, v;, w and z are in J. Let t = ( V Ui) V

00

( V vi ) v z V w. Now, t is in J and one sees immediately that

lim (xij V t ) = xz V t, ’for all i, and lim (xi V t) = x V t, and
i i

since B has Property (~~), there is j(i) so that k(i) &#x3E; j(i), for
all i, implies lim (xik(i) V t) = x V t. Thus, lim {xik(i)} = {x},
since t is in J.
One calls a topological space sequentially compact provided any

sequence in the space has a convergent subsequence. Clearly,
any compact space whose topology is obtained as the derivative
topology of a sequential topology is sequentially compact provided
the sequential topology lias Property (~). We shall call an algebra
a (t )-algebra or an (~~)-algebra if it has Property (~) or Property
(~~), respectively, in its K-topology. Clearly, any (~~)-algebra is
a ( j- )-algebra.
LEMMA 5. Any set algebra o f an uncountable set fails to have

Property (~), and, hence, is neither a (~)-algebra nor a (~~)-
algebra.

Proof. Let B be the set algebra of an uncountable set. Then
B contains as a closed subset a a-isomorphie image (and, hence,
a homeomorphic image) of the set algebra of the set algebra
of the natural numbers, 22"°. Now, any set algebra is bicompact
(25) and, hence, compact.
Thus, to prove Lemma 5, it suffices to show that 22"° is not

sequentially compact. The following example showing this is

due to Mr. Alfred B. Lehman. Let an be the set of sets of integers
which contain the integer n. (By integer in this discussion we
mean positive integer or natural number). This sequence fails
to have any convergent subsequence. This is clear since if ani
were a convergent subsequence, every set of integers which con-
tained infinitely many of the ni would have to contain almost
all (all but a finite number) of the ni.
Combining Lemmas 3, 4, and 5 we provide an answer to Birk-

hoff’s Problem 77 (3) with
THEOREM 1. 2"° is a (~~)-algebra. Any 03C3-factor algebra o f a
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(~~)-algebra is a (~~)-algebra. In general, however, Boolean a-

algebras fail to have Property (~).
One should note that Theorem 1 corrects a previously an-

nounced 4) solution of Problem 77 which was based on a fal-
lacious argument.

3. B-metric spaces and their distance topologies.
By a B-metric space we shall mean a set 27 together with a

mapping, d(03BE, ~) : 03A303A3 ~ B, of Il into B with the properties:
1. Vanishing. d(03BE, ~) = 0 if and only if e = q.
2. Symmetry. d(03BE, ~) = d(~, 03BE); for all 03BE, ~.
3. Triangle inequality. d(e, 03B6) ~ d(03BE, q) V d(~, 03B6); for all

In the standardized terininology of the paper (12), a B-metric
space is a generalized metric space over B.

If 03A3 is a B-rnetric space, we define d-lim ei - e in 27 if and
i

only if lim d(ei, 03BE) = 0 in B. The resulting sequential topology
i

and its derivative topology (25) are called tlie d-topology or
metric topology of 1.
A topological space 27 is said to be metrizable over B if there

is a function d(03BE, ~) : 03A303A3 ~ B under which 27 forms a B-metrie
space such that lim = 03BE in the original topology of 1 if and

i

only if d-lim ei = 03BE.
i

It is to be recalled (10, 11 ) that B itself forms a B-metric
space under the autometrization d(x, y) - x E9 y. That is, with
symmetric difference as distance function, B is a generalized
metric normal ground space (12).

3. The autometrization of B.
THEOREM 2. B in its K-topology is metrizable over itself by the

autometrization.

Proof. In view of the remark immediately preceding this

Section, it suffices to show that lim xi = x if and only if
i

lim d(xi, x) = 0. This, however, was done in the proof of Lemma 3.

Theorem 2 implies, of course, that we shall obtain results

about the K-topology of B as special cases of results dealing
with general B-metric spaces. Some of these results have been
obtained in this special case by Lôwig (22), although our defini-
tions do not all agree with his.

4) See (13) in the bibliography.
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4. Continuity of the distance function. Let E be a B-
metric space. It is well-known that limits are unique, sub-

sequences of a convergent sequence converge to the limit of the
sequence, and a sequence almost all (all but a finite number)
of whose elements coincide converges to that element in the K-

topology of B (3, 16, 21). Thèse facts clearly imply the analogous
facts for the metric topology of 03A3. Thus, (25), the d-topology
of 03A3 makes E a Hausdorff space.

THEOREM 3. Il, in E, d-lim = 03BE and d-lim ~i = q, then

lim d(03BEi, ~i) = d(03BE, il)- i i

Proof. Suppose the hypotheses. Then

Similarly, one shows

(2) and (3) together yield Theorem 3. Theorem 3 may, of

course, be stated: The distance function o f a B-metric space is
simultaneously continuous.
As a Corollary to Theorem 3 we have
COROLLARY. If B is a (~~)-algebra (resp. (~)-algebra) then (~~)

(resp. (~)) subsists in the d-topology of any B-metric space.

5. Cauchy séquences and completion of spaces over

(~~)-algebras. Throughout this Sections will denote a B-
metric space. We shall define a Cauchy sequence in 1 as a sequence
{03BEi} for which

(C) lim lim d(03BEi, ej) = 0.

One should note that this is weaker than Lôwig’s (22) definition
of Cauchy sequence which requires existence of an independent
double limit, rather than an iterated limit. One should also note
that (C) is equivalent to lim lim d(03BEi, ej) = o.

One says, as usual, that 1 is complete provided every Cauchy
sequence in I converges to a point of Z.
THEOREM 4. B is complete in the autometrization.
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Proof. Suppose xi is a Cauchy sequence in B. Now,

THEOREM 5. I f, in E, d-lim 03BEi exists, then {03BEi} is a Cauchy
sequence. 

i

Proof. Let lim d(03BE, 03BEi) = 0. By Theorem 3, lim d(03BEi, el) =

d(03BE, 03BEi); for all i. Hence, lim lim d(03BEi, ei) = 0, again by Theo-
rem 3. i ;

Having illustrated the methods of computation utilized in

these limit proofs, we shall omit many of them in the sequel.
We now undertake the completion of a B-metric space. AI-

though the first few Lemmas are unrestricted, it is apparently
necessary for the final result that B be a (~~)-algebra.
LEMMA 6. I f , in 1, {03BEi} is a Cauchy sequence and n E 1, then

lim d(03BEi, ~) exists.

Proof.

Thus,

(4) lim d(03BEi, ~) ~ lim d(ei, ~).
i i

LEMMA 7. Il {03BEi} and {~i} are Cauchy sequences in E, then
lim d(03BEi, ~i) exiqtq.

Proof. We shall apply Lemma 6 throughout this proof without
further comment.

(1) d(ei, ~i)  d(ei, 03BEj) V d(e,, ~i); for all i, j.

(2) lim d(03BEi, ~i) ~ lim d(ei, el) v lim d(e,, ~i); for all j.
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Let Il denote the class of all Cauchy sequences in 1. and

define for {03BEi}, {~i} in 03A31, {03BEi} -. {~i} if and only if d(03BEi}, {~i}) -
lim d(03BEi, ~i) = 0.
i

LEMMA 8. T he relation -- is an equivalence relation in Il.
Proof. The relation , is obviously reflexive and symmetric.

To show transitivity, let {03BEi} ~ {~i} and {~i} ~ {03B6i}. Then

so that

Let E2 denote the set of equivalence classes under ~ in 03A31.
That is, E2 = 03A31/~. If {03BEi} E 03A31, we denote by [{03BEi}] the member
of E2 containing {03BEi}. We define in E2, d([{03BEi}], [{~i}]) = d({03BEi},
{~i}). It is clear that E2 will be a B-metric space under this
distance function provided that the distance function is in-

dependent of the representatives used to compute it.

LEMMA 9. 1 f, 2I2 El, {03BEi} ~ {(03B1i} and {~i} ~ {03B2i}, theti d({03BEi},
{~i}) = d({03B1i}, {03B2i}).

Proof.

(2) with the inequality reversed is obtained in a similar fashion.
We are now ready to show that if B is a (tj’)-algebra, then

E2 is a completion of 03A3 of the Cantor-Hausdorff type (20).
THEOREM 6. Il B is a (tt)-algebra, E2 is a complete B-metric

space and 1 is congruent (12) to a dense subset o f 03A32.
Proof. By our preceding Lemmas and remarks, E2 is a B-

metric space. It is clear that 03A3 is congruently imbedded (12) in
L2 by the mapping $ - [(1)], where {03BE} denotes a sequence all
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of whose members are 03BE. The density in E2 of the image of E under
this mapping follows in the usual fashion (20) by selecting
sequences diagonally since E2 has Property (~~). Thus, we shall
only outline the proof that E2 is complete making frequent use
of what has been previously established. Let ([{03BEij}j]}i be a Cauchy
sequence in E2. Then,

(1) lim lim lim d(03BEik, 03BEjk) = 0.

By the Corollary to Theorem 3 there is b(j) so that k(j) ~ b(j);
for aIl j implies

(2) lim lim d(03BEik(j), 03BEjk(j)) = 0.

Atso,

(3) Iim lim d(03BEij, 03BEik) = 0; for all 1. Thus there is a(i) so that

j(i) ~ a(i); for all i implies

(4) Iim lim d(03BEij(i), 03BEik) = 0.
i k

Let j(i) ~ max (a(i), b(i)) ; for all i.

By (2), (4), and subsequence arguments, lim d(03BEij(i), 03BEij(03BD)) and
lim d(03BEij(n), 03BEnj(n)) exists and "

(5) lim linl d(03BEij(i), 03BEij(03BD)) = lim lim d(03BEij(03BD), 03BE03BDj(03BD)) = 0.
i 11 i 11

Thus,

(6) d(03BEij(i), 03BE03BDj(03BD)) ~ d(03BEij(03BD), 03BE03BDj(03BD)) ~ d(03BEij(j), 03BEij(03BD)); for aIl i, v implying.
(7) lim d(03BEij(i), 03BE03BDj(03BD)) ~ lim d(03BEij(03BD), 03BE03BDj(03BD)) V lim d(03BEij(i), 03BEij(03BD)); for aIl i,

11 11 11

together with (5) and a rather complicated sequence of ap-
plications of the triangle inequality and limiting processes yields
the existence of Hm d(03BEij(i), 03BE03BDj(03BD)) and

(8) lim lim d(03BEij(i), 03BE03BDj(03BD)) = 0.

Thus, [{03BEij(i)}] ~ 03A32.
Finally, by the triangle inequality,

(9) lim d(03BEik, 03BEkj(k)) ~ lim d(03BEik, 03BEij(i() V lim d(03BEij(i), 03BEkj(k)); for all i.
k k k

From (5) and (9),

(10) lim lim d(03BEik, 03BEkj(k)) = 0
i k
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and

(11) d-lim [{03BEij}] = [{03BEkj(k)}], completing the proof.

6. Application to zero-dimensional spaces. We assume

familiarity of the reader with the use of uniform structures induced
by filtres (26). We adopt the

Definition. A zero-dimensional space is a Tl topological space
(25) which has a basis for open sets consisting of sets which are
both open and closed (ambiguous sets). By space we shall un-
derstand Tl space.
We state without proof the easily established.
LEMMA 10. A space is zero-dimensional i f and only i f its topology

is compatible with a uni f orm structure defined by a filtre having a
symmetric, idempotent (under relational product) base closed under
finite intersection.
THEOREM 7. Let S be zero-dimensional space. Then S is metrizable

over the Boolean algebra 22ss.
Proof. Let B be the base of the filtre F assured by Lemma 10.

Define B(x, y) = {u ~ B (x, y) E ul and define d(x, y) =
B -- B(x, y). Since the diagonal of SS is in all elements of F,
d(x, y) satisfies the vanishing condition one way. Since S is Tl,
d(x, y) = 0 implies x = y. The symmetry condition for d(x, y)
is immediate from the symmetry of B. Now let u ~ d(x, y). If
u e d(x, z) and u ~ d(y, z), then (x, y) E u2 = u, which is a con-
tradiction. Thus d(x, y) satisfies the triangle inequality. Thus, S
forms a 2255 -metric space under d(x, y).

Let lim xn = x in the topology of S. Suppose there is an

element u in B so that u ~ lim d(x, xj). Then for a given integer
k there is j &#x3E; k so that (x, xj) ~ u which is impossible since u
contains almost all (x, xj). Thus, the topology of S is stronger
than (25) the induced distance topology.

Suppose next that lim d(x, x;) = 0 and there is a neighborhood,

u(x) which excludes infinitely many xj. Then u ~ d(x, xj) for

infinitely many Xi. Since B is a base for F and is closed under
finite intersection, this is a contradiction and the induced distance
topology of S is stronger than the original topology. Thus the
topologies coincide and Theorem 7 is proved.
We borrow from Vaidyanathaswami (25) the
LEMMA 11. Any set algebra is zero-dimensional in its K-topology-.
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THEOREM 8..I f B is a set algebra, any B-metric space is zero-
dimensional.

Proo f . Let 27 be a B-metric space and select ce ~ 03B2 in 1. Now,
f(03BE) = d(03B1, 03BE) is a continuous mapping of 1 into B with f(03B1) = 0
and f(03B2) ~ 0. By Lemma 11, f(03B1) and f(03B2) may be separated
in B by ambiguous sets. The counterimages of these sets in 1
will be ambiguous sets separating oc aiid 03B2. Thus, 1 is zero-

dimensional.

Combining Theorems 7 and 8 we have
THEOREM 9. Among T1 spaces, the zero-dimensional spaces are

precisely those spaces metrizable over set algebras.

7. Weak topological products. Let En be a sequence of B-
metric spaces. Denote the combinatory product by H En and the

projection of 03A0 En onto En by 1tn : 03A0 03A3n ~ En. Define a distance

function and, hence, an induced distance topology, in Il En by
n n

d(03BE, ~) = V d(1;, 1Ji) Where 8? = - 03C0i(03BE).

LEMMA 12. For each n, 03C0n : II 03A3n ~ En is continuous.

Prool. If lim d(03BEm, 03BE) = 0, then lim d(03BEmn, 03BEn) = 0.

LEMMA 13. For each n, 03C0n : n 03A3n ~ En is an open mapping.
n

Prool. The proof is by diagonal selection and is left to the
reader.

Combining Lemmas 6 and 7 we find
THEOREM 10. II En f orms a B-metric space under the distance

functions defined above. The topology induced by this distance

f unction is a weak product topology (25).
A similar Theorem may be obtained for a distance function

defined on a cardinal product of algebras for a combinatory
product of spaces metrized over these respective algebras.

8. Sequential compactness in set algebras. We have already
remarked in Section 2 that set algebras are not, in general,
sequentially compact. However, one may easily show that if one
defines a subset of a set àlgebra to be bounded provided the
elements of its distance set (12) are countable then set algebras
are f initely compact in the sense that bounded sets are sequentially
compact, when closed.
Another question of interest is the obtaining of an algebraic

hold on the closed sets in a set algebra. This is close to Problem
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76 of Birkhoff (3). One might suspect that the closed intervals
form a sub-basis for open sets, but examples show that this is
not the case. We offer, however, the
CONJECTURE. The a-sublattices form a sub-basis for closed sets

in a set algebra.

The University of Florida
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