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The geometry of the heat equation
by
Richard L. Ingraham

Institute for Advanced Study
Princeton, N.J.

1. Introduction.

In this paper, the powerful methods of differential geometry
are applied to the equivalence problem for n-dimensional genera-
lized heat equations. The general line of attack is the same as that
of a previous paper ') in which the geometry of the generalized
Laplace equation was investigated. Here, however, the situation
is slightly more complicated due to the presence of the extra varia-
ble time.

Why geometry in the subject of partial differential equations?
The answer is, that in the equivalence problem, we are confronted
with an array of dissimilar looking differential equations of the
same general type, and we ask whether there exists a transforma-
tion of the group of transformations preserving this general type
which will transform one of two given equations into the other.
The criterion for this expresses itself naturally in terms of the
invariants of the equations, those expressions which are formally
unchanged throughout the group of transformations of these
equations. And finally, the theory of the invariants of any group
is the province of geometry.

In Section 2 the general theory is worked out, culminating in
the equivalence theorem under the restricted heat equation trans-
formation group. The theorem solves the equivalence problem for
this group, i.e., gives a finite criterion (that is, in terms of finite
equations) for this equivalence. It is remarkable here that there is
no corresponding theorem for the full heat equation transforma-
tion group. A useful corollary gives the criterion that an equation
be reducible to an ordinary heat equation. In Section 8, the theory
is applied to a very simple heat equation arising in the theory of

1) “The Geometry of the Linear Partial Differential Equation of the Second
Order”, Am. Journ. Math., 75, 691 (1953).




148 Richard L. Ingraham. 2]

random walks with variable but isotropic step. The class of all
such random walks which can be reduced to ordinary (constant
step) random walks by a transformation of space is characterized
by the solutions of a certain set of non-linear second order partial
differential equations for the function of position defining the
length of the (isotropic) step at that position. These equations
are solved, the solutions exhibiting a simple algebraic form, of
degree at most quadratic, for n # 2, and a more complicated form,
defined by any harmonic function, for n = 2.

2. The heat equation geometry and the equivalence
theorem.

We write the generalized heat equation in the form
g0 + dop + g =0 (2.1)

[Det g #0; 1,8 = 1,...,'n:|

0, = 0/da", 0, = 0/0,
in which it has been normalized by dividing the equation through
by the (non-zero) coefficient of the time-derivative term. The

summation convention is observed. g™ and d" are functions of z"
and t. The classical heat equation has the form (2.1) in which

g = ko0 = + 15 8" =0, r #£3s), d' =0,

k a non-zero constant.

The application of differential geometric methods to these
equations depends on the extraction of certain invariants formed
from their coefficients. To this end it is convenient to write the
first two terms of (2.1) as a covariant divergence:

V.(g°0,9) + dp =0 (2.1%)

in which the covariant divergence V/,V" of any vector V" (here
gd,p) is defined

V. V" =20Vr + VeI,
with the linear connection I'?, given in this case by
P'r'; = {::,} - 1/2(Fr6:’ + Fa(s? - Fygrs) (2'2)
and

Fr=— 2/n(d + g“{ p’q}), F,=g,F* (2.8)
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In these formulas, 67 is the Kronecker delta and {f;} the

Christoffel symbol of the normalized cofactors g,, of gr:

rs

{ p } = 1/2g%%(0, g, + 3.,gqr - aagra)

That (2.1’) is identical with (2.1) in virtue of the definition of the
covariant divergence and the definitions (2.2) and (2.8) can be
verified by direct substitution. A connection I'?, of the form (2.2)
is called a Weyl linear connection, and we have shown incidentally
that a Weyl linear connection is always a general enough connec-
tion to write the heat equation in the covariant form (2.1°).

The equation (2.1) maintains its form under several groups of
transformations. First, under the direct product of the two groups
of transformations of variables

a. a™ = f™(z%t)

b. ¢ = T(t) (24)

Note that although the new space variables 2™ are allowed to be
functions of the old time ¢, the new time ¢’ cannot involve the old
space variables, or we would get second derivatives in the new
time. Second, as to the group of gauge transformations — multi-
plication of the whole equation by a non zero factor A(z™, t) —
this group has been eliminated by the normalization to the cano-
nical form in which the coefficient of d,p is unity.

After a transformation (2.4), eq. (2.1") goes into another of the
same form in g”* and F,, where

at'

—lr=F ArIA.aI; Ar,———a;r,F=—
gfs grs r 8 T rw dt (2'5)

I:r' = A:’ (Fr - 2/nAr); Ar = grsAi’atwu

The ,,tensors’ g,, and F, with the transformation rules (2.5)
under the group (2.4) characterize completely the equation (vide
(2.1)). Defined over an n-dimensional manifold of space coordina-
tes 2™ and a 1-dimensional manifold of time values #, they serve
to define the n-dimensional heat equation geometry. The equivalence
problem for equations (2.1) is then reduced to the equivalence
problem for n-dimensional heat equation geometries.

As it now stands, the equivalence problem is a problem in ana-
lysis: Given the two sets of functions g,.,, F,, functions of 2™ and
t’ and g,,, F,, functions of 2™ and ¢, we ask whether there exists a



150 Richard L. Ingraham [4]

transformation (2.4) such that their differential coefficients satisfy
(2.5). By expressing the integrability conditions of (2.5), we can
reduce the problem to a question of the existence of solutions of
finite (e.g., often algebraic) equations — in the case that a comple-
te set.of invariants of the heat equation geometry exists. By com-
plete set of invariants is meant an array of tensors in terms of
which the equivalence problem can be completely stated in this
finite form.

It turns out that no complete set of invariants exists for this
geometry. However, if we restrict attention to the subgroup

a. o™ = f™(x?)

b. ¢ = T() (2.6)

of (2.4), in which space and time transform separately, the result-
ing geometry, the restricted heat equation geometry, admits a
complete set of invariants. Under (2.6) the basic invariants trans-
form:

P _ r 4s L
a. guy = Fg ATA% c. A, =o,.2"

il (2.7)
b. F,.r = A::Fr d. F == dt,/dt

We proceed to solve the equivalence problem for this group, that
is, to express the integrability conditions of the set of partial
differential equations (2.7).

Eq. (2.7)a. differentiated with respect to 2’ and rearranged,
using the inverses g% and g™ to eliminate F, gives

r 8 4D r _Aqr s_l —
0,47 + ALA%, {ps} A"{p'r'} (2.8)
where {T;} is the Christoffel symbol of g,, and { zjr' }, that of

8y (2.7)a. differentiated with respect to ¢ gives the equivalent
set
a. djdtlog F —2/n(FQ — Q) =0
b. QLAL = F-1QA4:
where

c. Q=1/20,8,8
d. Q: = 1/2atgwgw - 1/”6;@

and the corresponding definitions hold for the primed barred

(2.8')
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quantities 2). Note the identity @ = 0, so that (2.8’) comprises
only 1n/2(n + 1), not 1n/2(n + 1) + 1, independent equations.

The integrability conditions of (2.7)c. are satisfied identically
in virtue of (2.8) (by the symmetry of the Christoffel symbols)
and of (2.8')a. and b. (for the latter can be re-arranged to give
dA7|dt = 0). The integrability condition of (2.7)d. is satisfied in
virtue of (2.8), for this equation implies d,,F = 0.

The integrability cdnditions of (2.8) are

a. R, SA% = R, :A%A%A" (2.9)

a'p’r" aprta

where R,,. (the curvature tensor of {;s} ) is short for 3)

s s . s l
B Ropr = ”[q{mr} 2{l[q}{p]r}’

and
8 AP r —_ r S, ’
A,,Ap,a,{ps} = FA,,a,,{p,r,} (2.9')
The integrability condition of (2.8')a. is
Fap/g = A:,a,,Q (2.10)

In addition, all the equations which follow from the equations
(2.7)b., (2.8")b., (2.9)a., (2.9'), and (2.10) by differentiating with
respect to space and time and using the equations (2.7)c. and d.,
(2.8), and (2.8')a., to eliminate the derivatives of the unknowns,
must be satisfied. We shall illustrate this process on Eq. (2.7)b.;
the procedure is typical.

Differentiating (2.7)b. with respect to z?’, rearranging, and
using (2.7)c. and (2.8) we get

g — g
(2.7)b: [Sl’ To] v 'Y Ff’ = AzlA:va Fr

g
where ¥/ , means covariant derivative with respect to the Christof-
g ’
fel symbols {;q }, and V., with respect to {pf;q' } The nota-

tion [S,, T,] means that we have differentiated (2.7)b., once with

2) Hereafter usually only the definitions of the invariants of the one equation
will be given, the primed barred invariants being the corresponding expressions
in the primed barred quantities.

3) The square brackets [ ] around any set of indices indicates the alternating
part: e.g., Tipg = 1/2(Tpq — Typ)-
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respect to space and zero times with respect to time. Continuing
this process, after j space derivations we get

g
(2.7)b: [S,,To]v: F, = A2A%, .. A:z’A;,v;l_”mF,

Differentiating (2.7 )b. k times with respect to t’, rearranging,
and using (2.7)d. and (2.8")a. to eliminate derivatives of the un-
knowns, we get, similarly

(2.7)b.: [Se» Ti] V. F, = F*ATL7%

where the differential operator 7§, (k-fold covariant differentia-
tion with respect to time) applied to any tensor is defined re-
cursively

Vi a=0+ k—-1)2mQ)V", VO=X1(k=12...)
where Q is given by (2.8")c.

Combining these two operations, we get
(2.71)b:  [S;, T]

_ 9
v;{ . .p;(v?'..t'F'r’) = F_kA::'A::' ° A:fA:'Vpl...pl(v;‘..tFr)

Of course the operations of covariant space and time derivation
do not commute. However, we remark that for each 7, k it is suffi-
cient to impose only one equation with the derivatives taken in
some arbitrary order, for the difference between such an equation
and the equation with the differentiations performed in any other
order vanishes in virtue of a previous equation. E.g., consider the
difference between (2.7)b.: [7T3,S;] and: [S;, T;] (where the
symbol S, to the right indicates that one space differentiation
is to be performed first, etc.). We get

F,,at,{ y } F 1Fa{ }A”,A'
p"'

But this is satisfied in virtue of (2.7)b. and (2.9').
We can now state the equivalence theorem:

THEOREM 1. Two equations (2.1), characterized by the in-
variants g,, and F,, functions of 2™ and ¢, and g,,, F, functions
of ™" and ¢’ respectively, are equivalent under the restricted heat
equation group (2.6) if and only if the sets of equations (2.7)a
and b, (2.8")b, (2.9), (2.9’), (2.10), and the infinite sets: [S,, T]
(j,k=1,2,..., ) derived from each of these are satisfied by
some set of functions z?, A}, of 2™ and ¢, F of ¢'.
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Of course, the equations of this infinite set are usually incom-
patible — the theorem asserts that in the special case that they
are compatible, the equivalence exsist. In proof we appeal to the
well known theorem on partial differential equations 4).

In case that the coefficients are functions only of space variables,
the theorem is simplified by the dropping away in the criterion
of all equations involving time derivatives, namely (2.9’) and all
the equations: [S;, T} for k& > 0. From the remaining equations
it follows in particular that F must be a constant, or t' = Ft,
F = const. is the only time transformation possible here.

A case of especial interest arises when one of the equations is an
ordinary heat equation, whose invariants are

g,s = C,, = constants; F, =0 (2.11)

Note that we allow any signature of C,, in the definition of an
ordinary heat equation; the classical case (cf. p. 8) is the signature
(+,+,...+)or (—, —, ... —), depending on the sign of k,
the conductivity. For this equation, all the differential invariants
vanish. We get the

CoroLLARY 1. A heat equation (2.1) is equivalent to an or-
dinary heat equation if and only if its intrinsic geometry is flat.
By flat we mean that

Der. 1. F,=0, Q'=0, R,,' =0, 9, {q’p} =0, 9,0=0
n(n+1)

Then (2.7)a. with C,, substituted for g,, determines of

the available constants. For an equation (2.1) to be equivalent to
the classical heat equation, it is necessary in addition that g,, have
definite (negative or positive) signature.

Make the

DEer. 2. A (restricted) heat equation geometry is called
Riemanntan if F, = 0.

This is of course an invariant demand, by (2.7)b. The Rieman-
nian (restricted heat equation) geometries form an important
subclass. For them, the equivalence problem reduces to a consid-
eration of the metric g,, and its various differential invariants.

Generalization: A trivial generalization of the above theory con-
sists in letting the equation (2.1) have an extra term + dp. The

4) See, say, Veblen, Invariants of Quadratic Differential Forms. (Cambridge
University Press, 1952) p. 78.
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modifications this brings to the equivalence theorem are obvious.
The equations to be adjoined are

d=F1d (2.12)
and the set (2.12): [S;, T;] (j, k = 1, 2, ... o) derived from it by
successive space and time differentiation.

Remark on solutions: The above theory answers the equivalence
question completely. It will say something about solutions insofar
as this can be phrased as an equivalence question. E.g., suppose
we are looking for a solution ¢ of an equation (2.1) in the space
and time variables 2™ and ¢, and we know by the above theory
that this equation is equivalent to another (in 2™ and ¢') if which
we know a solution ¥(z™, t'). Then a solution of the first equation
is given by

g(a” t) = P(a™ (), 1'(2))
where 2™ = f"'(z?), ' = f(¢) is a transformation taking the one
equation into the other.

3. An application of the theory.

In the theory of random walks in n-dimensional number space
with a position-dependent isotropic step one encounters the
equation

0,P = 1/2X 9,[v?~"9,(v"P)] (8.1)
i=1
where v is a function of %, ..., 2"
Making the substitution
p =v"P
and writing it in the canonical form (2.1), we find the coefficients
to be
n —
4

where #/* has been defined on p. 8. The Christoffel symbols come
out to be

2
gik —_ 1/2.02611:’ d = akvzék:i

{;’q} = — 1/2(9,Vé; + 9,Vé, — 9,V873,,);
V = log v? (8:2)

With the help of these, the basic heat equation invariants are
computed to be

2
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It is remarkable that F, vanishes identically for this equation.
The intrinsic geometry is then Riemannian in the sense of defini-
tion 2 of last section.

We now ask: For what v is (8.1) equivalent to an ordinary heat
equation in ? By Corollary 1 of last section this is so if and only if

Ry =0 (8.4)
the other conditions being satisfied identically. That is, if and

only if the curvature tensor of the metric (8.8) is zero. Computing
R, = R0, from (3.2), we get

Rmzrt = [af[pV_:l/‘L( \Y V)263[D + 1/2asVa[pV]6a]t,!“ (S‘:’t) =0 (35)

where (V V)2 = 69,V 0,,V and we have indicated the skew part
in s and ¢ by a departure from the standard notation with the
square brackets to avoid confusion with the square brackets
around p and ¢. Eq. (8.5) can be reduced to simpler form in the
following way. Forming the Ricci tensor R, = R,,,6? from
(8.5), we infer

(n — 2){@2V — 1/2('v V)2, + 1/20,V0,V} + V2V, =0 (3.5')

where V2V is the Laplacian: V2V = 6‘”‘8me. Then for n # 2 we
get, rearranging

ang'—I/‘l’(v V)26ar+1/2aanrV= (/4(VV)— sz]aqr (8.6)

n—2
The left member is the content of the brackets in (8.5). Sub-
stituting in (8.5), we infer that the coefficient of d, in the last
equation must vanish; from the last equation it then follows that
RV — 1/4(V V)28, + 1/20,V,V = 0. (8.7)
But (8.7) then implies (3.5). Hence (8.7) is equivalent to (3.5).
When the substitution V' = log v? is made in (8.7), it simplifies
to
2002 v — (Vv)26,, =0 (8.8)
These are equivalent to
a. Ho=0 (p+#yq)

3.8’

b. &Zv=1/20(Vv)?2 (p=1,...,n) (8:8)
These can be integrated, giving the general solution

a. v =c[20,2% + dx® 4 1/2¢6*%d,d, (c #0) (3.9)

b. v=duz?+e (6*d,d,) =0
In the first solution ¢ and d, are arbitrary constants such that
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¢ # 0. In the second, d, and e are constants, arbitrary up to the
null length condition on the d,.

Thus, for n # 2, the necessary and sufficient condition that (8.1)
be reducible to the classical heat equation in ¢ = v"P.

—Vip+0,0=0 (8.10)

18 that v have the form (8.9)a. or b. We remark that the trivial case
v = const. is included in the solutions b. with d, = 0.

For n = 2, all the non-vanishing components of R,,, are the
same as Ry, up to sign. Hence (8.5) is equivalent to (8.5’) which
for n = 2 reduces simply to

VW =0 (8.11)
Hence the general solution for v is
v=-e" (V> =0);

i.e., v is Exp {a harmonic function}.

Therefore, for n = 2, the necessary and sufficient condition that
(8.1) be reducible to the classical heat equation (8.10) in ¢ = v*P
is that v equal e® where w is some harmonic function.

Remark: Since the invariants here are no functions of ¢, by a
remark of last section the time transformation can be at most

t' = Ft, F = const.

But since the only equation determining the integration constants
is (2.7)a., F can be taken positive, and then absorbed into the
transformation of the space variables. Hence ,,reducible’ in the
above two theorems about v can be taken to mean reducible by
a transformation of space variables alone.



