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The logic of Negationless Mathematics
by

P. G. J. Vredenduin

Arnhem

Griss stated a new method of treating intuitionistic mathematics
without using negation 1). The intention of this paper is to give
a corresponding logical system.

1. We first list the syntactical rules and afterwards give their
interpretation.
The following signs are used:
1. atomic formulas F(x), F(x, y), F(x, y, z), ..., G(x), ...,

= (x, y), # (x, y); x, y, z, ... are called variables; they are sup-
posed to be different,

2. undefined signs A, v, (Ev), (v), ~vs (v stands for a variable,
vs for a sequence of different variables).

Definition by induction of a zvell-lormed formula (wff):
a. every atomic formula is a wff,
b. if p and q are wff, then p A q and p v q are wff,
c. if p and q are wff, then p ~vs q is a wff,
d. if p is a wff, then (Ev)p and (v )p are wff.
Definition by induction of free and bound variables:
a. any variable occurring in an atomic formula is free in that

formula,
b. any variable that is free (bound) in p, is free (bound) in p^q

and in p v q,
any variable that is free (bound) in q, is free (bound) in p A q
and in p v q,

1) G. F. C. Gitiss, Negatieloze intuïtionistische wiskunde, Versl. Ned. Akad.

v. Wetensch., afd. Natuurk., LIII (1944), p. 261-268,
Negationless intuitionistic mathematics, Verh. Kon. Ned. Akad. v. W’etenseh.,

XLIX (1946), p. 1127-1133, LIII (1950), p. 4562013463.
Logique des mathématiques intuitionistes sans négation, Comptes rendus des

séances de l’Acad. des Sc., t. 227 (1948), p. 946-948.
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c. any variable belonging to vs that is free in p (or q), is bound
in p ~vs q, and is said to be bound by ~vs,

d. if the variable v is free in p, it is bound in (Ev)p and in (v)p,
and is said to be bound by (Ev) and (v), respectively,

e. any variable that is free in p (or q) and not bound by ~vs,
by ( Ev) or by (v), is free in p ~vs q, (Ev)p, (v)p, respectively.

An arbitrary wff will be written p, q, r, .... If we want to ex-
press, that the wff p contains the free variable x, we write p(x).
This only means that p contains the free variable x, but not that
x is the only variable that is free in p.
There is no difference between p and p(x) occurring in the same

derivation. p(x) is written at those places where it is essential to
remember that x occurs free in p; at other places of the same
derivation p may be written.

If in a derivation first, e.g., p(x) and afterwards p(y) occurs,
then with p(y) is meant the wff, that is generated from p(x) by
replacing every x, that is free in p(x) by y.

If x, y, z, ... are all the free variables of p, then 3p stands for
(Ex)(Ey)(Ez) ... p. If no variable is free in p, then 3p stands for
p. The order of the (Ex), (Ey), (Ez), ... is indifferent. This will
be shown afterwards (7.21).

If vs is the sequence of variables x, y, z, ..., then 3V8P stands for
(Ex)(Ey)(Ez) ... p, and (vg)p for (x)(y)(z) ... p.

p, q, r, ... are not signs belonging to the system. They are
merely names for arbitrary wff. So they belong to the metasystem.
The signs v8, 3, 3V8’ (vs), ~vs belong also to the metasystem.

Interpretation. The sign A is used for conjunction, v for dis-
junction, (Ev) is the existentional operator, (v) the all-operator.
Wff without free variables are to be interpreted as propositions,

wff with free variables as propositional functions.
p(x) -z q(x) means that the class determined by the proposi-

tional function p(x) (short: the class p(x)) is included in the class
q(x). 1) p(x, y) ~xy q(x, y) means that the class (of pairs x, y)
p(x, y) is included in the class q(x, y). p(x, y) -z q(x, y) is to be
interpreted as the class of those y for which p(x, y) is included in
q(x, y), etc.

(Ex)p(x) is a proposition; (Ex)p(x, y) is the class of those y for
which an x exists that satisfies p(x, y). The same holds for the
all-operator.

1) It is supposed in this and the next two paragraphs, that p and q contain no
free variables different from those mentioned between brackets.
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There is still some difficulty with the interpretation of e.g.
p(x ) ~xy q(x, y). If p(x) was a class of x’s, it could not be seen in
what respect this class might be included in q(x, y). But we may
also interpret p(x) as the class of pairs x, y that satisfy p(x). So
if p(x) as a propositional function of x, is satisfied by a, it is satis-
fied by any pair a, y. This situation is analogous to solving the
equations x + 1 = 0 and 3x + 5y = 2. The solution is x = - 1,
y = 1, as x = - 1 and y arbitrary will satisfy x + 1 = 0. So
there is the same kind of ambiguity in the interpretation of pro-
positional functions as in the meaning of an equation.

In the same way it is possible to interpret a wff without free
variables as a propositional function. A wff without free variables
that is true may be interpreted as an all-class, an all-class of pairs,
etc., and is to be compared with an identical equation. This kind
of interpretation enables us in formal respect not to discern any
more between propositions and propositional functions. We can
restrict ourselves to theorems about arbitrary wff that may or
may not contain free variables.

It is clear from the foregoing that p n q is to be iiiterpreted as
the product of the classes p and q, p v q as their sum.

The negationless method. Before continuing it will be necessary
to explain in brief the fundamental ideas of Griss’ method.

Griss accepts that in constructing a mathematical system we
progress from true propositions to other propositions that are also
true. Perhaps we may, when making a rough calculation, find the
impossibility that some theorem will ever be a part of our system.
That result may be very instructive for the investigator, but it
is not a part of the system itself. When 1 am building a house it may
be of great importance to decide that 1 shall not use a certain kind
of bricks, but this decision does not make those bricks part of the
house. So in the mathematical system only those propositions will
occur that are true. And as these propositions are all affirmative
(the contradictory propositions being only possible in rough"), a
sign for negation is useless in his system.
Another fundamental feature of Griss’ method is that he accepts

that in constructing one is always constructing something and so
never will construct nothing. In accordance with this view he
declares that the null-class does not exist. Every propositional
function has the property that it can be satisfied. So the product
of two classes is not always a class. If the classes have no lement

in common their product is not the null-class, but merely senseless.
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The propositional calculus. In a mathematical Griss-system only
true propositions will occur. So there is no reason for linking them
by a sign for disjunction or implication. "In rough" we may find
that a certain proposition can be proved as soon as A has been
proved and also as soon as B has been proved. And then we might
say that A v B implies C. But in the system itself we shall never
progress from A (or from B ) to another proposition before A (or
B) has been proved. So in the system itself the disjunction of
propositions is useless. The same holds for the implication. In
rough we may convince ourselves that B can be proved as soon as
A has been proved, but this consideration is not a part of the
system itself. Formally linkimg propositions by v or ~ is possible,
but the interpretation of the result is the same as the interpreta- ’
tion of their conjunction (this remark is of importance, as we shall
formally treat propositions and propositional functions in the
same way).

Propositions may be linked by conjunction. As the kind of
linking obeys the same laws as the linking of propositional func-
tions, there is no reason for a separate propositional calculus.

Axioms and derivations.

There are two kinds of axioms:

a. axioms of the form

b. axioms of the form: if

Definition by induction of - (p is derivable rom P).y 
p 

(p zs erzvable f 

In this definition P, Q, Q1, Q2 stand for arbitrary finite sequences
of wff.

1. If every q, that belongs to Q, belongs to P, and if Q is an

axiom, then -.
p

2. If Q ’ is an axiom and every q, that belongs to Q, is derivable

fr o m P, , then P.
p
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3. If

a. Q1 q,

b. if Q1, then Q2,, is an axiom, 
q p

c. every q, that belongs to Q2 , is derivable from P,

then -.
p

Semantical 1°elnark.

The meaning of a dérivation of t he form p(x, y, ...) q(x, y, ...) is, that for

arbitrary values of x, y, ... q(x, y, ...) can be derived from
p(x, y, ...). So there is a close connection between the derivation
of one propositional function from another and the inclusion of
the classes determined by the two functions.

The use of dots.
We discern left and right dots. Left dots stand to the left of a

letter or of -, right dots to the right. The scope of a left (right)
complex of dots is extended to the left (right) until a right (left)
complex of dots is reached, that consists of an equal or a larger
number of dots, or, if this is not the case, to the end of the formula.

A and v bind stronger than ~vs.

Final remarks.
In principle logical theorems can be dispensed with. Their pur-

pose is merely to enable abbreviations in the mathematical pro-
cess. Instead of a large quantity of applications of the logical
axioms one application of a logical theorem may be used.
The mathematician will perhaps say that he is not reasoning in

detail according to the logical axioms. But the logician only says
that it is possible to rebuild the mathematical system by using the
logical axioms. As soon as it turns out that his logical system is
unable to describe the mathematical system, the logical system
should be altered. On the other hand the considerations of the

logician may be of some influence on mathematical thought.
Investigating the logical system it will appear that it obeys its

own rules and axioms. But as its structure is very simple, only
few of its axioms are sufficient for its own foundation. This last
remark has a metalogical character and will not be analyzed
further.
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We now start building the logical system. Axioms will be marked
A, definitions D and theorems without a letter. At the end of the
bar the numbers of the (main) axioms, definitions and theorems
are mentioned that are used.

Definitions are merely used as abbreviations.

I. The functional calculus without considering the
inner , structure of the wff

2. The axioms of conjunction.

A2.0 does not mean that any two propositional functions
(classes) have a product. We must not forget that an axiom can
only then be applied, when the premisses are derived formulas.
So the meaning will be: any x (or any pair x, y, etc.) that satisfies
p and q, will also satisfy p A q.

In case p and q are propositions A2.0 simply says that two de-
rived propositions may be conjuncted..

Proof.

2.1

Prool.

2.2

Prool.
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3. Axiom-s about ~vs avd ~vs.

No variable of vs must be free in r. The premiss r may
be dropped.

The ~vs-operator is of extreme importance in negationless logic.

E.g., in ordinary logic no one would hesitate to accept p ~vsq p^r ~vs q.
But in negationless logic this derivation is only possible, if it is

known that p A r exists. Therefore the premiss ~vs. p A r has to be
added. From this example it is seen that in many cases additional
premisses of the form ~vs p will distinguish the present calculus
from the usual logical calculi.

A3.2 states that any wff (class) that previously occurs as a
conclusion, exists. For repeated application of this axiom leads to
3p and to ~vs p.
A3.3 states that, if previously it has been proved that p(x, y, ... )

is included in q(x, y, ... ), then there is a sequence x, y, ... that
satisfies p(x, y, ... ) and also a sequence that satisfies q(x, y, ... ).

It is not clear that in A3.4 the premiss 3 vs p must be added. For
if in a mathematical system this axiom is applied, p is the con-
clusion of a preceding derivation and so the condition ~vs p will
always be fulfilled. Still we are not in accordance with the in-

tention of our system, if ~vs p is cancelled. For according to 2.2

r . Canceling ~vsp we would find r p~vsp. And then A3.3

would give the conclusion 3118 p. The derivation of the existence
of an arbitrary p from an arbitrary premiss r is certainly not in
accordance with our aim.

Proof.
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Proo f .

Prool.

Remark. The full proof is:

So p A r turns out not to be a premiss of the derivation of p A r ~vsq
from p ~vs q and 3V8 pr. This is the meaning of the asteric in the
above proof.

Proof.

Proo f .

Proof.

1) 3", pq is short for 3t.,. p A q.
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Proof.

Prool.

Proof.

In the 2nd derivation vs’ is the sequence of free variables of p.
We have still to derive 3q from 3V8’ q. In case q contains a free
variable, that does not belong to vs’, we apply A3.2. In case a
variable of vs’ is not free in q, we apply a theorem that will be
proved afterwards (7.00).

3.300 If p r q and no free variable of r is free in p, then

Proof. Similar.

Further 3.300.
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Proof.

P.roof.

Prool.

Proof.

Proof.

Prool.

4. Disjunction.
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In A4.0 p v q can only be derived from p, if q is a propositional
function. So the premiss 3q has to be added.

In A4.4 p A r. v . q A r can only be derived, if the products
p 1B r and q ̂  r exist. 

Proof. A4.1, 3.30, A4.2.

Proof. A4.0, 3.300 and, if necessary, A3.2 and 7.00.

Proof. A3.2, A4.2 or 4.00.

4.10 if p and q , then v
r r r

Proof. vs is the sequence of free variables of p and q.

1) A3.2 should be applied, in case p and q do not contain the same free variables.
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Proo f .

Proof, vs is the sequence of free variables of p.

analogous

Proof.

Further

Proof. We first prove 3q q, by applying (if necessary) A3.2

and 7.00 (cf. the proof of 3.30). Further A4.0, A3.4.

vs contains all free variables of p.

1) A3.2 should be applied, if p ̂ . p v q contains a free variable that does not

belong to vs.
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Prool.

Proof.

Proo f .

Prool.

analogous

Further

Proof.

analogous
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analogous

Further (1), (2), 4.11.

Prool. 4.36.

Proof. vs is the sequence of free variables of p, q and r.

analogous

analogous

analogous
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Further

Proof.

Further (3), (4), (5), (6), 3.301, 4.100.

Remark. With the square brackets in the 2nd and the 6th line

of the proof is meant, that the addition of the premisses 3pq, p,
3qr and q v r, 3pr, 3qr is not wanted for the derivation there but
afterwards for using 4.100.

II. The général functional calculus

5. We shall now introduce all- and existentional-operators.

p must not contain x as a free variable; p may be
dropped.

p must not contain x as a free variable; p may be

dropped.
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Proof.

Proof.

Proof.

Further

Proof.

Further

Proo f .

Further

6. Rules of substitution.

if p q(x) and p does not contain x as a free variable, then
p , if - and q does not contain x as a free variable,q y) q

then p(y).
q

p(x) and q(x) must not contain y as a bound variable.
p(y) and q(y) are formed from p(x) and q(x) by substi-
tuting y for x at every place where x is free.
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A6.1 If x is bound in p, y does not occur in p and p is
transformed into p’ by substituting y for the bound
variable x at every place where it occurs (including in

the binding operators), then p .p

Proof.

7. A7 If x does not occur as a free variable in p, then

(Ex)p (x)p.

If x does not occur as a free variable in p, the theorems 7.00-

7.03 hold.

If q and r do not contain x as a free variable and

Proof. 5.0, 7.00.

7.11 If p does not contain x as a free variable and p q, then p (x)q.
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Proot.

7.20

Proof.

Further

7.21

Proof.

Further

7.22

Proo f .

Further

7.3

Prool. If vs contains variables, that are not free in p, they can
be dropped (7.00). Further A3.2.

8. hrtplication..
There is some difference in meaning between

p -.,,q and (x) . p-,,q.
In both cases p is a part of q. But in the second case, p is a part of

q for any x. That is only possible, if for any x p exists, i.e., (x)(Ey)p.

Proof.
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Proof.

Further

Proo f .

y must not be bound in p or q.

Proof. A3.0, A6.0.

The theorem is proved in the same way for propositional func-
tions containing more than one variable.

y must not be bound in p(x) or r(x).

Proof. If y is bound in q(x), by A6.1 q(x) can be transformed
into q’(x) not containing y as a bound variable.

Prool.

8.32 If p does not contain y as a free variable, then

1) Or, if x is not free in q, 
p9x) ~xq p(y) q.

2) It is allowed that y is free in q(x); tlis will become clear in section 10.
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Proof.

8.33 If q does not contain y as a free variable, then

Proof.

8.34 If x is not free in p and q, then p ~vsq p ~vs’ q.

vs does not contain x; vs’ consists of vs and x.

Proof.

Proof. 8.3, A3.4.

9. The ba,yic relations = and #.
It is possible to apply the logical theory to a field of individuals.

We presuppose that the individuals are discernable. In case we
want to express that two individuals are discernable, we write
x # y, in case they are identical x = y. The relations = and #
are introduced as basic relations of our logical system by means
of the axioms A9.020133.
x = y and x # y are atomic formulas (cf. D9.020131).
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The use of the propositional function x # y renders it impossible
that there is only one individual, or, more precise, makes it

necessary that there are at least two discernable individuals. So
after adjunction of the sign #, this theory cannot be applied to
a field that consists of only one individual.

Formally this circumstance might be expressed by the axiom
(Ex)(Ey)x # y. But this axiom is not an axiom similar to the

others, but, one might say, a material axiom (as it supposes a

special property of the scope of tlie field of individuals). Adding
a material axiom implies adding material theorems. Instead of
splitting the theorems in two différent kinds, we prefer writing the
theorems that presuppose the axiom" (Ex)(Ey)x # y, in the

usual way, (Ex)(Ey)x # y p. But we shall omit the premiss

(Ex)(Ey)x # y in the formulation of theorems, except in case it
is the only premiss.

Following CTriss 1) we choose as axioms:

p must not contain y as a bound variable.

Proof.

1) Vcrsl. Ned. Akad. v. ’Vetensch., afd. Natuurk., L I II (1944), p. 262 and 266.
. 

2) From an intuitionistic point of view this axiom is suspect; cf. section 15.

Griss proves that it is valid for real numbers.
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Proof.

Proo f .

Proof. 9.1, 6.02.

Prool.

Prool.

Proof.

Proof.
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10. Disfunction.

This axiom says: if x belongs to the sumclass of p and q, but is
different (discernable) from all the members of the class p, then x
belongs to q. Or, in ordinary language, if x belongs to the sumclass
of p and q, but not to p, it belongs to q. But in the last sentence
it is negated that x belongs to p, perhaps because p(x) turns out
to be contradictory. The former sentence is free from negation,
because it only says that all the members of the class p are different
from x.

Perhaps the following example makes the difference clearer. 1
am looking for my fountain-pen. 1 ask: "Is it on my writing-table?"
1 find it in my pocket. And now 1 say: "It is not on my writing-
table, for it is in my pocket." That is a negated sentence. But 1
can also investigate every object on my writing-table and always
find: this object is different from my fountain-pen. Then all the
objects on the table are different from my fountain-pen. And if
1 know in some way that my fountain-pen belongs to the sum-
class of the objects on my table and in my pocket, I am able to
conclude (A10) : my fountain-pen is in my pocket.
D10 If x is the only free variable of p(x), then

-P(x) = dfp(y)~y u # x.
If x and y are the only free variables of p(x, y), then

~p(x, y ) = dfp(u, v ) ~uv u # x  v # y, etc.

By this definition a kind of negation is introduced. But this

operation, ~, is based upon the relation of difference. So it is not
a negation in the proper sense, as it has nothing to do with refu-
tation or contradiction. Still, formally, it has many properties in
common with the usual negation.

We are now able to formulate A10 in a simpler form:

A10.0 p v q ""p
q

This axiom is more general, as the number of variables is arbi-
trary.

Rernark. There is still some ambiguity with respect to the
-"négation" of propositional functions with variables that have
been identified.
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E.g., if in ~p(x, y ) the variables are identified, we get according
to D10

But if we consider p(x, x ) as a propositional function with one
variable, then D10 says

We choose the first définition. This is done by the following de-
cision : if a variable in a propositional function is repeated, the
function should formally be treated as a function of two (or more)
identified variables and not as a function of one variable. So
identification of variables does not reduce the number of variables.

~x # x, considered as a function of one variable, would be
nonsense as the dass x # x is empty. So x # x would be senseless
and cannot be negated.
~x # x, considered as a function of two identified variables

means u # v ~uv u # x v v # x, and this is significant. It can
be derived from 3 # by A9.2 and A3.4. (Cf. 10.12.)
Under certain existentional conditions there is no harm in

negating a function of two variables in the same way as a function
of one variable. This will be shown in 10.10201311.

We define:

~p(x, x, z) = af (Ex)(Ey)(Ez)p(x, y, z), etc.
So if the 3-operator is applied to a wff with identified free variables,
the variables should first be changed into different variables and
then they all should be bound by (Evs).
The definitions of ~ and 3 applied to wff with identified free

variables have the following consequence. If a theorem has been
proved for wff without identified free variables, the corresponding
theorem for wff with identified free variables is an immediate

consequence of it (by means of A6.0). Mind that the 3-premisses
remain unchanged, when free variables are identified in the pre-
misses and the conclusion of a derivation. So in proofs we are
always allowed to suppose that all free variables are different.

Remark. It seems that by the following derivation we are able
to construct a disjunction of two wff of which one represents an
empty class.
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But this wff should not be interpreted as the sum of the class f(x)
and the empty class y # y. We first form the class of triples
(x, y, .z), that satisfy f(x ) v y # z and from this class we form the
subclass of those triples of which the second and third element
are identical. So we find as interpretation the class of triples
(x, y, y) of whieh ir satisfies f(x) and y is arbitrary.

Proof. Suppose that p contains just two free variables.

In case p contains more than two free variables, the proof is
similar.

More generally we prove in the same way:
10.100 If xo, xl, ..., Xn, y0, y1,..., ym is the sequence of free

variables of p, then

Prool. Suppose that p contains just two free variables.

Further 7.11, 8.0, D10.
In case p contains more than two free variables, the proof is

similar.

More generally we prove in the same way :
10.110 If x0, x1, ..., Xng y0, y1,...,ym is the sequence of free

variables of p, then
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Proof. Suppose that p contains just two free variables.

The proof is analogous in case p contains more than two free
variables.

10.12 shows that from the negation of p(x, x), considered as a
function of tzvo variables, can be derived the negation of p(x, x),
considered as a function of one variable, but only if the premiss
(Ex)p(x, x) is valid. If this premiss were not valid, the conclusion
would be senseless.
More generally we prove in the same way:

10.120 If xo, xl, ..., xn, y0, yi, ..., Ym is the sequence of free

variables of p, then

Proof.

10.21

Proof.

10.22
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Proo f .

10.23

Proof.

10.40

Proof. Suppose that p contains only one free variable.

If the number of free variables of p is more than one, the proof
is similar.

Prool. Suppose x is the only free variable of p and of q.
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The proof is analogous, if p and q contain more than one, but
the same free variables.

Suppose that p and q do not contain the same free variables.
E.g., the free variables of p are x and y, of q x and z. Then we
define

Now first we prove -, p’ (9.1). Therefore ~q’ ~p’ ~p’. And from this we
prove

10.50 remains valid, if a premiss is added, that does not contain
a free variable that is free in p or q.

Prool. Similar.

Proof. Suppose x is the only free variable of p and of q.

Further similar to the proof of 10.50. 

10.52 remains valid, if a premiss is added, that does not contain
a free variable that is free in p or q.

Prooi. A3.3, 10.42, 10.51, 10.43, 3.20.

Proof.
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Further 3.301, 4.100.

Prool. Let p and q contain one free variable; the free variable
of p is the same as the free variable of q.

Further a similar derivation of ~q(x), and A2.0.
The proof is analogous in tlie other cases (cf. the proof of 10.50).

Proo f .
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Proo f . Let r be the only free variable of p and of q.

The proof is similar if p and q contain more or different free
variables.

Proof.

This theorem is not in conflict with intuitionism. It merely
shows that in negationless intuitionistic mathematics y = x ~ z=x
can only be "negated" in those cases in which y # x v z # x can
be proved. So the possibilities of "negating" in this system are more
restricted than in normal intuitionism.

11. Individual constants.

In the application of the theory it may be possible, that indivi-
dual constants are substituted for variables. For this reason and

for other reasons, that will appear later, we enlarge the used signs
with

3. individual constants a, b, ....

As a metasystematical symbol for an arbitrary individual con-
stant, we shall use the letter c.

To the definition of a well-formed formula we add:
e. if p(x) is a wff and c an individual constant, and p(r) is

changed into q by replacing every x, that is free in p(x),
by c, then q is a wff.
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The new wff q is written p(c).
The following axioms are added.

11.0 If x does not occur as a free variable in q, and p(x) q,
then 

p(c)
.

q

Proof. Al l .1, 7.10.

11.1 If x does not occur as a free variable in q, and P
then p (q(c).

Proof. 7.11, All.O.

If a wff containing an individual constant is negated, the con-
stant is treated in the same way as a free variable. So, e.g.,

~P(c) = dfp(x) ~x x # c,
~p(x, c, c) =df p(y, z, u) ~yzu y # x ~ z # c ~ u # c.

A constant occurring twice is treated in the same way as two

identified free variables.
If an 3-operator is applied on a wff containing an individual

constant, the constant has to be replaced by a free variable.
So, e.g.,

3P(C) = df 3p(x),
~p(x, c, c) =af ~p(x, y, z).

This has the following consequence. If a theorem has been

proved for wff not containing individual constants, the correspond-
ring theorem for wff containing individual constants is an imme-
diate consequence of it (by means of A11.2). Note that the 3-

premisses remain unchanged, when free variables are replaced by
individual constants in the premisses and the conclusion of a
dérivation. So in proofs we are always allowed to suppose that
the wff do not contain individual constants.

Remark. If CI # C2, then f(x) v CI = C2 is to be interpreted as
the class of triples (x, Cl, C2), of which x satisfies f(x).
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Definition. If p and q , we say that p and q are equivalent,
q p

and write p ~ q.
The relation ~ is a metasystematical relation.

11.2 If p ~ q and r =-= s, then

a. p ~ r ~ q ~ s (A2.1, A2.0)
b. p ~ r ~ q ~ s (4.2)
c. p ~vs r ~ q ~vs s (A3.0, A3.3, 3.30, A3.4)
d. 3p = 3q (3.30)
e. (Ex)p ~ (Ex)q (5.0)
f. (x)p ~ (x)q (A5.1)
g. p(c) - q(c) (Ail.2).

From 11.2 it is seen by induction that, i f p and q , p and q are
interchangeable. q p 

Semantical remarks.

Suppose that x is the only free variable of p(x) and of q(x). We
remember, that p(x) v q(x) is a propositional function determining
the sumclass of the classes determined by p(x) and q(x). So
p(c) v q(c) will mean, that c is a member of this class. Therefore
p(c) v q(c) is not a disjunction of the propositions p(c) and q(c).
In case only one of p(c) and q(c) is true, p(c) and q(c) would not
both be a proposition and the disjunction p(c) v q(c), if understood
as a disjunction of propositions, would be senseless. But p(c) v q(c)
understood as one proposition and not composed out of two pro-
positions is not senseless and merely means, that c belongs to the
sumclass p(x) v q(x).
There is another difficulty. Suppose that x and y are the only

free variables of p(x, y) and q(x, y). How is p(x, c) v q(x, c) to be
understood? Again it does not mean the disjunction of p(x, c) and
q(x, c). For it is possible, that there exists no x for which, e.g.,
p(x, c) holds. And then p(x, c) is not a propositional function. So
we should not be able to form p(x, c) v q(x, c) as soon as one of the
two does not represent a class that is not empty.

Therefore we choose a different interpretation, that is closely
connected with the interpretation of p(c) v q(c). The propositional
function p(x, y) v q(x, y) determines a class of pairs (x, y). Now
we decide, that p(x, c) v q(x, c) determines the subclass of those
pairs of which y is the individual constant c. This interpretation is
independent of the existence of the functions p(x, c) and q(x, c)
separately.
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E.g., x # 0 in the theory of whole numbers is equivalent with
x  0 v x &#x3E; 0. The proposition 1 # 0 is true. Therefore the

proposition 1  0 ~ 1 &#x3E; 0 is true too, though 1  0 separately
is not a proposition.
And | x | # 1 y 1 is equivalent with X2 C y2 v x2 &#x3E; y2. So

x2  0 v x2 &#x3E; 0 determines the class of those x that are # 0. But
x2  0 separately is not a propositional function.

This causes some difficulties. The meaning of x2  0 v x2 &#x3E; 0

depends on 0 being or not being obtained by substitution in a
preceding formula. In the former case it is sensible, in the latter
senseless. We decide, that every individual constant appearing
explicitly in a formula is supposed to be introduced by substitution
for a free variable. In the next section we shall see how it will be

possible to construct propositional functions in which individual
constants occur implicitly that are not supposed to be introduced
by substitution.

12. Note about definitions.
We mentioned in section 10, that after identifying two (or

more) free variables of a wff, we would formally treat the wff as a
wff with the original number of free variables. Under certain cir-
cumstances it is preferable to treat a wff with identified variables
as a wff with a reduced number of variables. This is done by
means of a définition. In case, e.g., we want to treat p(x, x) as a
wff with a reduced number of variables, we define:

The identified variables of p, that are to be treated as one variable
of y, should be mentioned explicitly between the brackets after p
and q in the definition.
We will allow a definition of this kind only in case

(Ex )p(ae, x)
has been derived (to avoid the construction of empty classes).

A12.0 If q(x) = dfp(x, x), then ~q(x) ~p(x, x).
12.0 If q(x) =df p(x, x), then q(x) and p(x, x) are inter-

changeable.
Proof.
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As the only formal difference between q(x) and p(x, x) is, that
they are to be treated in different ways when the -- or 3-operator
is applied and as it has been supposed that (Ex)p(x, x) has been
derived, they are interchangeable (11.2).
We mentioned in section 11, that after replacing a free variable

by an individual constant, we would formally treat the wff as a
wff with a free variable instead of the constant. Under certain cir-
cumstances it is preferable to treat a wff, after replacing a free
variable by a constant, formally as a wff with a reduced number
of variables. This is done again by means of a définition. In case,
e.g., p(x, c) has been formed from p(x, y) and we want to treat
p(x, c) formally as a wff with one free variable less than p(x, y),
we define:

c should be mentioned in the definition explicitly between the
brackets after p and not between those after q.
We will allow a definition of this kind only in case

has been derived.

If q(x) =df p(x, c), then q(x) and p(x, c) are inter-
changeable.
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Further 11.2.

In the same way as an individual constant is formally sup-
pressed, we can formally suppress a free variable. This is done by
means of a définition of the kind:

We will allow a definition of this kind only in case

has been derived.

A12.2 If q(x) =df p(x, y), then

12.2 If q(x) ==dl p(x, y), then q(x) and p(x, y) are iriter-

changeable.

Prool. Sinlilar to that of 12.1.

Remark. The axiollls A12.020132 seenl to be suspect froiii an intuitionistic point
of B icw. In an informai way we can show this. Suppose that q(,v) =af p(J.., x)
and that ~ q(x) lias been derived. Tlien q(y) implies y # x. From tliis it is seen

that p(y, z) will iinply the impossibility of y = x As = x. I3ut it seems intuitionis-
tically uot allo«-ed to derive y # x v z # x from this impossibility. So it seems
not to be allon’eci to dérive ~ p(x, IV) from ~ q(x). That ihis argument is wl’ong
is shown by the theorem 10.80.

III. Propositional functions of higher level

13. We will enlarge our formalism with functions of proposi-
tionai functions. The variables introduced up to now we shall call
variables of level 0, the wff we shall call wff of level 0. The new
functions will be called wff of level 1. Besides the variables of

level 0, that stand for an arbitrary individual constant, we shall
introduce variables of level 1, that stand for an arbitrary wff of
level 0. We shall first formulate these expositions more precisely
To the signs of our system we add:

4. variabels of level 1 1, g, ...,
5. vj.

In the following definition v stand for a variable of level 0,
v1 and v’ for a variable of level 1, vs for a sequence of variables of
level 0, vs1 for a sequence of variables of level 1 and (or) 0.

Definition hy induction of a well-formed formula of level 1 (wff1):
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a. every wff is a wffl,
b. vi and v1(vs) are wffl,
c. if pl and q, are wffl, then pi A qi and pl v ql are wffl,
d. if pl and ql are wffl, then pl ~vs1 q1 is a wffl,
e. if pi is a wffl, then ( Ev )pl, (v)p1, (Ev1)p1 and (v1)p1 are wffl,
/. if pl is a wffl and pl contains a free vl, then ~p1 is a wffl. 1)
An arbitrary wffl will be written pl, ql, .... If we want to ex-

press that, e.g., pi contains some free variables, we will write these
variables between brackets behind pi. Again this does not mean
that these variables are the only free variables occurring in pl.

Pl, qi, ... do not belong to the system itself, but to thé meta-
system.
From the preceding axioms concerning wff (excepted A9.0-3,

A10, AIO.0 and A11.020132, that will be considered later) axioms con-
cerning well can be formed in the following way.

The signs standing for arbitrary wffl (p, q, ... ) are replaced by
signs standing for arbitrary wffl (pl, ql, ... ). A variable of level 0
may remain unchanged but may also be replaced by a variable o f
level 1. Eq2cal signs are replaced by equal signs, different signs by
di f f erent signs.
In the axioms A4.0, A4.2 and A4.4 the sign 3 binds only the f ree

variables of level 0.
In the axioms A6.0 and A6.1 the variables x and y must both

remain unchanged or must both be replaced by variables of level 1.
Constants o f level 1 and variables of level 1.

On the level 1 the wff (of level 0) play the same rôle as the
individual constants on the level 0. Therefore we call an individual

constant a constant of level 0 and a wff a constant of level 1.

We discern two kinds of variables of level 1, variables standing
alone, e.g., f, and variables with a sequence of variables of level 0
between brackets put behind it, e.g., f(x, y, z). The intention of the
use of these two different kinds is, that for the variable f may be
substituted an arbitrary wff and for f(x, y, z) only an arbitrary
wff with free variables x, y and z and no other free variables.
A derivation of a wffl that contains a free variable vl, should be

valid if for vl an arbitrary wff is substituted. The wffl f does not
contain a free variable of level 0. So by means of 7.00 we would

be able to prove (Ex)f f. This would not fulfil our purpose, as it is
1) As, e.g., "’-If is a wff1, the sign - cannot be eliminated by D10 from

every wffi any more.
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not allowed here to substitute a wff containing the free variable x
for f . To avoid this consequence, we state the following rule.

Rule. A part of a wffl consisting of a free variable VI (without
variables of level 0 between brackets put behind) should not be
treated as not containing some free variable of level 0.
For similar reasons we state the rule :

R’ule. A part vl(vs) of a wffl should be treated as containing all
variables of vs free and containing iio variables of level 0 free that
do not belong to vs.

In accordance with these rules A11.020132 are transformed into:

vs is the sequence of free variables of p.
The following theorem is a special case of 8.3.

vs is the sequence of free variables of p.

Proof. A3.0, A11.2.

Negation and existentional operator.
The existentional operator may bind all variables of level 0 or

all variables of level 1. So we will have to discern between two
kinds of existentional operators. The 3-operator binding all

variables of level 0 we shall write 3, as we used to do, and the
3-operator binding all variables of level 1 we shall write 31. So,
e.g., ~f(x) means (Ex)f(x) and ~1f(x) means (Ef)f(x).

In the same way we discern between - operating on all varia-
bles of level 0, and ~1 operating on all variables of level 1. So,
e.g., ~f(x) means f(y) ~y y # x, and ~1f(x) means g(x) ~g g #1 f
(for the meaning of #1 see below).
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The rules of section 11 concerning the application of the ~
and the 3-operator on wff containing constants of level 0 are

transformed into rules concerning the application of the ~1- and
the 31-operator on wff1 containing constants of level 1.

So, e.g., (for v, see below)

There is some ambiguity in these conventions. E.g., (x)(Ey)x=y
is a wffl. But it has two parts that are also wff, viz., (Ey)x = y and
x = y. And so 31(x)(Ey)x = y might mean (Ef)f, (Ef)(x)f and
(Ef)(x)(Ey)f. So if we apply the "-’1- or the 31-operator to a wffl
containing constants of level 1, it should be known by what kind
of substitution the wff, has been obtained from a wff, containing
no constants of level 1. In the given example we should have to
discern bet,veeIl:

f (subst. (x)(Ey)x = y for f ),
(x)f (subst. (Ey)x = y for f ),
(x)( Ey)f (subst. x = y for f ).

As these difficulties can be avoided in tlie present paper, we will,
merely for the sake of simplicity, not complicate our symbolism
in this way. The following practical rule will be sufficient.

If in pl occur p, q, r, ..., we can transform pl into pl’ by replacing
p, q, r, ... by f, g, h, ..., respectively ( f, g, h, ... must not occur in
pl). Then it will in this paper tacitly be assumed that p, has been
obtained from pl’ by substitution of p, q, r, ... for f, g, h, .... So,
e.g., ~1(x)(Ey)p will mean (Ef)(x)(Ey)f.

Disjunction o f propositional functions of level 1.

Suppose that p1(f) and q1(f) are two wffi, for which 31p1( f ) and
~1q1(f) have been derived. Then they represent two classes of
classes, that are not empty. So we can form the sumclass p1(f) v
ql(f). Suppose further that p(x) satisfies pl(l) (so pl(p(x))). Then
p(x) will also satify the sumclass, so p1(p(x)) v q1(p(x)). From
this result we would be able to derive by means of A3.2 and 4.00:
~q1(p(x)). But that should not be a consequence of the two

suppositions that have been made.
If we interpret pl(p(x)) v q1(p(x)) as : p belongs to the sumclass

of p1(f) and ql( f ), it cannot be followed that ~q1(p(x)).
But if we interpret p1(p(x)) v q1(p(x)) as : x belongs to the sum-

class of p1(p(x)) and q1(p(x)), then the derivation of ~q1(p(x))
should be allowed.
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From this example it is seen that we will have to discern between
a disjunction of two classes and a disjunction of two classes of
classes. For the first kind of disjunction was used the sign v. For
the disjunction of two classes of classes we will use the sign vl.
To the definition of a wffl is added:

g. if pl and ql are wffl, then pl vl q, is a wffl.
The axioms about v, can be formed from the axioms about v

(A4.020134 and A10.0) by replacing v by vl, 3 by 31 and - by ~1.
(AIO is a special case of AIO.0 and may be cancelled.) In the
definition of ~1 in D10 v should be replaced by vl, # by #1.

In the same way the theorems of level 0 can be transformed into
theorems of level 1. The transformed theorems are quoted by the
same numbers as the original ones.

The relations =1 and #1.
The theory of = and # could be translated into the language of

level 1, if we would accept the translation of the axioms A9.020133.
This translation is:

We mentioned already that the former axiom A9.1 was suspect
from an intuitionistic point of view. On the level 1 the axiom is
still more suspect. We will not accept it. If A9.1 is rejected the
theorems 9.1 and 9.3 and all theorems derived from these disappear
also, and besides 10.21 disappears. That is too much. The theorems

cannot be dispensed with. So we will have to keep 9.1 and 9.3
instead of A9.1. Then the whole theory of = and # would be saved
with the exception of A9.1 itself and the theorem 10.21.
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The meaning of p =1 q is: any object or sequence of objects that
satisfies p will satisfy q, and vice versa. So we define:

D13.0 p1 =1 q1 = df p1 ~vs q1.~.q1 ~vs p1
vs is the sequence of free variables of level 0 of pi and ql.

From this définition A9.0 (for =1) can be derived by induction
with respect to the structure of pl.

Further from D13.Q and 3.00 is derived ~p, which plays
p=ip

the same rôle in deductions as 9.1. The theorem 9.3 is an imme-
diate consequence of D13.0.

The meaning of p #1 q is: there exists an object that satisfies p
and does not satisfy q (i.e., is different from all objects that satisfy
q), or satisf ies q and does not satisfy p. So we define:

D13.1 pl #1 ql =df ~. p1 ~ ~q1 ~1 ~. ~p1 A q1
Note that it is not allowed to replace in this definition v, by v.

For if we write v instead of vl, we are able to derive 3 ~p from

P #1 q (4.02, 3.42). This consequence might be mistaken, e.g., if
p is the class x = x. But if we write v, and apply 4.02, we do not
find 3 3 . ~p A q (which is identical with 3 . ~p A q) but ~1 ~.
~p A q. And as p and q are constants of level 1 substituted in a
function of level 1, ~1 ~. ~p A q is the same as ~1 ~. ~f A g.

A9.3 is a consequence of D13.1; A9.2 will be proved later ( 13.92 ).

Proof,

similar

Further

Proof. Similar.
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Prool.

13.21

Proof.

Proo f .

Pioof.

P,roof.

Pyoof. 13.23, 4.01, D13.1.

Proof. By means of D(x) = dfx = x.
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Proof.

Prool.

Prool.

Proof. By means of D(x) = df x = x.

Proof. By means of G(y) = df x # y.
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Proof.

Proof. By means of C(x) = df x # y.

The theorems 13.20-13.29 can be proved for variables of level
1 with a prescribed number of variables put behind it between
brackets (so for f(vs)).

Proof.

Prool.

Proo f .
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(7) allows us to define h(x) = df f(x) ~ x # y.

Further (9), 7.11, A6.1.

In a similar way we prove for arbitrary sequences vs and vs’:

(In the definition of H(x) for y a variable is chosen that does not

belong to vs or to vs’.)
13.41 is then followed by means of All.2. (If some of the free

variables of p are equal, the equal variables are replaced by differ-

1) ~1 should hère only be applied to f and not to the constant H.
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ent variables that do not belong to vs and do not occur in p. In vq
the same changes are made. p is then transformed into a formula p’.
The constants of level 0 of p’ are replaced by variables that do not
belong to vs and do not occur in p’. Now A11.2 (level 1 ) is applied
and then Al l .2 (level 0), A6.0 and A6.1.)

Pl-oot.

Proo f .

Further

Proof.

Further A11.2.

Proo f . 13.5, 10.60.

Proof. 3.00, 10.42, 13.50.

Proof. A3.2, 10.41, 13.51, A3.0.
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13.53 
~vs ~p 

Proof. 13.51, 13.5, A5.0.
p v -p

This is a striking result. It should be noticed that 13.53 is not
exactly the law of excluded middle. It is not necessary to interpret
(x ) . p v q as: for every x it is decidable whether x belongs to p or
to q. Even in negationless logic this formulation would not be
allowable, as we can only say, that "x belongs to p" or "x belongs
to q" if both these propositions are right. For this reason Griss
chooses a different interpretation of the disjunction. He says:
"La disjonction n’affirme rien d’un cas déterminé (particulier),
mais elle nous donne la possibilité de démontrer un théorème pour
tous les éléments d’un ensemble V en démontrant ce théorème

pour les éléments de deux espèces dont la réunion est identique à
V." ’- ) So 13.53 should be interpreted: if it can be shown that every
element of p belongs to q and every element of ~p belongs to q,
then for any x it can be proved that x belongs to q.
From a (normal) intuitionistic point of view there might be

éléments from which it is not decidable whether they belong to p
or to ~p. According to 13.53 such an element would still belong to
p v ~p. So there might be objects that belong to a sumclass and
for which it is not decidable to which of the two components of the
sumclass they belong. Even this result is unacceptable for intui-
tionistic disjunction. So, if 13.53 is maintained, the disjunction
of the present system would be essentially different from the
intuitionistic disjunction.

Proof.

Proof.
13.54-55 remain valid, if (twice) a premiss is added, that does

not contain a free variable that is free in p or q.

Proof.

1) G. F. C. GRISS, Logique des mathématiques intuitionistes sans négation.
Comptes rendus des séances de l’Ac. des Sc., t. 227 (1948), p. 947.



250

10.70-72 and 13.6 state a relation between conjunction and
disjunction that reminds of the two-valued logic. The same can
be said of 13.40-41 and 13.70-71 with respect to the all- and

existence-operators.

Proof.

Proof. By means of 13.5 and 13.8 (applied to q).

Proof.

1) Proof by mcans of an example.
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Further (3), 7.10, 4.100, D13.1.

Prool. Similar, using 5.22.

Proof. 13.90, 13.91, 13.8, 4.100.

The theorem 13.92 replaces the axiom A9.2.

14. Correspondence between the present system and the system o f
Hilbert and Ackermann.

We shall show in this section, that the structural difference
between the present system and the ordinary two-valued logic is
caused only by the existentional conditions and not by the lack of
real negation.

Therefore we construct a new system of axioms that are gener-
ated from our system by canceling the existence-conditions. So in
the axioms A3.4, A4.0, A4.3, A4.4, Al l .0 (in section 13) these
conditions are dropped and are further canceled the axioms A3.3,
A4.2. In the derived theorems the existentional conditions have to
be dropped, too.
We now compose the following transformation between this

system (the system N) and the system of Hilbert and Ackermannl )
(the system HA).

system HA system N
p ~ q pvq
p -p

p &#x26;q p A q

p ~ q ~p ~ q

(Ex)f(x) (Ex)f(x)
(x)f(x) (x)f(x)
(x) . f(x) ~ g(x) f(x) ~x g(x)

A similar correspondence transforms p ~vs q. Furthermore "p is

provable" in HA corresponds with - in N. The sign 3 indicates,

that the premiss is empty. This correspondence is not unam-

biguous. It will be shown, that if two transformations of a formula
can be made, it does not matter which of the two is chosen.

1) D. HiLBEwr and W. ACKERMANN, Grundzüge der theoretischen Logik, New
York 1946, p. 23, 56, 57.
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THEOREM 14.0. The system HA transformed according to the
above rules becomes part oi the system N.

Proof. The axioms of HA are:

Proof of the corresponding theorems of N.

Proof.

Proof. Similar, starting from A4.0.

Prool. Similar, starting from 2.0.

Proof. s is short for the consequence.

Further (1), (2), (3), (4), 13.53, 4.100.

Proof. A5.0, A6.0. Further similar to the proof of 1.
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Proot. A3.2, A6.1. Further similar to the proof of 1.

The HA-rules:
1. if p and p ~ q, then q,
2. if p ~ f(x) and p does not contain x, then p ~ (x)t(x),
3. if f(x) ~ p and p does not contain x, then (Ex)f(x) ~ p,

are transformed into the following theorems of N.

Proot.
3

If 
~p ~ f(x) 

and p does not contain x as a free variable,

then

Prool.

Further (2), (3), 13.53, 4.10.

if - and p does not contain x as a free variable,

then

Proof.

Further A3.4, 13.51, 3.20, 13.5, A5.0 (similar to the proof of the
theorem of N corresponding to the first axiom of HA).
The system HA is further based on the definitions

In the system N holds:
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p - q and p v q have the same transform.

And further it can be proved in N, that, if p and q p and q are
interchangeable (11.2).

This interchangeability corresponds with a definition in HA.
The two transformations of (x) . f(x) ~ g(x) to (x) . ~f(x) v

g(x) and to f(x) ~x g(x) give interchangeable results (10.611, 13.5).
We shall now compose a transformation of the system N into the

system HA. The rules mentioned at the beginning of this section
are not sufficient, as there are no transformation-rules for the

signs = and #. We shall first try to find wff, that are interchange-
able with x = y and x # y within the system N.

1. x = y is interchangeable with f(x) ~f f(y).

Proof.

2. x # y is interchangeable with -x = y, and so with

~. f(x) ~f f(y).
Proof. ’ 0.20, 10.23.

In according with this we transform

We still have no transformation of p q.... We decide that we
r

shall first link the premisses by A. Then we alter the result to

~ p~q~...~r. From A3.0 and A3.4 it is seen that, if one of the

two is provable in N, the other is too.

THEOREM 14.1. The system N (section 13 excluded) transformed
according to the rules mentioned at the beginning o f this section and
those added in the last two paragraphs, becomes part of the system HA.

Proo f . This is easily verifyable in HA.
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15. The relations between the present system and intuitionism.
We saw in the preceding section, that the present system differs

from the classical system by the addition of existentional-pre-
misses. Besides negation is defined in a different way, but this is
of no influence on the structure of the system. Therefore we might
call the system the negationless classical calculus (NC).
From an intuitionistic point of view the system NC is too large.

The theorems, that are unacceptable in intuitionism (if negation,
disjunction, implication, existence are interpreted in the intuition-
istic way), are 10.21, 13.41, 13.5201313.55, 13.6, 13.71, 13.8, 13.80,
13.90-92. What axiom is responsible for the derivation of these
theorems? It turns out to be the axiom A9.1. If this axiom is

rejected, all the above theorems disappear. But we cannot reject
this axiom without losing too much. If A9.1 is rejected the theo-
rems 9.1, 9.3 disappear, too. So we replace A9.1 by

A9.10 ~# x = x

A9.11 x = y y = x
The new system we call the negationless intuitionistic calculus
(NI). This calculus consists of all the theorems of the present
system, with the exception of the above series of intuitionistically
unacceptable theorems.

Comparing these results with Griss 1), we see that the "negation"
in NI is something between the Griss relations ~ and #. Griss’
characterization of ~ is:

1. x = x,

2. x = y ~ y = x,
3. x = y ~ y = z ~ x = z,
4. x ~ y ~ y ~ x,
5. x = y ~ y ~ z ~ x ~ z.
His characterization of # consists of these 5, replacing by

#, and

6. x # y ~ (z). z # x ~ z # y,
7. (z). z # y ~ x # z. ~ x = y.
The negation in NI obeys 1-6, the negation in NC obeys 1-7.

1) G. F. C. GRiss, Negatieloze intuïtionistische wiskunde, Verslagen Ned. Akad.
v. Wetensch., Afd. Natuurkunde, LI I I (1944), p. 266.
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1 think there is no harm in adding 6, as 6 is in our notation equi-

valent with .

It seems somewhat strange that a calculus has been constructed
with the pretentioii of being a negationless intuitionistic calculus
and that in that calculus A9.1 first has been accepted and after-
wards rejected as being intuitionistically suspect. The reason is
that Griss proved that A9.1 holds for real numbers 1). So the
consequences of this axiom should hold for real numbers too.
And one of the consequences is 13.53, the formal equivalent of the
law of excluded middle. 1 am very astonished about this result,
but cannot solve the riddle.

16. Correspondence between the present system and the system of
Heyting.

We construct N’ from NI in the same way as we constructed
N from NC.

We state the following transformation between the system N’
and the system of Heyting (system H) 2).

As far as wff without free variables are concerned the axioms of

the Heyting propositional calculus are transformed into theorems
of N’.

Proof. The transforms of the axioms 2.120134.11 of Heyting are:

Proof.

Proo f .

Prool.

1) 1.c, p. 265.

2) A. HEyTING, Die formalen Regeln der intuitionistischen Logik, Sitzungs-
berichte der Preuszischen Akad. v. Wiss., 1930, math. phys. Klasse, p. 45 sqq.
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Proof.

Proot.

Proot.

Proot.

Proot.

Proof.

Proof. As ~p is senseless, if p is not obtained from a wff p(x)
containing a free variable by substituting an individual constant
c for x, we may write p(c) instead of p.

Further

Proo f .

Further A3.4.

The proof is still the same, if p or q contain free variables.
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The axioms of N’ concerning propositions, viz. the axioms of
the sections 2, 3, 4, 10, are provable in H.

So the propositional calculi of the systems N’ and H are iso-
morphic. But this isomorphism does not hold any more, as soon as
the propositions are changed into propositional functions. In two
of the preceding proofs it was essential, that p and q do not con-
tain a free variable, viz. the proofs of 2.14 and 4.1.

It is easily seen, that 2.14 is not provable any more for propo-
sitional functions. Let x be a free variable of p and q. Then from

would be provable

This would be a theorem of N’, and so of N. But the transforma-
tion of section 14 does not give a theorem of HA. And so it cannot
be a theorem of N’.

In the same way 4.1 is rejected.

17. The relations between the present system and the system of
Griss.

Griss constructed a set of axioms for negationless intuitionistic
logic. 1) His axioms are:

1. Axioms concerning propositions.
2.1 p ~ p &#x26; p
2.11 p &#x26; y ~ q &#x26; p
2.12 (p ~ q) ~ (p &#x26; r ~ q &#x26; r)
2.13 (p ~ q) &#x26; (q ~ r) ~ (p ~ r)
2.16 p &#x26; q ~ p

2. Rules of substitution.
1.11 From the proved formulas P and Q follows P &#x26; Q.
1.12 From P and P - Q follows Q.
1.13 From R and P ~ Q follows P ~ Q ,% R.

1) G. F. C. GRISS, Logic of negationless intuitionistic mathematics, Proc. hon.
Ned. Akad. v. Wetcnsch. LIV (1951), p. 41-49.
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3. Axioms concerning classes.
a. axioms for the intersection. 1)

(a x b means: the product of a and b exists; the constant u
represents the all-class.)

b. axioms for the union.

As the system of Griss (system G) and the present system (NI)
do not possess the same possibilities of expression, a proper trans-
lation between the two systems is impossible. But a partial trans-
lation is possible. To enable this translation we replace the axioms
2.12 and 2.13 by the following rules:
2.12’ From P ~ Q follows P &#x26; R - Q &#x26; R.

2.13’ From P ~ Q and Q - R follows P - R.
The theorems 2.221-2.28 are then changed in a corresponding
way; the rest of the theorems remain unchanged. (Personally 1
prefer these rules, as double-implications between propositions
are avoided by them. 1 have some doubt with respect to the fact
that these double-implications are in accordance with Griss’ mean-
ing of implication. 3))

1) GRISS only mentions that in 12.11, 12.12 (?), 12.16 and 3.13 x-conditions
hâve to be added, without specializing them.

2) The ~- and ~-conditions in 4.12 and 4.13 are not mentioned explicitly by GRISS.

3) Cf. GRISS, l.c., p. 41.
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An essential formal difference between the two systems is that
in G the letters a, b, c, ... represent non-empty classes (cf. 5.1). 1)
In NI the existence of a class has to be guaranteed by a special
premiss. Further in G there is formally made a difference between
propositions and classes and in NI not. Thirdly in G there exists
only an inclusion-relation (~vs in NI) that binds all free variables.
We now shall compare G with NI120135 (and A10.0).
The rules of translation are:

(for 3 see below)

binds all free variables)

1. Transformation o f the avioms o f G into l’VI with the proofs of
the transforms. The sign 3 is introduced in NI, representing the
premiss that every class exists. This is expressed by the supple-
mentary axiom:

1) Conscquently a rule shouid be added to G forbidding substitution of b ~ c
for a, if b x chas not been proved, and of  b for a, if b ~ tt has not been proved.
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(definition of derivation).

(definition of derivation).
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1 did not succeed in proving this theorem in NI. By
means of 4.100 are provable

This does not imply that the transforms of the conse-
quences of G4.13 are not provable in NI. On the contrary,
by far most of them are.

For tlie investigation of G12.17 we have to enlarge the means of
our translation. If a proposition in G contains u, we first reduce it
by replacing a ~ u and u ~ a by a, and a U u and u U a byu.
’rhe reduced of a provable proposition is again provable in G. Then
we translate

a C u (if a is not ’u) by 3p,
u C a (if a is not u) by (vs)p (vs binds all free variables of p),
u C u by 3,
a ~ u and u y a (if a is not u) by 3p,
uxu by 3.

Further we déclare that it is forbidden to replace in a proposition
a variable by u, if (after being reduced) the proposition will then
contain as a part  u or u ~ u (rulc aboitt restricted S1tbstitutio’n
o f u).

Then G12.17 is transformed into - A17. Further it is easily

seen that the transforms of the axioms of G, after 1t being substi-
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tuted for any of the variables, are all provable in NI. (A5.0 and
A5.1 are used in the proof.)
From this transformation it is seen: i f a f ormula is provable in G

(with 2.12’ and 2.13’ instead of 2.12 and 2.13 and with the above
rule about restricted substitution of u added) its transform is
provable in NI + A17 + an axiom that is the transform o f G4.13.
But the system NI + A17 is essentially larger than NI, as from

3 can be derived the existence of, e.g., p A q and ~p. This corres-

ponds with the dérivation in G of a n b X a ~ b and -1 a X -1 a
from G5.1.

If we want to restore the original system NI, we have to replace
A17 by

A17’ If p is an elementary class, i.e., a class that has not been
formed by conjunction, disjunction or negation, then

~ ~p
1).

But then the formal accordance with G is broken. To regain this
accordance we add to the system G a rule of substitution.

In the following rule P(a) stands for a proposition containing a.
If every a in P(a) is replaced by b, we write the result P(b).

Rule o f substitution (rule GS). If b and a are elementary, then:

if P(a), then P(b),
if P(a), then P(b~c),
if P(a) is not an implication and P(a), then b X c ~ P(b ~ c),
if P(a) is not an implication and P(a), then b ~ u ~ P(n b),
if P(a) - Q(a), then b x c &#x26; P(b n c) ~ Q(b ~ c),
if P(a) ~ Q(a), then b ~ u &#x26; P( b) ~ Q( b).
In the last two lines P or Q may not contain a.

Now again the system G (changed as mentioned above) + rule GS
can be trans f ormed into a part of the system NI + A 17’ + the trans-
form of G4.13.

2. Transformation o f NI into G.

We first transform NI into a new system NI’ that has the same
properties as the system G.

a. We discern between wff containing a free variable and wff

1) As in any special case 3 can be replaced by a conjunction of the form
3p A 3q n ..., the adjunction of 3 does not mean an enlargement of the formalism.
In other words: ~ may be interpreted as being a sign of the metasystem.
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not containing a free variable. The former are represented by p,
q, r, ..., the latter by P, Q, R, ....

b. ~vs is replaced by ~, ~vs by 3.

c. In every premiss the parts p, q, ... are conjuncted and also
the parts P, Q, ....

d. It is forbidden to conjunct p and P. (If the conclusion of a
theorem has the form p ~ P, the theorem should be split into two
theorems having p and P as conclusion.)

e. An axiom or theorem of the form - is replaced by P ~p p ~ r.
A3.4 is cancelled (as being of no use after this transformation).

f. A3.2 and A5.0 are cancelled.

g. We add the following axioms:
3.20, 3.22, 3.42,

A17.0 ~p ~pp (provable in NI by A2.0, 3.30)

P and (or) R may be dropped. (A17.1 is provable in NI
by 3.42, 3.22, A3.3.)

Now every provable theorem of NI is transformed into a prov-
able theorem of NI’. We will show by two examples in what way
the derivations are transformed. Suppose that we have in NI the
following derivation:

This derivation is transformed into:

The derivation in NI
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is transformed into

We shall now prove that the axioms of NI’ are transformed into
theorems of G by the rules of translation mentioned above. We
shall translate p ~ q by a n b and P ~ Q by p &#x26; q. If p is not a con-

junction or a negation, 3p will be translated by a X a.
In G we can prove:
GR From Q follows P ~ Q (G2.22, G2.21, G1.13, G2.13).
We mention first the number of the axiom, then the transform

into NI’ (if this transform is different from the original axiom) and
finally the numbers of the theorems of G by which the translation
into G is proved.

A3.3 If p is neither a conjunction nor a negation, the trans-
lation of the first part of A3.3 is ~ C b ~ a ~ a (G5.1, GR).
If p is a conjunction, the translation is al n a2 C b ~

a1 ~ a2 (A). This is not provable in G.
If p is a negation, the translation is  a ~ b ~ a ~ u (B).
This again is not provable.
The three translations of the second part are:
a ~ b ~ b ~ b (G5.1, GR),
a ~ b1 ~ b2 ~ b1 ~ b2 (C) (not provable),
a C  b - b =1= u (D) (not provable).

3.20 (G12.13 )
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3.22 (G12.23)
3.42 If p is neither a conjunction nor a negation the translation

into G is a ~ b ~ a ~ a (G5.1, GR).
If p is a conjunction the translation is a1 ~ a2 ~ b ~

a1 ~ a2 (E), and this is not provable in G.
If p is a negation the translation is  a ~ b ~ a ~ u (F),
and this is not provable in G.

A17.0 The three translations are, respectively,
a z a - a z a (G2.21),
a1 ~ a2 ~ a1 ~ a2 ~ a1 ~ a2 (G5.1, GR),
a ~ u ~  a ~  a (G5.1, GR).

A17.1 If both p and r are neither a conjunction nor a negation,
the translation is provable by G5.1, G1.13, G12.23, G5.12.
In the other cases the translation is not provable. We give
two examples.
1. p is a conjunction, r is neither a conjunction nor a
negation. The translation is:
if p &#x26; a1 ~ a2 ~ a1 ~ a2 ~ b and r &#x26; c ~ c ~ c ~ d, then

p &#x26; r &#x26; a1 ~ a2 ~ c ~ b ~ d.
The reason this cannot be proved is that the formula

al n a2 z c - al X a2 is missing in G. This is formula (E).
2. p is a negation, r is neither a conjunction nor a negation.
The translation is:

if p &#x26; a ~ u ~  a ~ b and r &#x26; c ~ c ~ c ~ d, then

p &#x26; r &#x26;  a ~ c ~ b ~ d.
The reason this cannot be proved is that the formula

 a ~ c ~ a ~ u cannot be proved. This is formula (F).

A4.2 (G5.1, GR)
A4.3 (G3.3, G3.22)

Remember that (vs)p is translated by u C a.
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The translation is very similar to G4.42. But as G4.42 has
been derived from G4.13 and G12.221, it turns out to be

a ~ b ~  a &#x26; a ~ u ~ (u ~ b) ~  a ~ b.
This would be the translation, if the premiss 3 ~q was

added in AI0.0. As this is not the case, the translation

would still be provable, if a ~ b ~  a ~ a ~ u would be
provable. But this is again the unprovable formula (F).

As D10 cannot be translated into the language of G, adjunction
of (E) and (F) does not make it sure that the further theorems
about negation in NI would have provable transforms in G. The
transforms of 10.40 (G4.3, G2.28), 10.41 (G5.1, GR) and 10.43
(G4.3) are provable. But for the proof of the transforms of 10.42,
10.50 and 10.51 there is another formula missing in G, viz.,
a ~ u ~ -a ~ u (G).

It is clear that (E) and (F) are not provable in G, for if they
were, al x a2 and a ~ u would be provable formulas in G (these
formulas are derived by substituting ai n a2 and -1 a for b in (E)
and (F), respectively). One might oppose that the adjunction of
the rule of substitution GS would render these substitutions illegal.
But the addition of GS diminishes the possibilities of deriving
formulas and so by the addition of this rule the derivation of a rule
that was not provable before cannot be rendered possible.
There is still one difficulty left. The axioms A3.2 and A5.0 were

cancelled. They are of the form - and 2013, respectively. And so
they cannot be transformed into NI’. Now in NI any theorem - p

is equivalent to ~p P (7.10, A3.2), and - to P - (7.11, A5.0).

And so we transform a theorem or axiom p of NI into 3p of NI’, 
and P of NI into p of NI’. The transforms of A3.2 and

p (vs)p
A5.0 are then provable theorems of NI’, as their premiss and con-
clusion are identified by the transformation.
We now add in NI’ the axiom

This is provable in NI by 5.22, A5.0, A3.4.
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Then the derivations in NI are transformed into derivations in
NI’. E.g.,

is transformed into

is transformed into

is transformed into

The transformation of A17.2 into G is:

if a ~ b ~ a ~ b ~ c, then u ~ a ~ b ~ c.
P,rool.
’L(’ X b (G5.1, G12.17, G5.12)
u ~ a ~a ~ b (G12.17, uxb, G5.12)
Further G12.221, G12.61, G12.13.

The relation between NI and NI’.
We shall call the theorems Tl and T2 equivalent, if
a. if T l, then T2 is provable,
b. if T 2, then T 1 is provable.
Then the relation between NI and NI’ is:
a. every theorem of NI is in NI equivalent with a theorem,

that is provable in NI’,
b. every theorem of NI’ is provable in NI.

Conclusion.
We have compared three systems:
1. the system NI, as far as variables of propositional functions

are not mentioned explicitly in the descriptions of the formulas,
2. the system NI’,
3. the system G.
And we have found:
1. to every theorem of NI there exists an equivalent theorem

of NI’,
2. every theorem of NI’ can be transformed into a theorem of

a system G’, consisting of G, the rule GS, the rule about restricted
substitution of 2c and the formulas (A)-(G) 1),

1) Besides G2.12 and G2.13 have been replaced by G2.12’ and G2.13’ and it

has been forbidden to replace p by a proposition containing ~.
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and so
3. every theorem of NI can be transformed into a theorem of

G’ 
Besides:
4. every theorem of G’ can be transformed into a theorem of

NI + A17’, excepted G4.13; the transform belongs to NI’.
So NI’ + A17’ and G’ are isomorphic, if to NI’ an axiom would

be added that is the transform of G4.13.1)
It seems doubtful to me that this axiom is necessary for a logical

description of the method of negationless intuitionistic mathe-
matics.

18. A possible revision o f NI.
It is possible to strengthen the system NI by the addition of:

This axiom is very similar to the theorem 4.100. But in 4.100
in the premiss of the last derivation 3ps and ~qs had to be added.
Omission of these premisses means practically the supposition
that, if it is known that the sumclass p v q and the class s have an
element in common, it is known that this element belongs to p

and to s (and then r is derived by means of p s) or it is known that
r

this element belongs to q and to s (and then r is derived by q s ) .
This supposition can be based on the supposition that, if it is

known that an element belongs to the sumclass p v q, it is known
that it belongs to p or it is known that it belongs to q. This

supposition is accepted in ordinary intuitionistic mathematics. 2)
If A4.5 is accepted, the former axioms A4.3 and A4.4 can be

proved. But further it would also be possible to prove the trans-
form of G4.13.

1) With the restriction that there is some uncertainty about the theorems

derived in NI by means of D10.
2) The interpretation of V in NI, however, is different from the intuitionistic

interpretation. Cf. the remark after 13.53. Therefore I have preferred to rcject
A4.5 in the system NI.
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Proof.

Further (1), (2), A4.5, (3), A3.4.
(The premiss 3q corresponds with an extra premiss b X b in

G4.13, which changes G4.13 into an equivalent axiom.)

But, as far as I see, the transform of A4.5 into G is not provable
in G and not in G’. So NI + A4.5 seems to be stronger than G’.

Finally, 1 want to express my sincere thanks to Prof. Dr.

A. Heyting, whose suggestions have contributed much to the
improvement of this paper.

(Oblatum 22-9-52.)


