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The logic of Negationless Mathematics
by
P. G. J. Vredenduin

Arnhem

Griss stated a new method of treating intuitionistic mathematics
without using negation !). The intention of this paper is to give
a corresponding logical system.

1. We first list the syntactical rules and afterwards give their
interpretation.

The following signs are used:

1. atomic formulas F(z), F(z,y), F(x,y,2), ..., G(z), ...,
= (2, y), ¥ (z, ¥); @, y, 2 ... are called variables; they are sup-
posed to be different,

2. undefined signs A, v, (Ev), (v), —,, (v stands for a variable,
vs for a sequence of different variables).

Definition by induction of a well-formed formula (wff):

a. every atomic formula is a wff,

b. if p and ¢ are wff, then pAq and pv q are wff,
c. if- p and ¢ are wff, then p -, ¢ is a wff,

d. if p is a wff, then (Ev)p and (v)p are wiff.

Definition by induction of free and bound variables:

a. any variable occurring in an atomic formula is free in that
formula,

b. any variable that is free (bound) in p, is free (bound) in pAgq
and in pvg,
any variable that is free (bound) in g, is free (bound) in p A ¢q
and in pvg,

1) G. F. C. Gniss, Negatieloze intuitionistische wiskunde, Versl. Ned. Akad.
v. Wetensch., afd. Natuurk., LIII (1944), p. 261—268,

Negationless intuitionistic mathematics, Verh. Kon. Ned. Akad. v. Wetensch.,
XLIX (1946), p. 1127—1133, LIII (1950), p. 456—463,

Logique des mathématiques intuitionistes sans négation, Comptes rendus des
séances de I’Acad. des Sc., t. 227 (1948), p. 946—948.
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¢. any variable belonging to vs that is free in p (or ¢), is bound
in p -, ¢, and is said to be bound by —,,,

d. if the variable v is free in p, it is bound in (Ev)p and in (v)p,
and is said to be bound by (Ev) and (v), respectively,

e. any variable that is free in p (or ¢) and not bound by —,,
by ( Ev) or by (v), is free in p —,, ¢, (Ev)p, (v)p, respectively.

An arbitrary wff will be written p, ¢, 7, . . .. If we want to ex-
press, that the wiff p contains the free variable z, we write p().
This only means that p contains the free variable , but not that
z is the only variable that is free in p.

There is no difference between p and p(2) occurring in the same
derivation. p(z) is written at those places where it is essential to
remember that x occurs free in p; at other places of the same
derivation p may be written.

If in a derivation first, e.g., p(z) and afterwards p(y) occurs,
then with p(y) is meant the wff, that is generated from p(z) by
replacing every z, that is free in p(z) by y.

If 2, y, 3, . . . are all the free variables of p, then Jp stands for
(Ez)(Ey)(Ez) .. .p.If no variable is free in p, then Ip stands for
p. The order of the (Ez), (Ey), (Ez), . .. is indifferent. This will
be shown afterwards (7.21).

If vs is the sequence of variables @, y, 2, . . ., then 3,,p stands for
(Ez)(Ey)(Ez)...p, and (vs)p for (z)(y)()...p.

P, ¢, 7, ... are not signs belonging to the system. They are
merely names for arbitrary wff. So they belong to the metasystem.
The signs vs, 3, 3., (vs), —,, belong also to the metasystem.

Interpretation. The sign A is used for conjunction, v for dis-
junction, (Ev) is the existentional operator, (v) the all-operator.

Wi{f without free variables are to be interpreted as propositions,
wif with free variables as propositional functions.

p(xz) =, q(x) means that the class determined by the proposi-
tional function p(z) (short: the class p(z)) is included in the class
g(z). 1) p(z, y) >, 9(x, y) means that the class (of pairs , y)
p(z, y) is included in the class ¢q(z, y). p(z, y) =, q(z, y) is to be
interpreted as the class of those y for which p(z, y) is included in
q(, y), ete.

(Ez)p(x) is a proposition; (Ez)p(z, y) is the class of those y for
which an z exists that satisfies p(z, y). The same holds for the
all-operator.

1) It is supposed in this and the next two paragraphs, that p and ¢ contain no
free variables different from those mentioned between brackets.
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There is still some difficulty with the interpretation of e.g.
p(x) =>4, q(, y). If p(z) was a class of &’s, it could not be seen in
what respect this class might be included in ¢(z, y). But we may
also interpret p(z) as the class of pairs z, y that satisfy p(z). So
if p(@) as a propositional function of z, is satisfied by a, it is satis-
fied by any pair a, y. This situation is analogous to solving the
equations ¢ + 1 = 0 and 8z + 5y = 2. The solution is 2 = — 1,
y=1, as ® = —1 and y arbitrary will satisfy 4 1 = 0. So
there is the same kind of ambiguity in the interpretation of pro-
positional functions as in the meaning of an equation.

In the same way it is possible to interpret a wff without free
variables as a propositional function. A wff without free variables
that is true may be interpreted as an all-class, an all-class of pairs,
etc., and is to be compared with an identical equation. This kind
of interpretation enables us in formal respect not to discern any
more between propositions and propositional functions. We can
restrict ourselves to theorems about arbitrary wff that may or
may not contain free variables.

It is clear from the foregoing that p A ¢ is to be interpreted as
the product of the classes p and ¢, pv ¢ as their sum.

The negationless method. Before continuing it will be necessary
to explain in brief the fundamental ideas of Griss’ method.

Griss accepts that in constructing a mathematical system we
progress from true propositions to other propositions that are also
true. Perhaps we may, when making a rough calculation, find the
impossibility that some theorem will ever be a part of our system.
That result may be very instructive for the investigator, but it
is not a part of the system itself. When I am building a house it may
be of great importance to decide that I shall not use a certain kind
of bricks, but this decision does not make those bricks part of the
house. So in the mathematical system only those propositions will
occur that are true. And as these propositions are all affirmative
{the contradictory propositions being only possible in ,,rough”), a
sign for negation is useless in his system.

Another fundamental feature of Griss’ method is that he accepts
that in constructing one is always constructing something and so
never will construct nothing. In accordance with this view he
declares that the null-class does not exist. Every propositional
function has the property that it can be satisfied. So the product
of two classes is not always a class. If the classes have no lement
in common their product is not the null-class, but merely senseless.
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The propositional calculus. In a mathematical Griss-system only
true propositions will occur. So there is no reason for linking them
by a sign for disjunction or implication. ,,In rough” we may find
that a certain proposition can be proved as soon as A has been
proved and also as soon as B has been proved. And then we might
say that 4 v B implies C. But in the system itself we shall never
progress from A (or from B) to another proposition before 4 (or
B) has been proved. So in the system itself the disjunction of
propositions is useless. The same holds for the implication. In
rough we may convince ourselves that B can be proved as soon as
A has been proved, but this consideration is not a part of the
system itself. Formally linking propositions by v or — is possible,
but the interpretation of the result is the same as the interpreta- -
tion of their conjunction (this remark is of importance, as we shall
formally treat propositions and propositional functions in the
same way).

Propositions may be linked by conjunction. As the kind of
linking obeys the same laws as the linking of propositional func-
tions, there is no reason for a separate propositional calculus.

Axioms and derivations.
There are two kinds of azioms:

a. axioms of the form w,

p

b. axioms of the form: if M’, then Jo 91 - I

p
Definition by induction of — (p is derivable from P).
4

In this definition P, Q, Q,, Q, stand for arbitrary finite sequences
of wff.

1. If every ¢, that belongs to Q, belongs to P, and if ;Q is an

axiom, then —.

2. If g is an axiom and every ¢, that belongs to Q, is derivable
p

P
from P, then ;
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3. If
O
a. —,
q
b. ,,if (—2—1 , then &” is an axiom,
q p
¢. every ¢, that belongs to Q,, is derivable from P,
p
then —.
p

Semantical remark.

p@ Y, ...)

The meaning of a derivation of the form is, that for

9z y,...)
arbitrary values of z, y, ... ¢q(2,y,...) can be derived from
p(@, ¢, . . .). So there is a close connection between the derivation

of one propositional function from another and the inclusion of
the classes determined by the two functions.

The use of dots.

We discern left and right dots. Left dots stand to the left of a
letter or of ~, right dots to the right. The scope of a left (right)
complex of dots is extended to the left (right) until a right (left)
complex of dots is reached, that consists of an equal or a larger
number of dots, or, if this is not the case, to the end of the formula.

A and v bind stronger than —,.

Final remarks.

In principle logical theorems can be dispensed with. Their pur-
pose is merely to enable abbreviations in the mathematical pro-
cess. Instead of a large quantity of applications of the logical
axioms one application of a logical theorem may be used.

The mathematician will perhaps say that he is not reasoning in
detail according to the logical axioms. But the logician only says
that it is possible to rebuild the mathematical system by using the
logical axioms. As soon as it turns out that his logical system is
unable to describe the mathematical system, the logical system
should be altered. On the other hand the considerations of the
logician may be of some influence on mathematical thought.

Investigating the logical system it will appear that it obeys its
own rules and axioms. But as its structure is very simple, only
few of its axioms are sufficient for its own foundation. This last
remark has a metalogical character and will not be analyzed
further.
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We now start building the logical system. Axioms will be marked
A, definitions D and theorems without a letter. At the end of the
bar the numbers of the (main) axioms, definitions and theorems
are mentioned that are used.

Definitions are merely used as abbreviations.

I. The functional calculus without considering the
inner.structure of the wff

2. The axioms of conjunction.

A20 P 19
pAg

A2a PAY PAA
p q

A2.0 does not mean that any two propositional functions
(classes) have a product. We must not forget that an axiom can
only then be applied, when the premisses are derived formulas.
So the meaning will be: any « (or any pair , y, etc.) that satisfies
p and ¢, will also satisfy p A q.

In case p and ¢ are propositions A2.0 simply says that two de-
rived propositions may be conjuncted.

2.0 pre
qAp
Proof.
roof PAG o1 PA )0y
1 Parg.o
gAp
2.1 p/\q./\"'
p/\.q/\’l
Proof. )
roof PAG-AT 40y .
PRI-AT A1 PAT A9 PAE-AT A9y
P19 Ao 9 A2.0
P 7" A20
PA.GAT
22 P
P
Proof.
roof- P P asp
PP p9a
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3. Axioms about —,, avd 3.

Aso P P7wd
q
P
A3.2
(Ez)p
p —908 q p _>08 q
A3.3 ,
N A Y
p T dp 7
A8.4 If ——, then —.
q P >us q
No variable of vs must be free in r. The premiss r may
be dropped.
The 3,,-operator is of extreme importance in negationless logic.
E.g., in ordinary logic no one would hesitate to accept P 7wl
PAT =>4 4G

But in negationless logic this derivation is only possible, if it is
known that p A r exists. Therefore the premiss 3,, . p A r has to be
added. From this example it is seen that in many cases additional
premisses of the form 3,, p will distinguish the present calculus
from the usual logical calculi.

A3.2 states that any wff (class) that previously occurs as a
conclusion, exists. For repeated application of this axiom leads to
dp and to 3, p.

A3.3states that, if previously it has been proved that p(z, y, . . .)
is included in ¢(, y, . . .), then there is a sequence 2, y, ... that
satisfies p(z, y, . . .) and also a sequence that satisfies ¢q(z, y, . . .).

It is not clear that in A8.4 the premiss 3,, p must be added. For
if in a mathematical system this axiom is applied, p is the con-
clusion of a preceding derivation and so the condition 3,,p will
always be fulfilled. Still we are not in accordance with the in-
tention of our system, if 3, p is cancelled. For according to 2.2
p_r. Canceling 3,,p we would find !

p P o
would give the conclusion 3,, p. The derivation of the existence
of an arbitrary p from an arbitrary premiss r is certainly not in
accordance with our aim.

3
300 P

p _>178 p
Proof. 2.0, A3.4.

. And then AS3.8
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3.01 3. P9 3. Pq 1
PAG 0P PAG >y g
Proof. A2.1, A3.4.
3
3.10 p —_>08 q vspr
PAT 5 q
Proof. *
roof- PATE hon N
—
14 P ~us g A3.0 5
"
q v8 p A3.4
p AT -—)’US q
Remark. The full proof is:
PAT A2.1 3
— — Dr
P P09 Ag0 and so P md Zw Pl pgy
q PAT =5 ¢

So p A7 turns out not to be a premiss of the derivation of p A7 —,, ¢
from p —,, g and 3,, pr. This is the meaning of the asteric in the

above proof.

3.11 P Zodn?
P >0 q .
Proof. p* p —,,qnAr A3.0
177 A9 P20l T p3g
1 3 P A3.4
P o q
312 P wd 3,,pr
PAT —>y qAT
Proof. pAr* A2l ,
P P 7wl ago PN A9y
1 " A2.0
gnr o T pg.4
PAT >y QAT
3.20 p _>1)8q q __>‘l)8 r
P s
Proof. p* p-—>,q A3.0
1 17w pg9 P7ud p33
! P Ag.4
A

1) 3,,pq is short for 3,,.pAgq.



212 P. G. J. Vredenduin. (9]

P P u?

3.21
D >p QAT
* * . D —>
Proof. p* p-—>,q Ago P5P2w” aa0 103 wd g5g
r
7 v P A2.0, A8.4
D>ps QAT
- r 3
3.22 p )‘03 q 9’NI'S. s pr
PAT > qAS
P . 3. pr i . pr
roof _TwuP” g0 wP" 501
—_ r— r — S r — 7
p vsq p/\ vsp3.20 v8 p A V8 3'20
> T >y S
p A 7 Vs q p A vs 3.21

PAT =>4, @AS

3 3
330 If P, then =P ana 2P
q 3,5 q dq
Proof. 1. 3 2. 3
roof b A3.4 7P A3.4
— —>,
P> g A3.3 D> q A3.3
avsq 3“'q

In the 2nd derivation vs’ is the sequence of free variables of p.
We have still to derive 3¢ from 3, ¢q. In case ¢ contains a free
variable, that does not belong to vs’, we apply A3.2. In case a
variable of vs’ is not free in ¢, we apply a theorem that will be
proved afterwards (7.00).

3300 1f 2" and no free variable of » is free in p, then
q

3 ' 3 .
wP T ong 2P 7’
30 ¢ 3¢
Proof. Similar.
3, 3
8801 21
d.padg
Proof. 3
oo P_3 90
pAdg

Further 8.800.

8.81 If 2, then pAT

q gAar
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Proof.

3.32

Proof.

3.33

Proof.

3.40

Proof.

3.41

Proof.

3.42

Proof.

The logic of negationless mathematics.

PAT

A2.1
A
P PAT poa
1 ” A2.0
gqAar
If Z)—, then T ol p
q r—_a
r;”” P Ass3
vs p A3.4!
- r—
p Vs q vsp 3.20
r 9“IJS q
3
1t € ang 2 p’ then D —v" T.
P 1,5 ¢ q >y
P ue? A3.3
AP
3
~_"_s_g~ AS8.4
— —> . T
q vs p p Vs 7 3.20
q '_>'IJS r
PAg
EIy
A2.1, A3.2.
14 —>vs_g
1,s Pg
pa_—xvaq A3.3
__"ﬁ_ 3.00
— —
P >0P P00,
P2uPAL 4og
3,s Pq
3P 3pg
3.0 3p
A2.1, 38.30.

4. Disjunction.

A4.0

p Iq
pVvyg

213
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dp
p _>vsr q_*vsr
PV >y

pvq.Anr 3Jpr dgr

PAT.V.QAT

In A4.0 p v q can only be derived from p, if ¢ is a propositional
function. So the premiss 3¢ has to be added.

In A44 pAr.v.qgar can only be derived, if the products
pAr and gAr exist. :

4.00

Proof.

4.01

Proof.

4.02

Proof.

4.10

Proof.

4.100

i.pvyg
£l

A4.1, 8.30, A4.2.

dp J¢ 3d,p 3Iig
3.pvqg 3..pvy
A4.0, 8.300 and, if necessary, A3.2 and 7.00.

RVQ pvyq

I’ 3

A3.2, A4.2 or 4.00.

If P and 2, then &
r r r

vs is the sequence of free variables of p and gq.

pve 4.02, A8.2 1) pve 4.02, A3.21)

uwP Ag.4 Tl Az
n— r e r
P~ - 1 7w" ps3

—>us T v
Pvye vs p q A3.0
’
= E|

If p s and , then pveg ¢ W3 qs.

1‘ r r

1) A3.2 should be applied, in case p and ¢ do not contain the same free variables.
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Proof.
roof. pvgq 5 A2.0
PVG.AS Jps dgs
PAS.V.GAS
r

pr pvqandq pvq, thenm.
r r r

A4.4
A2.1, 4.10

4.11

Proof. wvs is the sequence of free variables of p.
pve pvg

3 4,02 —— 4.02
v P qA4.0, A3.4
- v
pve A2. p v PV q3 41, A3.2 1) Pvy analogous
PvVqg.A.pPVYq EIpA pPvyq gA.DPV pA4~4
pA.pvq.v.qA.pquz.l’ 410
r

4.2 If 14 and 1, then P .
q s qv s

Proof. (1) pvr

A3.2, A4.2 A8.2, A4.2
r dp S
5 30 3.30 7 3 3.30
s
1 A4.0 1 A4.0
qvs qvs

Further (1), (2), 4.11.
3P Fueg(or 3g)
D —~wP VY

4.30

3
Proof. We first prove —iaﬁ, by applying (if necessary) A3.2
q
and 7.00 (cf. the proof of 8.30). Further A4.0, A3.4.
PVG >0t

p —91}8 r
vs contains all free variables of p.

4.31

Proof. pvq-—>,r

3 A38.3

\Y2
ve-P VY A3.2, 7.00

1.pve A4.2

3

— TP Ase PYT 7wl analogous
1, p dq .50
P —>uP VG  PVauT
p _>’US r

1) A8.2 should be applied, if p A . p v g contains a free variable that does not
belong to vs.
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sgg Powd 3u?
P> g VT
Proof. -
roof pa—m 9 as3 ;
r
!J!q v8 4.30
>, qVT —>,
q q p s 4 3.20
p —>03 q vr
s  PZmg Fur
PVT >, qVrT
Proof.
roof pa—ns %453 ;
r p —
vs q v8 4.30p v8 q A3.3 3
— > qVr r
P >uwsq 97dVT 550 vs 4 v " 4 30
— \% —>
P s qVT T 20 VT a4g
PVT =, qVT
-3
4.84 u
PVG.AT
Proof. pAT A2.1 ;
AT
P T ss0 P27 A2a
r
pYa A2.0
PVG.AT
1.85 PAT.V.qAT
pPVg.AT
Proof. (1) par A2y P r ;/ AT 402, 8.42
] AT
d 7 a40 P2T A2a1
PYe " A2.0
PVG.AT
2 ’ V. 1
(@) gnr par.v.gar analogous
PVG.AT
Further (1), (2), 4.11.
136 _PhT-VT
pVT.A.QVT
Proof.
W PAT ppy PR 4oz
r ' vr
4 A4.0 Pre PAg.VT analogous
vr vr
2 1V7 A0

PVT.A.QVT
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2 .

) , p~—————'\; YT 402, 3.42
_ P aso r DPAQ.VT
pvr qvr

analogous
A2.0

PVT.A.QVT
Further (1), (2), 4.11.

4,860 PAG.V.TAS

PVT.A.PVS.A.GVT.A.gVS
Proof. 4.86.

s37  PYL YT
pPV.qVvrT
Proof. ws is the sequence of free variables of p, ¢ and r.
. * 3
———-;’ Ve 3V74.02,4.00,A3.2 r ”'qA4.03
v vs T vg.vr vr s
—-——;q V’ 4.30 PYI-VT )02, As:2,AB.2 . 1 p
vs r v st v.qVvr
17w " P 433 “ool PVAVT pg4
>, PV.QVT r— .qvr
, PVG—>wPV.q wsPV-IVT 43
VT VT gV
pvq PVY-VT- 0P V-VT 12y
pVv.qvr
4.88 pvqg.An.rvs 3Jpr 3Ips Igr 3Igs
PAT . V.PAS.V.QAT . V.qAS
Proof. (1 3
roof- (1) PAT 35 151, As0, A20
PA.TVS
2 E|
@) ] e o WY ]
i (1), 8.800 e e ol analogous
pvVqg.A.TvSs I.pA.TVS J.ga.7rvs
A4.4
PA.TVSIVIQA.TVS
(3) pa.rvs pr Ips Add . Jgr 3gs 401
PAT.V.PAS PGAT.VgAS
PAT . V.DAS.V.GAT.V.qAS
4 o Jgr 3
(4) ga.rvs 3pr 3Ips 3gr dgs analogous
PAT . V.PAS.V.GQAT.V.QAS
(5) 3pr 3dg¢s
B:p/\.rvssee ) Jpr 3Ips 3Igr 3Igs
3.301
J:pa.rvs.adpradpsadgraigs
(6) 3pr 3dps 3dqr dgs analogous

d:ga.rvs.Adpradps A 3gr A Jgs
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Further (2), (3), (4), (5), (6), 4.100.
pvr.a.qvr 3pg 3pr 3dgr

4.39
PAG.VT
Proof.
1 dgr 2
()1—)———q-A2.03i73.42[3 ] E; gr] 3
pAg r PA) 4,0 [P17(307] 3pg A40
prg.vr PAG.VT
p qvr 3dpqg Fpr Jgr
(3) (1), (2), 3.301, 4.100
PAG.VT
3 E 3
(4) 7 [qvr] Ipg [3pr] [Agr] A4.0
PAG.VT
®) (0) 3P7 5 4o
dpq dr 3pq
— 3.42 —38.830 ——3.42
Jpr iq Jrr dq
o % 4.34,3.800 — 4.34, 8.300
I.pa.qvr d.ra.qvr

Further (3), (4), (5), (6), 8.301, 4.100.

Remark. With the square brackets in the 2nd and the 6th line
of the proof is meant, that the addition of the premisses 3pg, p,
J¢r and ¢ v r, 3pr, I¢r is not wanted for the derivation there but
afterwards for using 4.100.

II. The general functional calculus

5. We shall now introduce all- and existentional-operators.

aso P
p
A5 P L then P01
r (z)r
p must not contain z as a free variable; p may be
dropped.
E
50 1P 9 then? B2
r (Ez)r
p must not contain z as a free variable; p may be
dropped.
Proof. E
roof. p (Ez)q .. .
—, T
172" A3

(Ex)r
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5.1
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(z)p

(Ez)p

Proof. A5.0, A3.2.

5.20

(z).prqg (2).pAg

(@p = (z)

Proof. A2.1, A5.1.

5.21

Proof.

(z)p (x)q

() .pAg

M) @ 450

Further (1), A5.1.

5.22

(z)p (Ez)q
(Ez).pAgq

Proof. (1) @_p A5.0

7 Pago
pAg

Further (1), 5.0.

5.3

Proof.

(@)p (Ez)q
g —>:p

M) @pld,,,

Further (1), A8.4.

6. Rules of substitution.

A6.0

p(z) p(y)
If , th ,
q@)tenﬂw

if (L) and p does not contain z as a free variable, then
q(z
qTZ-)—, if E&r—) and ¢ does not contain z as a free variable,

then M
q
p(2) and g(x) must not contain y as a bound variable.

p(y) and ¢(y) are formed from p(z) and ¢(z) by substi-
tuting y for  at every place where z is free,
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A6.1 If z is bound in p, y does not occur in p and p is
transformed into p’ by substituting y for the bound
variable z at every place where it occurs (including in

the binding operators), then %

p(, x)
%0 Eywy
Proof. (1) p(z, y)
(Ey)p(z, y)
Further (1), A6.0.
(Ex)p(z, x)
SOl EoEyp@y)
Proof. 6.00, 5.0.
ooz _(@p@a)

(x)(Ey)p(a, y)
Proof. 6.00, A5.1.

7. A7 If z does not occur as a free variable in p, then
(Ez)p
(@)p
If 2 does not occur as a free variable in p, the theorems 7.00—
7.08 hold.

E
700 EYP poo A7, As..
p
7.01 @ Proof. A5.0.
p
7.02 P Proof. A3.2.
(Ex)p
708 L Proof. 7.02, AT.
(@)p
7.10 If ¢ and r do not contain # as a free variable and
E
P9 then (EZP O
r r
Proof. 5.0, 7.00.
"~ 7.11 If p does not contain z as a free variable and —R, then - .

q (z)q
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Proof. 17.08, A5.1.

v90 @)y
(y)(@)p
Proof.
roof (w()(y)p A5.0
I VP
P
Further twice 7.11.
(Ez)(Ey)p
(Ey)(Ex)p
Proof.
roof- P age
Eap
(Ey) (Ex)p
Further twice 7.10.
E,
7 99 (Ez)(y)p
(y)(Ez)p
Proof. P
(Ez)p
Further A5.1, 7.10.
3
7.3 Zu?
ip

Proof. 1If vs contains variables, that are not free in p, they can
be dropped (7.00). Further A3.2.
8. Implication.
There is some difference in meaning between
P —>u g and ().p >, ¢
In both cases p is a part of ¢q. But in the second case, p is a part of
q for any x. That is only possible, if for any  p exists, i.e., (z)(Ey)p.

8.0 @)-p=>uq
P> q
Proof. (z).p —~>,q A5.0 (@).P > 5.1
%
P=ve P~ As.0 (E%)—”E——”—Q—Aa:a 5.0
q (Ez)(Ey)p AS.4
p >y q

P—>uq (2)(Ey)p
(®).p—>,q

8.1
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(19]
*
Proof. P —~>aq P* (o, 5)
1 Y g4
P>y q
Further A5.1.
8.2 () .p—>,q

(@)(Ey)p
Proof. A8.3, A5.1.
sg P@ @) pQ) 1)
q9(y)
y must not be bound in p or g.

Proof. A8.0, A6.0.

The theorem is proved in the same way for propositional func-
tions containing more than one variable.

sg0 P@) V@) ~>.r(@) ply)
7(y)
y must not be bound in p(z) or r(z).

Proof. 1If yis bound in ¢(z), by A6.1 g(x) can be transformed
into ¢'(z) not containing y as a bound variable.
p(@) v q(z) >, r(z)
3
%) rg.12)
rly) ) ,,
p@)ve(@) >,r(x) p(y)va(y)

A3.3, A3.2, A4.2

8.3
7(y)
ggy P~=g (Eyp
P—>y9q
Proof. *
roof. P >aq P* o0 )
? YP As.4
P—>yq
8.82 If p does not contain y as a free variable, then
P> q
P~ ()9

p()—>.q ply)
q

%) It is allowed that y is free in g(z); this will become clear in section 10.

1) Or, if  is not free in g,
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Proof. (1) (4)-P>.4 oo

p ‘_>le q p A3.0
q
p __>0W q
V2 A33
(Ey)(Ez)p A7
%*
P>z q A8.3, Ay P2 g (y)(Ez)p 81 P 708
(y)(Ez)p ’ (¥).-p—>.q (¥)p
“(Eap A5.0 @ (1),A5.1
&
P Y4 3.4
P>, (Y)g
8.83  If g does not contain y as a free variable, then
p _>31 q
(Ey)p .9
Proof. (1
roof. (1) p =>4y q P A8.0
q
*
P=wq (Eylp (1), 5.0,7.00 0229 A3

(Ez)(Ey)q AS.4

(Ey)p ~>= ¢
o ¢

8.84 If 2 is not free in p and ¢, then P

p —>vs’ q.
vs does not contain ; vs’' consists of vs and z.
Proof.
roof pa—n.q AS.3 .
9

3"”’ 702 P P opgg

va’p q A3.4
p s’ q
gs5 P@®Y) >uq@y) (Ez)p(= 2)

p(z, ) -, q(, z)
Proof. 8.3, A8.4.

9. The basic relations = and .

It is possible to apply the logical theory to a field of individuals.
We presuppose that the individuals are discernable. In case we
want to express that two individuals are discernable, we write
z 4t y, in case they are identical # = y. The relations = and 3
are introduced as basic relations of our logical system by means
of the axioms A9.0—S3.

z =y and z 3 y are atomic formulas (cf. D9.0—1).
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The use of the propositional function # # y renders it impossible
that there is only one individual, or, more precise, makes it
necessary that there are at least two discernable individuals. So
after adjunction of the sign #, this theory cannot be applied to
a field that consists of only one individual.

Formally this circumstance might be expressed by the axiom
(Ex)(Ey)x 3 y. But this axiom is not an axiom similar to the
others, but, one might say, a material axiom (as it supposes a
special property of the scope of the field of individuals). Adding
a material axiom implies adding material theorems. Instead of
splitting the theorems in two different kinds, we prefer writing the
theorems that presuppose the ,,axiom” (Exz)(Ey)r # y, in the
(Ez)(Ey)z 3 y

p
(Ex)(Ey)r # y in the formulation of theorems, except in case it
is the only premiss.

usual way, . But we shall omit the premiss

D90 a=y=4=(2,y)
DOl Hy =4 H# (@ y)
Following Griss!) we choose as axioms:
v=y p)
p(y)

p must not contain y as a bound variable.

A9.0

A9.1 AR Y R )

A9.2 -

A9.3

4 3w
(@) (Ey)e #y (y)(Ex)zr $y
Proof. (1) @ 3u 455 a1 B 2HC 450 a6
(Ey)e #y (Ey)e 3ty
®) uto W v

T Huva o (@)(Ey)e 4y

— 27 (1), (2), +.10

9.0

.

(3), 7.11

') Versl. Ned. Akad. v. Wetensch., afd. Natuurk., LIII (1944), p. 262 and 266.
*2) From an intuitionistic point of view this axiom is suspect; cf. section 15.
Griss proves that it is valid for real numbers.
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9.1

Proof.

9.10

Proof.

9.11

Proof.

9.2

Proof.

9.20

Proof.

9.21

Proof.

9.3

Proof.
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—_Ei#_“ (4), 7.10
(®)(Ey)x 3 y A6.1

(y)(Ex)y &, ~

A9.3, 5.0, A5.1
(y)(Ex)z 4y

34
() ==
(1) _(Byle#y .00 _ 3H 44
rHY > 2HY po, @EVEHY ) a5y
r==z ()z =2
EETS
3=
G - 9.1
@r=z
(Ex)x =
6.0
(Ea)(Ey)e =y
A%
(z)(Ey)z =y
9.1, 6.02.
r=y y==
r =2z
A9.0.
xHz = y
y 2
A9.0.
z=y
x4z >,y e
34

T — 0.0

E %

v=y  (BRHE 00, A3.4
zHz—>,y H=
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10. Disjunction.

p@)ve(x) ply)—>,yHe
9(y)

This axiom says: if # belongs to the sumeclass of p and ¢, but is
different (discernable) from all the members of the class p, then 2
belongs to g. Or, in ordinary language, if  belongs to the sumclass
of p and ¢, but not to p, it belongs to ¢. But in the last sentence
it is negated that z belongs to p, perhaps because p(x) turns out
to be contradictory. The former sentence is free from negation,
because it only says that all the members of the class p are different
from .

Perhaps the following example makes the difference clearer. I
am looking for my fountain-pen. I ask: ““Is it on my writing-table?”’
I find it in my pocket. And now I say: “It is not on my writing-
table, for it is in my pocket.”” That is a negated sentence. But I
can also investigate every object on my writing-table and always
find: this object is different from my fountain-pen. Then all the
objects on the table are different from my fountain-pen. And if
I know in some way that my fountain-pen belongs to the sum-
class of the objects on my table and in my pocket, I am able to
conclude (A10): my fountain-pen is in my pocket.

Alo

D10 If z is the only free variable of p(x), then

~p(@) =4 P(y)>, Y FH
If z and y are the only free variables of p(z, y), then

~p@,y) =4 p©,v) >, uHarvo HFy, etc

By this definition a kind of negation is introduced. But this
operation, ~, is based upon the relation of difference. So it is not
a negation in the proper sense, as it has nothing to do with refu-
tation or contradiction. Still, formally, it has many properties in
common with the usual negation.

We are now able to formulate A10 in a simpler form:
pvqg ~p
q

This axiom is more general, as the number of variables is arbi-
trary.

A10.0

Remark. There is still some ambiguity with respect to the
“‘negation” of propositional functions with variables that have
been identified.
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E.g., if in ~p(2, y) the variables are identified, we get according
to D10
Np(m’ ﬂ'/') =ar p(u’ 'U) up ¥ # Tvo # Z.
But if we consider p(x, ) as a propositional function with one
variable, then D10 says

~p(@, @) =4 Py, y) >y F 2.

We choose the first definition. This is done by the following de-
cision: if a variable in a propositional function is repeated, the
function should formally be treated as a function of two (or more)
identified variables and not as a function of one variable. So
identification of variables does not reduce the number of variables.

~z $ z, considered as a function of one variable, would be
nonsense as the class 3  is empty. So 2 3 « would be senseless
and cannot be negated.

~x # @, considered as a function of two identified variables
means 4 Hv —,,u ttxvo 2 and this is significant. It can
be derived from I3 by A9.2 and A8.4. (Cf. 10.12.)

Under certain existentional conditions there is no harm in
negating a function of two variables in the same way as a function
of one variable. This will be shown in 10.10—11.

We define:

Ip(@, @, %) =4 (E2)(Ey)(Ex)p(a, y, z), ete.
So if the 3-operator is applied to a wff withidentified free variables,
the variables should first be changed into different variables and
then they all should be bound by (Evs).

The definitions of ~ and 3 applied to wff with identified free
variables have the following consequence. If a theorem has becn
proved for wif without identified free variables, the corresponding
theorem for wff with identified free variables is an immediate
consequence of it (by means of A6.0). Mind that the 3-premisses
remain unchanged, when free variables are identified in the pre-
misses and the conclusion of a derivation. So in proofs we are
always allowed to suppose that all free variables are different.

Remark. It seems that by the following derivation we are able
to construct a disjunction of two wff of which one represents an
empty class.

3
I HE et 3

flz) yHy
f@vy #y As0



228 P. G. J. Vredenduin. (25

J

But this wff should not be interpreted as the sum of the class f(x)
and the empty class y # y. We first form the class of triples
(@, y, 2), that satisfy f(2) v y 3 z and from this class we form the
subclass of those triples of which the second and third element
are identical. So we find as interpretation the class of triples
(, y, y) of which x satisfies f(#) and y is arbitrary.

~p(x,y) (Ez)p(z,y)
plu,y) >, u e

Proof. Suppose that p contains just two free variables.

10.10

~p(2, 3
P y) D10, 2.2 i A9.2, A5.4
p(u,v)—>,, uitaevoity pluy)* o o 2dbu— adbyvudty
uHavyy ~yHy A10.0
E > )P y 1 { )
( zL)p(r y) - i A6.1, A38.4
p(u,y)—, uia

In case p contains more than two free variables, the proof is
similar.

More generally we prove in the same way:

10.100 If @y @y, ..oy @y Yoo Y1o - - -» Y 1S the sequence of free
variables of p, then

~p  (Ex)(Ew,)...(Ez,)p

P80y Uty ooy Uy Yor Y1 -+ s Yrm) gy . un o T TV Uy H 2y v v, Hra,
Pl y) > udfa

~p(@, y)
Proof. Suppose that p contains just two free variables.

3
pu,y) >, utte vz, u:I::: xvv y?i(()), 90, A8.4
 pluy) >.utavosy

Further 7.11, 8.0, D1o0.

In case p contains more than two free variables, the proof is
similar.

10.11

More generally we prove in the same way:
10.110 If ay, @y, ..., 2, Yo» Yo - - > Ym 1S the sequence of free
variables of p, then
p(uO’ Ugs eoes Uy Yos Y15 005 y'm)‘éuou;... u,.uo#mo\’% #wl Ve VU, :H:wn
~p
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~p(z, z) (Ez)p(z, x)
p(y,y) >y e

Proof. Suppose that p contains just two free variables.

10.12

~p(z, z)

D10
p(u,v) >, u HFaevoia (¥, y)*8 3
yHevy He 410 (Ez)p(, ) A6.1
yHa (Ey)p(y, y) AS.4

Py, y)>,y #a

The proof is analogous in case p contains more than two free
variables.

10.12 shows that from the negation of p(z, z), considered as a
function of fwo variables, can be derived the negation of p(z, z),
considered as a function of one variable, but only if the premiss
(Ez)p(x, x) is valid. If this premiss were not valid, the conclusion
would be senseless.

More generally we prove in the same way:

10.120 If @z, @y, .. . @y, Yoo Ys - - -» Ym IS the sequence of free
variables of p, then

~P(, By B Yo Yo - - > Ym) (EZ)P(@, Ty B Yo Y1 - - 5 Ym)
P2 % Yo Y e e o Ym) >R FH T

~Y =
1020 ——
zHy
Proof. _ai_gu A5.0
YH2 03
z 3y
1021 ~THY
T=y
Proof. 3 50 As0
~edy (Bw)udky oo
L MHYUHT gy
z=19Y '
1022 ——9Y

Nm:ﬁ:y
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Proof. u 3 v¥*
2 Huve o =Y p9.0, 4.2
zHuvy Ho - =
u#v»uvu#wvv#yDlo
~zHy

A9.2

A3.4, A9.3

3y

Nw'_—y

Proof.  rFy A9.9
ufevu Hy u = v* IH#

A9.0, 4.2 — 9.10
uHFavo iy J= AS.4

U=0—>,,U #wvv:ﬁ:me
Nwzy

10.23

plz) 3~p
~ ~p(2)

Proof. Suppose that p contains only one free variable.

~p(y)*
PU* Do
PR) =2 H#yY P) o
zHy © 3
~py) > 2 Hy
~~p(z)

If the number of free variables of p is more than one, the proof

is similar.

10.40

~P A4
A9.3, D10

3~
10.41 _ST_p Proof. D10, A3.3, 7.10.
P
3~
10.42 3 p Proof. 10.41, 10.40, 5.0.
~~p
3.~
10.43 v =P Proof. 7.3, 10.40, 10.41, A3.4.

P ~ps ~~P

~q 3
10.50 If 2, then u

q ~p
Proof. Suppose x is the only free variable of p and of g¢.
~q( 3
@) e P aga, A6l
9y) >,y He PY) >4 9) ;o

PY) >vy F2p

~p(z)
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The proof is analogous, if p and ¢ contain more than one, but
the same free variables.

Suppose that p and ¢ do not contain the same free variables.
E.g., the free variables of p are # and y, of ¢ 2 and 2. Then we
define

P'=uyPVZ:=23
9 =auqVvy=y.

Now first we prove p_/ (9.1). Therefore . And from this we
q

Ip

~q
prove (10.100, 10.110).

10.50 remains valid, if a premiss is added, that does not contain
a free variable that is free in p or q.

P>y g Tps~q

~q >y ~P

10.51

Proof. Similar.

3
10.52 If L, then u
Proof. Suppose z is the only free variable of p and of gq.
*
( TENEZIN
-
; 9(y) - 9Y) > Y A3.0
P ( = YHT ps.4
—
P) >y Hz oo
~p(y)

Further similar to the proof of 10.50.

10.52 remains valid, if a premiss is added, that does not contain
a free variable that is free in p or gq.
P s ~q
q —>ps ~P
Proof. A38.8, 10.42, 10.51, 10.43, 38.20.
(vs).pvg Fy~p

10.53

10.60
~P o
Proof. .
roof. (vs).pvyq A5.0 ,
\V ~Y
pve P~ A10.0 ;
2 vw P A3.4

~P > q
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10610 )PV~

~~q _)US p

Proof. A3.2, 4.02, 10.42, 10.60.
(vs) .pv ~q
q 903 p
Proof. A3.2, 4.02, 10.610, 10.43, 3.20.

10.611

~pv~q 3.pag
~.PAg

10.70

Proof. - ~p_3-PAT 401 10.50

~.PAG
Further 8.801, 4.100.
~pve

10.71 -
Np A Nq

Proof. Let p and g contain one free variable; the free variable
of p is the same as the free variable of g.

( ):'pvq D10, A3.3, 4.00
~ ., PV
PYI” 29 x40 P D10, A8.3, As.2
~.pvgq Dmp(y)vq(y) dp A3.4
PyVe(y) >, yHz PY) > PHNVIY) o
p(y)—>,yHez D1o

~p(z)

Further a similar derivation of ~g(z), and A2.0.
The proof is analogous in the other cases (cf. the proof of 10.50).

1072 _—PA™1
~ .pVvyq
Proof. (1 I~p I~
roof. (1) pvq p q10.40, 4.2 3
ANV S . I~ ~
d 1 P2 10.70
~, Np A ~q
~pA~g ~p/\~qA3'2’ 3.42,
3 3 10.41
~ ~Qq ~ ~ ~APAS

PA~G PN p 39,842 P ? 401 _TPA Az

~pa~q T ~p I ~q 3.pvq  d~pr~g
~.pvq

(1), 1
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~.PAqg P
~q
Proof. Let x be the only free variable of p and of g.
~.p()rq(z)
Nz yHaevete  ple) g=)* . 3%

3 A9.2, A3.4,D10 D10,A3.3,

r3avzite ~aH A10.0 M)a,zm, A6.1
A3.4

10.8

P (Ez)q(2)

The proof is similar if p and ¢ contain more or different free
variables.

~NY=TAZ=2a

y#w\}z Ha

10.80
Proof.

~Y=TAZ=T

D1o 8.3
I=UANV=w—> L FYyvuttavodzvw e tzw/\v:w*Ag’o 14 A9.2
3 @ vetFevatzvatae T~
p + 9.1,5.1,6.01 Yy i i :H:# o P i Al10.0
=TLAV=0 rvzHa
b y A3.4 - — 9.1
l=xAv=0 >, yHrviHta wzmAw=w83

yHaevite
This theorem is not in conflict with intuitionism. It merely
shows that in negationless intuitionistic mathematics y = @ A 3=2
can only be “negated” in those cases in which y #+ # vz # @ can
be proved. So the possibilities of ‘‘negating’ in this system are more
restricted than in normal intuitionism.

11. Indwidual constants.

In the application of the theory it may be possible, that indivi-
dual constants are substituted for variables. For this reason and
for other reasons, that will appear later, we enlarge the used signs
with

3. individual constants a, b, .. ..

As a metasystematical symbol for an arbitrary individual con-
stant, we shall use the letter c.
To the definition of a well-formed formula we add:
e. if p(z) is a wff and ¢ an individual constant, and p(z) is
changed into ¢ by replacing every z, that is free in p(z),
by ¢, then ¢ is a wff.
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The new wff ¢ is written p(c).
The following axioms are added.

AlLo ‘Zp(@)
p(c)
p(c)
Al1ll ——
(Ez)p(z)
Al11.2 If M, then M
q(z) q(c)
11.0 If 2 does not occur as a free variable in ¢, and M,
then M
q
Proof. All.1, 7.10.
11.1 If 2 does not occur as a free variable in ¢, and q%}) ,
then __1_’_
g(c)

Proof. 7.11, All.0.

If a wff containing an individual constant is negated, the con-
stant is treated in the same way as a free variable. So, e.g.,
~p(c) =4 P(2) > 2 Ho
~p(@, ¢, ¢) =4 p(Ys 3 u) >y vz Hcevu Fe.
A constant occurring twice is treated in the same way as two
identified free variables.

If an 3J-operator is applied on a wff containing an individual
constant, the constant has to be replaced by a free variable.
So, e.g.,

Ap(c) =4 Ip(@),
Ip(z, ¢, ¢) =4 Ip(, y, 2).

This has the following consequence. If a theorem has been
proved for wff not containing individual constants, the correspond-
ing theorem for wff containing individual constants is an imme-
diate consequence of it (by means of A11.2). Note that the 3-
premisses remain unchanged, when free variables are replaced by
individual constants in the premisses and the conclusion of a
derivation. So in proofs we are always allowed to suppose that
the wff do not contain individual constants.

Remark. If ¢, 4 c;, then f(z) v ¢; = ¢, is to be interpreted as
the class of triples (, ¢, ¢;), of which x satisfies f(z).
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Definition. If % and %, we say that p and q are equivalent,

and write p = q.
The relation = is a metasystematical relation.
11.2 If p=gq and r =s, then
pAar=gqnrs (A2.1, A2.0)
pvr=gqvs (4.2)
D —>0s T =0 =05 (A8.0, AB.8, 8.30, A3.4)
Ip = 3¢ (3.80)
(Ea)p = (Ea)q (5.0)
(@)p = (z)g (A5.1)
p(c) = gq(c) (A11.2).

From 11.2 it is seen by induction that, if P and —q—, p and q are
interchangeable. 1 p

B S RS SR

Semantical remarks.

Suppose that z is the only free variable of p(x) and of g(z). We
remember, that p(z) v ¢(x) is a propositional function determining
the sumclass of the classes determined by p(z) and g¢(z). So
p(c) v g(c) will mean, that ¢ is a member of this class. Therefore
p(c) v g(c) is not a disjunction of the propositions p(c) and g(c).
In case only one of p(c) and ¢(c) is true, p(c) and ¢(c) would not
both be a proposition and the disjunction p(c) v ¢(c), if understood
as a disjunction of propositions, would be senseless. But p(c) v ¢g(¢)
understood as one proposition and not composed out of two pro-
positions is not senseless and merely means, that ¢ belongs to the
sumclass p(z) v g(z).

There is another difficulty. Suppose that  and y are the only
free variables of p(z, y) and q(z, y). How is p(a, ¢) v q(, ¢) to be
understood? Again it does not mean the disjunction of p(z, ¢) and
g(z, c). For it is possible, that there exists no # for which, e.g.,
p(x, ¢) holds. And then p(z, ¢) is not a propositional function. So
we should not be able to form p(z, ¢) v ¢(x, ¢) as soon as one of the
two does not represent a class that is not empty.

Therefore we choose a different interpretation, that is closely
connected with the interpretation of p(c) v ¢(c). The propositional
function p(z, y) v ¢(z, y) determines a class of pairs (z, y). Now
we decide, that p(z, ¢) v ¢q(z, ¢) determines the subclass of those
pairs of which y is the individual constant c. This interpretation is
independent of the existence of the functions p(2, c) and g¢(z, c)
separately.
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E.g., # £ 0 in the theory of whole numbers is equivalent with
x < O0va > 0. The proposition 130 is true. Therefore the
proposition 1 <0v1 >0 is true too, though 1 < 0 separately
is not a proposition.

And Ia] + ] yI is equivalent with 2?2 <y?va? > y% So
22 < 0 v 22 > 0 determines the class of those @ that are 3 0. But
% < 0 separately is not a propositional function.

This causes some difficulties. The meaning of 2 < O0va® >0
depends on 0 being or not being obtained by substitution in a
preceding formula. In the former case it is sensible, in the latter
senseless. We decide, that every individual constant appearing
explicitly in a formula is supposed to be introduced by substitution
for a free variable. In the next section we shall see how it will be
possible to construct propositional functions in which individual
constants occur implicitly that are not supposed to be introduced
by substitution.

12. Note about definitions.

We mentioned in section 10, that after identifying two (or
more) free variables of a wff, we would formally treat the wff as a
wif with the original number of free variables. Under certain cir-
cumstances it is preferable to treat a wff with identified variables
as a wff with a reduced number of variables. This is done by
means of a definition. In case, e.g., we want to treat p(z, z) as a
wif with a reduced number of variables, we define:

q(@) =4 p(a, ).
The identified variables of p, that are to be treated as one variable
of ¢, should be mentioned explicitly between the brackets after p

and ¢ in the definition.
We will allow a definition of this kind only in case

(Ez)p(a, )

has been derived (to avoid the construction of empty classes).

~q(z)
A12.0 If = , &), then —————.
4(2) =ur Pl @) then ~EE
12.0 If ¢(xz) =4 pla, @), then ¢(x) and p(x, x) are inter-
changeable.
P . 1 ~ ) E ’
roof. (1) ~pla,2) (E)p(e,a)
~q(@)
(2) ~q()

Al2.0

~p(, )
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(8) [Bp(x, 2)] (Ez)p(z, 2)

def 3
Aq(z)
(4) [3q(z)] (Ez)p(a, w)6 o1
Ip(z, z) '

As the only formal difference between ¢(z) and p(z, ) is, that
they are to be treated in different ways when the ~- or 3-operator
is applied and as it has been supposed that (Ez)p(z, ) has been
derived, they are interchangeable (11.2).

We mentioned in section 11, that after replacing a free variable
by an individual constant, we would formally treat the wff as a
wff with a free variable instead of the constant. Under certain cir-
cumstances it is preferable to treat a wff, after replacing a free
variable by a constant, formally as a wff with a reduced number
of variables. This is done again by means of a definition. In case,
e.g., p(z, ¢) has been formed from p(z, y) and we want to treat
p(z, ¢) formally as a wff with one free variable less than p(z, y),
we define:

q(z) =4 p(a, c).
¢ should be mentioned in the definition explicitly between the
brackets after p and not between those after q.
We will allow a definition of this kind only in case

(Ez)p(a, c)
has been derived.
~q(z)
21 If = , ¢), then ———.
Al 9@) = P(a o), then —0 T
12.1 If q(z) =4 p(x, ¢), then ¢(z) and p(z, ¢) are inter-
changeable.
Froet- @) ) Np(w:ﬁ:c.lvz He D10 (y, ¢)* I3
P2) >y S ave e Py ©) 8.3,A11.2 i A9.2, Al11.2
~cHe
Ex)p( Y A10.0
(E2)p(@, o) EXIV
¢
Py ) >y dra oo
~q(z)
2 ~
(2) ——-—qﬂ Al2.1
~p(z, ¢)

(8) [3Ip(=, ¢)] (Ez)p(a, c)

def 3
dq(z)
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(4) [Bg(=)] (Ez)p(w, c)

All.1, def 3
Ip(, o) ¢

Further 11.2.

In the same way as an individual constant is formally sup-
pressed, we can formally suppress a free variable. This is done by
means of a definition of the kind:

p(@) =4 q(, y).
We will allow a definition of this kind only in case

(Ez)p(z, y)
has been derived.

A122  If g() =, p(z, y), then 1)
~p(z, y)
12.2 If g(z) =, p(2, y), then ¢(2) and p(x, y) are inter-

changeable.

Proof. Similar to that of 12.1.

Remark. The axioms .\12.0—2 seem to be suspect from an intuitionistic point
of view. In an informal way we can show this. Suppose that q(x) =4 p(a, 2)
and that ~v q(x) has been derived. Then q(y) implies y 4 v. From this it is scen
that p(y, z) will imply the impossibility of y = & Az = x. But it seems intuitionis-
tically not allowed to derive y # @V z 3 « from this impossibility. So it seems
not to be allowed to derive ~ p(x, ¥) from~ q(x). That this argument is wrong
is shown by the theorem 10.80.

III. Propositional functions of higher level

13. We will enlarge our formalism with functions of proposi-
tional functions. The variables introduced up to now we shall call
variables of level 0, the wff we shall call wff of level 0. The new
functions will be called wff of level 1. Besides the variables of
level 0, that stand for an arbitrary individual constant, we shall
introduce variables of level 1, that stand for an arbitrary wff of
level 0. We shall first formulate these expositions more precisely

To the signs of our system we add:
4. variabels of level 1 f, g,...,
5. wvq.

In the following definition v stand for a variable of level 0,
v, and v, for a variable of level 1, vs for a sequence of variables of
level 0, vs, for a sequence of variables of level 1 and (or) 0.

Definition by induction of a well-formed formula of level 1 (wff,):
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a. every wif is a wif,,

b. v, and v,(vs) are wif,,

c. if p, and ¢, are wff;, then p, A ¢, and p, v q, are wff,

d. if p, and ¢, are wif;, then p, —>,, ¢, is a wif;,

e. if p, is a wff;, then (Ev)p;, (v)py, (Evl )p, and (vy)p, are wify,
f- if p, is a wff, and p, contains a free v, then ~p, is a wff;. 1)
An arbitrary wif, will be written p;, ¢;, . . .. If we want to ex-

press that, e.g., p; contains some free variables, we will write these
variables between brackets behind p,. Again this does not mean
that these variables are the only free variables occurring in p,.

P @15 - - - do not belong to the system itself, but to the meta-
system.

From the preceding axioms concerning wff (excepted A9.0—3,
A10, A10.0 and A11.0—2, that will be considered later) axzioms con-
cerning wff, can be formed in the following way.

The signs standing for arbitrary wff (p, q, ...) are replaced by
signs standing for arbitrary wff, (p;, q1, - - .). A variable of level 0
may remain unchanged but may also be replaced by a variable of
level 1. Equal signs are replaced by equal signs, different signs by
different signs.

In the axioms A4.0, A4.2 and A4.4 the sign I binds only the free
variables of level 0.

In the axioms A6.0 and A6.1 the variables # and y must both
remain unchanged or must both be replaced by variables of level 1.

Constants of level 1 and variables of level 1.

On the level 1 the wff (of level 0) play the same role as the
individual constants on the level 0. Therefore we call an individual
constant a constant of level 0 and a wff a constant of level 1.

We discern two kinds of variables of level 1, variables standing
alone, e.g., f, and variables with a sequence of variables of level 0
between brackets put behind it, e.g., f(, ¥, 2). The intention of the
use of these two different kinds is, that for the variable f may be
substituted an arbitrary wff and for f(z, y, z) only an arbitrary
wif with free variables #, ¥ and z and no other free variables.

A derivation of a wff, that contains a free variable v,, should be
valid if for v, an arbitrary wff is substituted. The wff, f does not
contain a free variable of level 0. So by means of 7.00 we would

(Ez)f

be able to prove . This would not fulfil our purpose, as it is

1) As, e.g., ~f is a wff;, the sign ~ cannot be eliminated by D10 from
every wff; any more.
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not allowed here to substitute a wff containing the free variable x
for f. To avoid this consequence, we state the following rule.

Rule. A part of a wff; consisting of a free variable v, (without
variables of level 0 between brackets put behind) should not be
treated as not containing some free variable of level 0.

For similar reasons we state the rule:

Rule. A part v,(vs) of a wff; should be treated as containing all
variables of vs free and containing no variables of level 0 free that
do not belong to wvs.

In accordance with these rules A11.0—2 are transformed into:

Al11.0 (@)pr(x) (f)pa(f) I

pi(e) © pu(p)
A1l Pa(e) P1(p) Pa(p(vs))
(Ez)py(x) (Ef)pL(f) (Ef)pai(f(vs))
vs is the sequence of free variables of p.
Atnz  1f PO e P20
0:(2) g1 (¢)
.o Pa(f) Pi(p)
f ) h )
) rhen 0 (P)

, then .
1(f (vs)) 1(p(vs))
vs is the sequence of free variables of p.

0 (
L BlE) L pp(s)

The following theorem is a special case of 8.3.

P1(f(v8)) = 2 (f(vs))  pa(p(vs))
0:(p(vs))
vs is the sequence of free variables of p.

Proof. A38.0, All.2.

13.0

Negation and existentional operator.

The existentional operator may bind all variables of level 0 or
all variables of level 1. So we will have to discern between two
kinds of existentional operators. The 3J-operator binding all
variables of level 0 we shall write 3, as we used to do, and the
J-operator binding all variables of level 1 we shall write 3,. So,
e.g., 3f(z) means (Ez)f(z) and 3I,f(x) means (Ef)f(z).

In the same way we discern between ~ operating on all varia-
bles of level 0, and ~, operating on all variables of level 1. So,
e.g., ~f(z) means f(y) —, y # @, and ~f(z) means g(z) —, g #: f
(for the meaning of 4, see below).
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The rules of section 11 concerning the application of the ~-
and the J-operator on wff containing constants of level 0 are
transformed into rules concerning the application of the ~;- and
the 3,-operator on wff; containing constants of level 1.

So, e.g., (for v, see below)

~LeP e~ =g e~ D [P VI8 FRg
3,.p > ~q =4 (Ef)(EQ) . [ >, ~8
There is some ambiguity in these conventions. E.g., (z)(Ey)z=y
is a wff. But it has two parts that are also wff, viz., (Ey)r = y and
z = y. And so 3,(z)(Ey)r = y might mean (Ef)f, (Ef)(z)f and
(Ef)(z)(Ey)f. So if we apply the ~,- or the 3;-operator to a wff,
containing constants of level 1, it should be known by what kind
of substitution the wff, has been obtained from a wff, containing
no constants of level 1. In the given example we should have to
discern between:
/ (subst. (2){Ey)x = y for f),
(z)f (subst. (Ey)x = y for f),
() (Ey)f (subst. z = y for f).

As these difficulties can be avoided in the present paper, we will,
merely for the sake of simplicity, not complicate our symbolism
in this way. The following practical rule will be sufficient.

If in p, occur p, ¢, 7, ..., we can transform p, into p,’ by replacing
P, q,7s...by f, g h,... respectively (f, g, k, . . . must not oceur in
P1)- Then it will in this paper tacitly be assumed that p, has been
obtained from p,’ by substitution of p, ¢, 7, ... for f, g, h, .. .. So,

e.g., 3,(z)(Ey)p will mean (Ef)(z)(Ey)f.
Disjunction of propositional functions of level 1.

Suppose that p,(f) and ¢,(f) are two wff;, for which 3,p,(f) and
3,4.(f) have been derived. Then they represent two classes of
classes, that are not empty. So we can form the sumeclass p,(f) v
¢1(f). Suppose further that p(z) satisfies p,(f) (so p,(p(z))). Then
p(x) will also satify the sumclass, so p,(p(z)) v ¢;(p(z)). From
this result we would be able to derive by means of A8.2 and 4.00:
3¢:(p(z)). But that should not be a consequence of the two
suppositions that have been made.

If we interpret p,(p(z)) v ¢;(p(x)) as: p belongs to the sumclass
of py(f) and ¢,(f), it cannot be followed that 3¢,(p(z)).

But if we interpret p,(p(z)) v ¢,(p(x)) as: x belongs to the sum-
class of p,(p(z)) and ¢,(p(z)), then the derivation of 3Iq,(p(z))
should be allowed.
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From this example it is seen that we will have to discern between
a disjunction of two classes and a disjunction of two classes of
classes. For the first kind of disjunction was used the sign v. For
the disjunction of two classes of classes we will use the sign v,.

To the definition of a wiff, is added:

g. if p, and ¢, are wff,, then p, v, ¢, is a wiff}.

The axioms about v; can be formed from the axioms about v
(A4.0—4 and A10.0) by replacing v by v,, 3 by 3, and ~ by ~,.
(A10 is a special case of A10.0 and may be cancelled.) In the
definition of ~; in D10 v should be replaced by v,, # by ;.

In the same way the theorems of level 0 can be transformed into
theorems of level 1. The transformed theorems are quoted by the
same numbers as the original ones.

The relations =, and .

The theory of = and 3 could be translated into the language of
level 1, if we would accept the translation of the axioms A9.0—3.
This translation is:

Ago P =14 P1(p)
P1(9)
A9.1 pIaf—orqdnf
q=1p
A9.2 _PHe
r¥,pvr 9
A9z P4
qFp

We mentioned already that the former axiom A9.1 was suspect
from an intuitionistic point of view. On the level 1 the axiom is
still more suspect. We will not accept it. If A9.1 is rejected the
theorems 9.1 and 9.3 and all theorems derived from these disappear
also, and besides 10.21 disappears. That is too much. The theorems

34,

M =t

9.3 P =19
q=1pP

cannot be dispensed with. So we will have to keep 9.1 and 9.8
instead of A9.1. Then the whole theory of = and # would be saved
with the exception of A9.1 itself and the theorem 10.21.
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The meaning of p =, ¢ is: any object or sequence of objects that
satisfies p will satisfy ¢, and vice versa. So we define:

D180 py=1¢1 =arP10sT1-N- Q1 0s P2
vs is the sequence of free variables of level 0 of p, and ¢;.

From this definition A9.0 (for =,) can be derived by induction
with respect to the structure of p,.

Further from D138.Q and 8.00 is derived

, which plays
P=1P

the same role in deductions as 9.1. The theorem 9.3 is an imme-

diate consequence of D13.0.

The meaning of p #, ¢ is: there exists an object that satisfies p
and does not satisfy ¢ (i.e., is different from all objects that satisfy
q), or satisfies ¢ and does not satisfy p. So we define:

D181 py#qi=o 3. PiA~GVI T ~PIAG

Note that it is not allowed to replace in this definition v, by v.
For if we write v instead of v,, we are able to derive 3 ~p from
P 3.1 ¢ (4.02, 8.42). This consequence might be mistaken, e.g., if
p is the class 2 = 2. But if we write v, and apply 4.02, we do not
find 33 . ~p A g (which is identical with 3. ~p A g) but 3,3.
~p A ¢. And as p and ¢ are constants of level 1 substituted in a
function of level 1, 3,3.~pAgq is the same as 3,3 .~fAg.

A9.8 is a consequence of D13.1; A9.2 will be proved later (13.92).
d.ppra~g 3.~pirg

pia S ptha
Proof. A(z) =g4x=a, Flz) =42 ta

13.10

(1) I 9.1, A11.0 i - A9.2, A8.4,D10,7.11, A11.0
a=a ~a Ha
(Ez).x =an~z $a All1
- def A(z), F(z)
3. A(xz) A ~F(x)
All.l
3,3.fa~g
(2) ——3#— similar
31 3 . Nf A g

Further (1), (2), A4.0, D13.1.

3. f@)r~g(@) 3. ~f(z)Ag(z)
H(z) 41 g(x) ° f(@) 4 g(z)

Proof. Similar.

13.11
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13.20 3
' (Ef).p =11
Proof. 9.1, All.1.
3
13.21 ———#—
(Ef) 3pos ~f(2)
Proof. A(z) =4 « = a (x belongs to vs.)
3
E—# 9.0, Al11.0
—é——%)w—:tii 10.28, 5.0, A11.2
(B2) ~2 =& 4 ¢ A(z), AB.2
3,, ~A(2)
——— All.1
(Ef) ,s~f()
3
13.22 *

(Ef) (Eg) 3, - f A8

Proof. By means of 4,(x) =4, @ =a and A4,(@) =4,z = a.

I I
(Ef) (Eg)3.fr~g (Ef)(Eg)3.~fnrg

Proof. By means of A(2) =4, & = a and B(x) =, 2 # a.

13.23

E
13.230 - —»f
(Ef) 3y . ~fAp

Proof. C(z) =4ty

/ E|
N D10, A9.2, A2.0 v P (1), 8.80
~C(y)rp B - ~CEADP 4111
(Ef) avs' Npr
3
18.231 Ekid
31:‘H:1
Proof. 18.28, 1.01, D13.1.
A4 A4

13.24

(Ef)(vs)f” (Ef)(@)f(z)
Proof. By means of D(z) =4 @ = a.

34

B2 By @@
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Proof.

18.26

Proof.

13.27

Proof.

13.28
Proof.

13.280

Proof.
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F(z) =42 Ha

(@)f(@)* 34
A1l.0 ———D
(oM NF(a)All;).l
___Eli:i:—__ 3. f(z) A~ F(x) A
Eei@ o™ i@
@)/(@) >, /@) 31 (@)
~(@)F ()

(Ef) ~(@)f(=)

34
(Ef)(Eg) 3,, ~ .fV g

3
* A9.2, D10

~EHT a0

D1o
11.1

~zxHan~zHa

10.42, 10.40
10.72

A3.2

All.l

~A~ AL :ﬁ: BN~~~ :ﬁ:w

~.~~g HFaev~~ae e

o~~~ Hrv~~z Ha

(Ef)(Eg) 31;3 ~. f vE

A%
(Ef) ~1 avs Nf

D) =42 =2

31}3 Ng(w)* <
3 3 D(w) . (w) 9.1, 5.22
o AH gy 8% 1 3,18.11,A11.2
(Eg) avs Ng(w) g(w) 1 D(w) A8.4
avs Ng(w) —>a g(ﬂ’!) :H:l D(w)
~1 Elv.s ND(w)

(Ef) ~1 3vs Nf

D1o
Alll

ki
(ENf(2)
By means of D(z) =4 ¢ = .

34

(Ef) ~f(z)
By means of G(y) =4 = H y.
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~f(x)
10,281 o
Proof. ~f(z) g(x)*
3. ~f@)ngl@), IH
g@) /@) T (B
8@) >, @) /@)
13.29 G

(Ef)(Ez) . f(x) 2 Hy
Proof. By means of C(z) =4z $y.

The theorems 13.20—18.29 can be proved for variables of level
1 with a prescribed number of variables put behind it between
brackets (so for f(vs)).

(©s)p 3, ~¢

18.30
P Hiq
Proof. (1
roof. (1) (o s
1 7 A2.0 va P 7w 1) 7.0, 7.8
~Y . N ~,
PA™ ase PA™ 1310

3vs'p/\~q p:ﬁ:lq

18.40 (vs)p

~1 avs ~p
Proof. 18.80, 13.21, A3.4, D1o.
:131)3 NP
(vs)p
Proof. H(z) =4, =y.

(1) H(@) ~f(z)

13.41

(2) 3. H(z) A ~f(=)

——— "7 A9, .
~/@) 9.0 i) (1), 7.10
(8) ~H(z) f(x) (4) 3. ~H(z) A f(z)
(Ez) . f(x)nadty 10.20, A8.2 (Ez).f(x)rx Hy (8), 7.10
(6) ~fy) (6) 33
—7_ A3 R Py
3 ~f(z) 52 flx)=,H(z) (E=z) NH(w)ig.O

(Ez) ~f(z)
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(7) I3

9.11
1H(z)

— 23,00, D18.0
H@)=H@) 4y,
~1(Ex)~f(x) (Ef)-f(w)=1H(””)(6) 10.50
~f@=H@ ) o T 3

S — )} }: }

I o0 g=,H(x)—~>,g3:/(2) H(w)=1H(w)8;30

~ 0 L 3 (e) H(z):/(2) '

)~1(y) 1 (5), 10.50 (2), (4), 18,280, 18.29, A4.(
~1~f(y) ~f(y)vi(Ex).[(z) 2ty A10.0 4.10, D13.

(E2) - f@) na Hy
(7) allows us to define h(z) =4 f(z) Az H y.

(8) _~3~f@) ~h@) oo
(Ea).f@)ratey  ~.J@natky oo
¥ Do agg (B AFHUTsdkevUity f@) wiewr
w PIBVUIY A10.0 Bk P
uty (Eu)w:l:t:uA3
w_____#u—»uu#yA&l
f@)  2=Y,99
1Y)

4

(9) ~y(Ez) ~f()

) (7), def b

def h, A8.4, D10
~1(Ez)~f(z)

~(E2) ~f@) [ o ~h(y)
Dio A3.2 3.30, 13.23, 10.50
~g—pgdhal®) I~h@) I(e) ~3-g@)A~i@) )

h(z) #, f(z) ~3. k@) n ~f() D13.1, A10.0
3. ~h(z) A f(2) o

1)
Further (9), 7.11, A6.1.

In a similar way we prove for arbitrary sequences vs and vs’:

(8), 7.10

~13uy ~f(05)
(vs)f(vs')
(In the definition of H(z) for y a variable is chosen that does not
belong to ws or to vs'.)

18.41 is then followed by means of A11.2. (If some of the free
variables of p are equal, the equal variables are replaced by differ-

1) ~, should here only be applied to f and not to the constant H.
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ent variables that do not belong to vs and do not occur in p. In vs
the same changes are made. pis then transformed into a formula p’.
The constants of level 0 of p’ are replaced by variables that do not
belong to vs and do not occur in p’. Now A11.2 (level 1) is applied
and then A11.2 (level 0), A6.0 and A6.1.)

18.42 P Twsq
~1 avs . p A Nq
Proof. (1) P P>ud A3.0
9~ s
3.9A~f
.. ~f* ! ;
= pa/\ f ’;—m 7 1), 7.10 p :”’ 7 As3
LG A~
92> 4510 vsP 18.230
q#lf (Ef)avs'pANfA34
g -PA~f. =>4 #1f1011
~1 31).9 i p A Nq
1848 P m™1
~1 Jys pl\q
Proof. g
roof. ; —%; > 18.42 (proved for f and g similarly)
~ . N~
17 g A3.3, 10.40, 3.30, 13.22, 10.50
~1 avs . f nNg

Further Al1.2.
~p g s ~q

18.5 (cf. 18.80)
(vs).pvyq
Proof. 1, ~
f _Jee ™8 10.43
~f 08 8w ~~% 2 50
~T — ~NNY
f = £ 13.43 (proof)
~1 3vs . Nf/\ Ng
3 ; 10.71, .80, 13.26, 10.50
~ ~.fVv
1~ TVE 18.41
(vs).fvg
Further Al1.2.
~Y —_> 3 ~y
18.50 P7wd Zoe™4 Proof. 18.5, 10.60.
Nq _>vs p
1, ~p
18351 — O Proof. 8.00, 10.42, 13.50.
~P s P
1852 P Proof. A8.2, 10.41, 13.51, A3.0.

p
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1858 =P Proof. 18.51, 18.5, A5.0.

pv~p

This is a striking result. It should be noticed that 18.58 is not
exactly the law of excluded middle. It is not necessary to interpret
() . p v q as: for every z it is decidable whether  belongs to p or
to ¢q. Even in negationless logic this formulation would not be
allowable, as we can only say, that ‘@ belongs to p” or ““z belongs
to ¢’ if both these propasitions are right. For this reason Griss
chooses a different interpretation of the disjunction. He says:
“La disjonction n’affirme rien d’un cas déterminé (particulier),
mais elle nous donne la possibilité de démontrer un théoréme pour
tous les éléments d’un ensemble V' en démontrant ce théoreme
pour les éléments de deux especes dont la réunion est identique a
V. 1) So 18.58 should be interpreted: if it can be shown that every
element of p belongs to ¢ and every element of ~p belongs to g,
then for any @ it can be proved that x belongs to gq.

From a (normal) intuitionistic point of view there might be
elements from which it is not decidable whether they belong to p
or to ~p. According to 13.58 such an element would still belong to
p v ~p. So there might be objects that belong to a sumeclass and
for which it is not decidable to which of the two components of the
sumeclass they belong. Even this result is unacceptable for intui-
tionistic disjunction. So, if 18.58 is maintained, the disjunction
of the present system would be essentially different from the
intuitionistic disjunction.

18.54 If _"_‘F_’, then :?___i:’?

q p
Proof. 10.50, 13.52.

~ J~
18.55 If P, then 1P,
~q

Proof. 10.52, 13.52.

18.54—55 remain valid, if (twice) a premiss is added, that does
not contain a free variable that is free in p or g¢.

~.pAqg J.~pv~yq

13.6
~p v ~q
Proof. (1) ~ .~ ~
A Rakiad Adad P
~ A N\ S
TP A 550

pAgq

1) G.F.C. Griss, Logique des mathématiques intuitionistes sans négation.
Comptes rendus des séances de I’Ac. des Sc., t. 227 (1948), p. 947.
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1. ~pv~0 3-~PV™4 415 400

10.40, 3.300

~.pAg
—— A8.2,10.41
1.pAgq I~p 1~q

3 . ~~p/\ ~~q

3 10.72, 3.30

~ .PDA ~ . ~DP NV ~

pre pY ™1 (1), 10.50, 18.52

~pv~q

3, ~

13.70 w P Proof. 13.40, 18.24, 10.52; further A11.2.
~y(vs)p
~~1\08

13.71 3‘( P Proof. 13.41, 18.27, 13.54; further A11.2.

s Np

10.70—72 and 13.6 state a relation between conjunction and
disjunction that reminds of the two-valued logic. The same can
be said of 13.40—41 and 13.70—71 with respect to the all- and
existence-operators.

Ip
138  — S
E]vs NP Vl (I)S)p
Proof. |
" (os)1* (E]) . @y
227 183.m AN A s A5.0, 18.24, 10.50, 8.¢
- Wy (EN~(es)f 'yr
) ~y3ye ~f ~ 3,5 ~ '
f) 1-vs f 3 l(vs)f '_>f vs J 18.5
(1) - @3 V2 ou~1 P i1t
(’US)p Vl avs ~p
18.80 P Twd
(vs).pvyq
Proof. By means of 13.5 and 13.8 (applied to g).
. 3
13.90 P14 r
P TV FT
Proof. 3 ~
roof (1) :ﬁ:—— 13.231 7" A3.2,18.10
dp H 7 q FHar A4.0
p A rvig T
3 ~
(2) ~3 i 13.231 P = TA3.2, 13.10
7
19 Far P F1 A4.0
pirvig
3 3~ 3 E|
(3) r 13.53 i i 1)
p ~q rVv-~rT 3,.pAa~qgAar ;. pA~gA~T

4.1

P H1rviq Far

1) Proof by mcans of an example.
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Further (8), 7.10, 4.100, D13.1.

pihg  (vs)r
pHarviq Far
Proof. Similar, using 5.22.
pihg I
p¥HirVvig Fhur
Proof. 18.90, 138.91, 13.8, 4.100.
The theorem 13.92 replaces the axiom A9.2.

13.91

13.92

14. Correspondence between the present system and the system of
Hilbert and Ackermann.

We shall show in this section, that the structural difference
between the present system and the ordinary two-valued logic is
caused only by the existentional conditions and not by the lack of
real negation.

Therefore we construct a new system of axioms that are gener-
ated from our system by canceling the existence-conditions. So in
the axioms A8.4, A4.0, A4.3, A4.4, A11.0 (in section 13) these
conditions are dropped and are further canceled the axioms A3.3,
A4.2. In the derived theorems the existentional conditions have to
be dropped, too.

We now compose the following transformation between this
system (the system N) and the system of Hilbert and Ackermann?!)
(the system HA).

system HA system N
pvyeq PVvyq

p ~p

p&q PAQ

p—~>q ~pVvq
(Ex)f(z) (Ex)f(z)
(@)f(z) (x)f(z)

(2) . f(@) — g(x) Hz) =, g(x)

A similar correspondence transforms p —,, g. Furthermore “p is
3
provable’” in HA corresponds with — in N. The sign 3 indicates,

that the premiss is empty. This correspondence is not unam-
biguous. It will be shown, that if two transformations of a formula
can be made, it does not matter which of the two is chosen.

1) D. HiBerT and W. AckeErMANN, Grundziige der theoretischen Logik, New
York 1946, p. 23, 56, 57.
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THEOREM 14.0. The system HA transformed according to the
above rules becomes part of the system N.

Proof. The axioms of HA are:

1. pvp—>p
2. p—>pvyg
3. pvg—>qvyp
4. p—>q.—>.rvp—>rvqg
5. (x)f(z) > f(y)
6. f(y) - (Ea)f(z)
Proof of the corresponding theorems of N.
3
1. —_—
~.pVp.VDp
Proof. (1
roof. (1) pvp 2.2, 4.10
p
(1), A3.4
VP —
PYP PubP 13.51, 3.20
~N~LPVP. >
PYP-ZwP 55, A5.0
~.pVD.VD
3
2. — —
~pVv.pvyg
Proof. Similar, starting from A4.0.
3
3.

~.pvVgqg.v.qvp
Proof. Similar, starting from 2.0.
3

~NL.NPVGLVN~SLTVD VLTV

4.

Proof. s is short for the consequence.

M 2440 PP 5401072 B T Piome
y TPV A '—V%B A4.0
)T a4
S
Further (1), (2), (3), (4), 18.53, 4.100.
3
~(@)f(z) v f(y)

Proof. A5.0, A6.0. Further similar to the proof of 1.
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3
~f(y) v (Ez)f(z)
Proof. A8.2, A6.1. Further similar to the proof of 1.
The HA-rules:
1. if p and p —» ¢, then g,
2. if p - f(#) and p does not contain z, then p — (z)f(2),
8. if f() > p and p does not contain z, then (Ez)f(z) — p,
are transformed into the Yollowing theorems of N.

3
1. If % and , then i

~pvyg q
Proof. 10.40, A10.0.

6.

2. If —————— and p does not contain z as a free variable,
~p v f(z)
3
hen — —
B v @@,
Proof. (1) 3 (2) 14
_z (1), 7.11
p ~pVi() (2)f(2)
e A10. — A4,
@ Y Sy @i
@) _~P___ p40

~p v (z)f(2)
Further (2), (8), 18.53, 4.10.

3. If ———— and p does not contain z as a free variable,
~f@)vp
3
then —————.
~(Ez)f(z)vp
Proof. (1 3 2) (E
o (@) E2)@
~f(z)v
flw) ~f@)vp A10.0
p

Further A8.4, 13.51, 3.20, 13.5, A5.0 (similar to the proof of the
theorem of N corresponding to the first axiom of HA).

The system HA is further based on the definitions

p&q=4pvgand p>qg=,pvy
In the system N holds:

————— 10.40, 10.72
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~,~pv~q

pArg
p —¢q and P v q have the same transform.

10.71, 13.52

And further it can be proved in N, that, if %and %, p and g are

interchangeable (11.2).
This interchangeability corresponds with a definition in HA.
The two transformations of (z).f(z) — g(z) to (2).~f(z)v
g(z) and to f(x) —, g(z) give interchangeable results (10.611, 13.5).

We shall now compose a transformation of the system N into the
system HA. The rules mentioned at the beginning of this section
are not sufficient, as there are no transformation-rules for the
signs = and #. We shall first try to find wff, that are interchange-
able with = y and  # y within the system N.

1. « =y is interchangeable with f(z) —, f(y).

Proof. =
roof- _T=Y_ g0, A3
Hz) = 1(y)
— ok
@) 1) 2=z
_ ¥Y=r A3.4
=23 >,Y=23
e L
Y . A9.1
=y
2. « H#y is interchangeable with ~z =y, and so with

~ - f(®) = (y)-
Proof. 10.20, 10.23.
In according with this we transform

z =y into (f). f(x) > f(y),.
z 3y into (f) . f(2) > f(y)-
q...
r

. We decide that we

We still have no transformation of P

shall first link the premisses by A. Then we alter the result to
3 ;

PAGA...—>T
two is provable in N, the other is too.

THEOREM 14.1. The system N (section 13 excluded) transformed
according to the rules mentioned at the beginning of this section and
thrse added in the last two paragraphs, becomes part of the system HA.

Proof. This is easily verifyable in HA.

. From A8.0 and A8.4 it is seen that, if one of the
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15. The relations between the present system and intuitionism.

We saw in the preceding section, that the present system differs
from the classical system by the addition of existentional-pre-
misses. Besides negation is defined in a different way, but this is
of no influence on the structure of the system. Therefore we might
call the system the negationless classical calculus (NC).

From an intuitionistic point of view the system NC is too large.
The theorems, that are unacceptable in intuitionism (if negation,
disjunction, implication, existence are interpreted in the intuition-
istic way), are 10.21, 13.41, 18.5—13,55, 13.6, 13.71, 13.8, 13.80,
13.90—92. What axiom is responsible for the derivation of these
theorems? It turns out to be the axiom A9.1. If this axiom is
rejected, all the above theorems disappear. But we cannot reject
this axiom without losing too much. If A9.1 is rejected the theo-
rems 9.1, 9.3 disappear, too. So we replace A9.1 by

3
Aolo F
rx =a
Aol =Y
y=uz

The new system we call the negationless intuitionistic calculus
(NI). This calculus consists of all the theorems of the present
system, with the exception of the above series of intuitionistically
unacceptable theorems.

Comparing these results with Griss 1), we see that the ‘‘negation”
in NT is something between the Griss relations #* and #f. Griss’
characterization of s is:

l. z=uwa,

2. x=y—>y=ua,

8. T=YAYy =23—>x =23,
4o 2 F#Yy—>Yy Fa,

5. x=YANYy F2—>a F=2

His characterization of 3 consists of these 5, replacing # by
H#, and

6. ady—>(a).zdave iy,

7. R).2Hfy—>acHz.>x=uy.

The negation in NI obeys 1—6, the negation in NC obeys 1—7.

1) G. F. C. Griss, Negatieloze intuitionistische wiskunde, Verslagen Ned. Akad.
v. Wetensch., Afd. Natuurkunde, LIII (1944), p. 266.
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I think there is no harm in adding 6, as 6 is in our notation equi-
34

valent with .
~x H#ax

It seems somewhat strange that a calculus has been constructed
with the pretention of being a negationless intuitionistic calculus
and that in that calculus A9.1 first has been accepted and after-
wards rejected as being intuitionistically suspect. The reason is
that Griss proved that A9.1 holds for real numbers ). So the
consequences of this axiom should hold for real numbers too.
And one of the consequences is 18.58, the formal equivalent of the
law of excluded middle. I am very astonished about this result,
but cannot solve the riddle.

16. Correspondence between the present system and the system of
Heyting.

We construct N’ from NI in the same way as we constructed
N from NC.

We state the following transformation between the system N’
and the system of Heyting (system H) 2).

system H system N’
PAgq PAgq
Pvy Pvyq
pIgq P >0
ap ~p

As far as wff without free variables are concerned the axioms of
the Heyting propositional calculus are transformed into theorems
of N'.

Proof. The transforms of the axioms 2.1—4.11 of Heyting are:

3

2.1 ——e Proof. A2.0, A8.4.

PP AP

3

2.11 _— Proof. 2.0, A3.4.

PAG —>pqd AP

3

2.12

p_)vaq' 9’l«'s"‘,/\?‘. 9QJSqA’r

Proof. A2.1, A8.0, A2.0, A8.4.

1) Lc. p. 265.

%) A. HeyTtiNG, Die formalen Regeln der intuitionistischen Logik, Sitzungs-
berichte der Preuszischen Akad. v. Wiss., 1930, math. phys. Klasse, p. 45 sqq.
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3

2.13 Proof. 38.20, A8.4.

pévaqd\'q_hn'r’ _>n'p”>m\r

3

2.14 Proof. A8.4.

q __)US M p QUJ q

3

2.15 Proof. A3.0, A3.4.

PADP >0 q - >0 q

3

3.1 Proof. A4.0, A8.4.

P>wPVY

3

3.11 _— Proof. A4.1, A8.4.

PVYq—>pqVP

3

3.12

p_>vsr'/\'q_>'vsr' _>’08'pvq_>”8r

Proof. A4.3, A3.4.
3

4.1

~P vs - P 0s 4
Proof. As ~p is senseless, if p is not obtained from a wff p(2)
containing a free variable by substituting an individual constant
¢ for x, we may write p(c) instead of p.

__~P) 1010, Al1.2
p(@) >, @ He p(c)

_eHC 40
gveHc ~c H#

8.3, Al11.2

- A9.2, A3.4, D10, A11.2
A10.0

Further A38.4.
3

Pusq NP >y~ >y ~P

4.11

Proof. p—>ed Pw~y .
P —us § A ~Q P
__g(e) A ~q(c)
gle) A qc(?tj” @ 3 08.3, All1.2 .
A3.4
P >y C e ~C #
~p

%k
8.3
10.10, A11.2

A9.2, A3.4,D10,A11.2
c
10.51, A3.0

Further A38.4.

The proof is still the same, if p or ¢ contain free variables.



258 P. G. J. Vredenduin. [55]

The axioms of N’ concerning propositions, viz. the axioms of
the sections 2, 3, 4, 10, are provable in H.

So the propositional calculi of the systems N’ and H are iso-
morphic. But this isomorphism does not hold any more, as soon as
the propositions are changed into propositional functions. In two
of the preceding proofs it was essential, that p and ¢ do not con-
tain a free variable, viz. the proofs of 2.14 and 4.1.

It is easily seen, that 2.14 is not provable any more for propo-
sitional functions. Let z be a free variable of p and ¢. Then from

E|
9P >4

would be provable
q
P—>z9

As @ is not free in p -, ¢, then

A3.0.

E
(E2)g g
P >4
This would be a theorem of N’, and so of N. But the transforma-
tion of section 14 does not give a theorem of HA. And so it cannot

be a theorem of N'.
In the same way 4.1 is rejected.

0.

17. The relations between the present system and the system of
Griss.

Griss constructed a set of axioms for negationless intuitionistic
logic. ') His axioms are:

1. Axioms concerning propositions.
21 p-o>p&p
211 p&gq—>q&p
212 (p—>q)—>(p&r—>q&r)
218 (p—>q)&(g—>7r)—>(p—>r)
216 p&q—>p

2. Rules of substitution.
1.11 From the proved formulas P and Q follows P & Q.
1.12 From P and P — Q follows Q.
1.13 From R and P — Q follows P -~ Q & R.

1) G. F. C. Griss, Logic of negationless intuitionistic mathematics, Proc. Kon.
Ned. Akad. v. \etensch. LIV (1951), p. 41—149.
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8. Axioms concerning classes.

a. axioms for the intersection.!)
121 aCa Nna
1211 ayb>anbCbnNnoa
1212 ayc &byc&aCb—->ancChbne
1218 aChb & bCc—aCc
12.16 axb >anbCa
1217 aCu
(a xb means: the product of @ and b exists; the constant u
represents the all-class.)

b. axioms for the union.
81 aCaUbd
811 aubCbua
812 aCc&bCc—-auLbdbCec
818 ayc&byc—>(aLb)ncC(anc)u (bnNec)

c¢. axioms for y and #.
51 aya
511 axb—>bya
512 axb&aCc—->byec
61 a#u&bCa—>b#u

d. axioms for the complement. 2)
412 axb&ayc&c#*u&anbCac—-ancCab
418 a#u—>(aLb)N(CaLd)CH

As the system of Griss (system G) and the present system (NI)
do not possess the same possibilities of expression, a proper trans-
lation between the two systems is impossible. But a partial trans-
lation is possible. To enable this translation we replace the axioms
2.12 and 2.18 by the following rules:

2.12" From P — Q follows P& R - Q & R.

2.18’ From P — Q and Q — R follows P — R.

The theorems 2.221—2.28 are then changed in a corresponding
way; the rest of the theorems remain unchanged. (Personally I
prefer these rules, as double-implications between propositions
are avoided by them. I have some doubt with respect to the fact
that these double-implications are in accordance with Griss’ mean-
ing of implication. 3))

1) Griss only mentions that in 12.11, 12.12 (?), 12.16 and 3.18 x-conditions
have to be added, without specializing them.

2) The %- and 7-conditions in 4.12 and 4.13 are not mentioned explicitly by Griss.

3) Cf. Griss, l.c., p. 41.
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An essential formal difference between the two systems is that
in G the letters a, b, ¢, . . . represent non-empty classes (cf. 5.1). 1)
In NI the existence of a class has to be guaranteed by a special
premiss. Further in G there is formally made a difference between
propositions and classes and in NI not. Thirdly in G there exists
only an inclusion-relation (—,, in NI) that binds all free variables.

We now shall compare G with NI1—5 (and A10.0).

The rules of translation are:

system G system NI
3
p—>q _q_P (for 3 see below)
p&gq pPAg
aChbh p > ¢q (— binds all free variables)
anb PAG
aLb pVvyg
Ta ~p
ayb dpq
aF#u I~p

p is provable
(if p is not an =
implication) p

3
p — qis provable 4

1. Transformation of the axioms of G into NI with the proofs of
the transforms. The sign 3 is introduced in NI, representing the

premiss that every class exists. This is expressed by the supple-
mentary axiom:

E|
Al7 —
p
G2l P A20

PAD

(which means: the axiom 2.1 of G is transformed into

P and this is proved in NI by A2.0; the premiss 3
pPAp
is often omitted.)
Gzr1 B2,
qnp

1} Consequently a rule should be added to G forbidding substitution of b N ¢
for a, if b y ¢ has not been proved, and of b for «, if b 7=« has not been proved.
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G2.12'

G2.18’

G2.16

G1.11

G1.12

G1.18

Gl2.1

Gl12.11

G12.12

G12.18

Gl12.16

G38.1

G38.11

G3.12

G38.18

G5.1

G5.11

G5.12
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If 2, then
q

If P and
q

P agq

3 |
If — and —,

P

q

b
.

»

PA
gnar

r
(8.81).

then P (definition of derivation).
r

3
then —— (A2.0).
PAg

3 3
If — and —2, then — (definition of derivation).
q q

3
r

P>DPAD
dpq

gAaT

A2.0, A3.4

PAGg—>qnp

Ipr [3
P —>q 3pr [3gr] 31

2.0, A3.4

2

DAT > QAT

P—>qQ.A.q—>7

8.20

p—)
dpq
PAg—>p

Pp—>pvyg

pve—>gq
P—=>T.A.qg—>1

>

3.01

A4

vp

.0, A3.4

A48

pVvg—>r

dpr

dgr

PVG.AT.>IDAT.V.QAT

3
=— Al7, 8.30

dpp
Ipq

=— 2.0, 38.30

dgp
g p

-7

dgr

A3.0, 3.300

3 3
If = and —2, then =P (A2.0).
q

A4.1, 4.01, A3.4

A4.4, A3.4(and 8.42, A4.0,
8.300 for deriving
d:pvg.ar)
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d~p q—p

G6.1 10.51, A3.3
3 ~q
Ga1p PRI~ dpr [3pg] [3~r]
PAT —> ~q
P . ~
roof PAI=> ™" 133
q~r
10.42
~NSANT —_> A~V
- Pre r10.5l
¥ ~N~F >~ L. PAQ
. —— 10.43, A3.0
? Y
9 pr A3.4
PAT—>~q
J~
G4.13 Ld

PVQg.A.~pVQG:—>q
I did not succeed in proving this theorem in NI. By
means of 4.100 are provable

I~p  3pg Ip 3~pg
and .
PV A.~pVqg:—>q PVG.A.~PVQ:—>q
This does not imply that the transforms of the conse-

quences of G4.13 are not provable in NI. On the contrary,
by far most of them are.

For the investigation of G12.17 we have to enlarge the means of
our translation. If a proposition in G contains u, we first reduce it
by replacing anu and uNa by a, and aUu and uwUa by u.
The reduced of a provable proposition is again provable in G. Then
we translate

a Cu (if a is not u) by 3p,

u Ca (if a is not ) by (vs)p (vs binds all free variables of p),
u Cu by 3,

ayu and uwya (if a is not w) by 3Ip,

uyu by 3.

Further we declare that it is forbidden to replace in a proposition
a variable by u, if (after being reduced) the proposition will then
contain as a part 7w or u # u (rule about restricted substitution

of w).

. 3 . .
Then G12.17 is transformed into Em A17. Further it is easily
p

seen that the transforms of the axioms of G, after u being substi-
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tuted for any of the variables, are all provable in NI. (A5.0 and
A5.1 are used in the proof.)

From this transformation it is seen: if a formula is provable in G
(with 2.12’ and 2.13’ instead of 2.12 and 2.18 and with the above
rule about restricted substitution of u added) its transform is
provable in NI + A17 + an axiom that is the transform of G4.13.

But the system NI 4 A17 is essentially larger than NI, as from
3 can be derived the existence of, e.g., p A ¢ and ~p. This corres-
ponds with the derivation in G of anbyanb and 7"aya
from G5.1.

If we want to restore the original system NI, we have to replace
Al7 by

A17" If p is an elementary class, i.e., a class that has not been

formed by conjunction, disjunction or negation, then
3,
p

But then the formal accordance with G is broken. To regain this
accordance we add to the system G a rule of substitution.

In the following rule P(a) stands for a proposition containing a.
If every a in P(a) is replaced by b, we write the result P(b).

Rule of substitution (rule GS). If b and a are elementary, then:

if P(a), then P(b),

if P(a), then P(buUc),

if P(a) is not an implication and P(a), then b y ¢ - P(bNc),
if P(a) is not an implication and P(a), then b 7= u — P(1b),
if P(a) > Q(a), then byc & P(bnc) — Q(bNec),

if P(a) - Q(a), then b # u & P(1b) - Q(1 b).

In the last two lines P or Q may not contain a.

Now again the system G (changed as mentioned above) + rule GS
can be transformed into a part of the system NI + A17" + the trans-
form of G4.18.

2. Transformation of NI into G.

We first transform NI into a new system NI’ that has the same
properties as the system G.
a. We discern between wif containing a free variable and wff

') As in any special case 3 can be replaced by a conjunction of the form
3p A3q A .. ., the adjunction of J does not mean an enlargement of the formalism.
In other words: 3 may be interpreted as being a sign of the metasystem.
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not containing a free variable. The former are represented by p,
g 7 ... the latter by P,Q, R, .. ..

b. -, is replaced by —, 3,, by 3.

¢. In every premiss the parts p, g, . . . are conjuncted and also
the parts P, Q,....

d. It is forbidden to conjunct p and P. (If the conclusion of a

theorem has the form p A P, the theorem should be split into two
theorems having p and P as conclusion.)

e. An axiom or theorem of the form ﬂ is replaced by il E!p‘
r p—>r
A8.4 is cancelled (as being of no use after this transformation).
J. A8.2 and A5.0 are cancelled.
g. We add the following axioms:
3.20, 3.22, 3.42,

3
Al17.0 Hﬁ (provable in NI by AZ2.0, 3.30)
pp

P 3 R 3 PAR 1
A7 I Pand T then -2 pr

P —>q r—>s dgs

P and (or) R may be dropped. (A17.1 is provable in NI
by 8.42, 8.22, A3.3.)

Now every provable theorem of NI is transformed into a prov-
able theorem of NI'. We will show by two examples in what way
the derivations are transformed. Suppose that we have in NI the
following derivation:

p R
@ =)
A

This derivation is transformed into:

PAR 3pr PAR 3Jpr PAR 3pr
(a) (®)

— t 3
P9 r—=s gns = PT 5.22, 3.20

PAT —>1

The derivation in N1

R
@ =2

()

<l
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is transformed into

1) R 3r (2) R 3r
W R 34 VE 3 )
r—>s r—>S8
PAR 3r
.0
RAR :'.IrrA;w(z) A171PAR
338342() ’ R 2 ) PAR
ER o @ g N
s—>1t" () r—>s (%)
8.20
r—>1i
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We shall now prove that the axioms of NI’ are transformed into
theorems of G by the rules of translation mentioned above. We
shall translate p A gbyanband P A Q by p & ¢. If p is not a con-

junction or a negation, Ip will be translated by a 4 a.

In G we can prove:

GR From Q follows P — Q (G2.22, G2.21, G1.18, (G2.18).

We mention first the number of the axiom, then the transform
into NI’ (if this transform is different from the original axiom) and
finally the numbers of the theorems of G by which the translation

into G is proved.

3 3
Pa (Gi12.21), — P4
PAg—>pAg PAg—>gAD
PAQ PAQ
G2.21), —= (G2.11

3 P

Azl — P (Giz.1e), ——-Q (G2.16)
pPAG—> D

Ip p-ogq
p—>q

A2.0

(G12.11),

A8.0 (G2.21)

A3.3

3.20

If p is neither a conjunction nor a negation, the trans-
lation of the first part of A8.8isa Cb — a y a (G5.1, GR).
If p is a conjunction, the translation is a,Na, Cb —
ay x a; (A). This is not provable in G.

If p is a negation, the translationis 1a Cb — a # u (B).
This again is not provable.

The three translations of the second part are:
aCb—->byb (G5.1, GR),

aCb,Nby - by x by (C) (not provable),

aCb—->b #u (D) (not provable).

(G12.13)
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3.22
3.42

Al7.0

Al7.1

A4.0

A4.1

A4.2
A4.3

A4.4

A5.1
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(G12.28)

If p is neither a conjunction nor a negation the translation
into Gis ayb—>aya (G51, GR).

If p is a conjunction the translation is a,Na, yb —
a, x a, (E), and this is not provable in G.

If p is a negation the translation is 1a y b - a # u (F),
and this is not provable in G.

The three translations are, respectively,
aya—>aya (G2.21),

a, yay —>a,Nay ya,Na, (G5.1, GR),
a#u—>"1aya (G51, GR).

If both p and r are neither a conjunction nor a negation,
the translation is provable by G5.1, G1.18, G12.23, G5.12.
In the other cases the translation is not provable. We give
two examples.

1. p is a conjunction, r is neither a conjunction nor a
negation. The translation is:

if p&ayya;,—~a,Na,Ch and r &cyc—>cCd, then
p&r&a,nNa,yc—byd.

The reason this cannot be proved is that the formula
a, N ay y ¢ — a, y a, is missing in G. This is formula (E).
2. pis anegation, r is neither a conjunction nor a negation.
The translation is:

if p&a#u—->1aCbhb and r & cyc—>cCd, then
p&r&iayc—byd.

The reason this cannot be proved is that the formula
7 ayc—a #* u cannot be proved. This is formula (F').

3
¥ 3 gs1,6R)
p—>pvyg
3.

—2PY9 G311, GR)
pvVg—>qvp

(G5.1, GR)

(G8.3, G3.22)

J: . | B
PYq-n7 P T (G3.18, G2.28)

PVG.AT. > PAT.V.QAT

P 13
If —p, then B (vs)p
P—>q (vs)g

Remember that (vs)p is translated by u C a.

(G12.13).
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I:pvg.An~q
pveg-A~q.—>p
The translation is very similar to G4.42. But as G4.42 has
been derived from G4.18 and G12.221, it turns out to be
aUbyra&a#u—>(aub)N1aCh.
This would be the translation, if the premiss I ~¢ was
added in A10.0. As this is not the case, the translation
would still be provable, if aU by 7a - a # u would be
provable. But this is again the unprovable formula (F).

Al0.0

As D10 cannot be translated into the language of G, adjunction
of (E) and (F) does not make it sure that the further theorems
about negation in NI would have provable transforms in G. The
transforms of 10.40 (G4.3, G2.28), 10.41 (G5.1, GR) and 10.43
(G4.8) are provable. But for the proof of the transforms of 10.42,
10.50 and 10.51 there is another formula missing in G, viz.,
aF#u—>-a#£u (G)

It is clear that (E) and (F') are not provable in G, for if they
were, @, x @, and a # u would be provable formulas in G (these
formulas are derived by substituting @, Na, and 71 a for b in (E)
and (F), respectively). One might oppose that the adjunction of
the rule of substitution GS would render these substitutions illegal.
But the addition of GS diminishes the possibilities of deriving
formulas and so by the addition of this rule the derivation of a rule
that was not provable before cannot be rendered possible.

There is still one difficulty left. The axioms A8.2 and A5.0 were

P

cancelled. They are of the form % and —, respectively. And so
p

they cannot be transformed into NI'. Now in NI any theorem %

3 p p
is equivalent to 2P (7.10, A8.2), and — to —— (7.11, A5.0).
P p (s

E|
And so we transform a theorem or axiom % of NI into ?? of NI,

P p

and — of NI into —— of NI'. The transforms of A8.2 and
P (vs)p

A5.0 are then provable theorems of NI', as their premiss and con-

clusion are identified by the transformation.
We now add in NI’ the axiom

3 3

pq——, then @s)p 3¢ .
PAGg—>T q-—>r
This is provable in NI by 5.22, A5.0, A3.4.

A17.2 If
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Then the derivations in NI are transformed into derivations in
NI'. E.g.,

f— ?B 7.10

P g is transformed into P~ ¢

Q
P

is transformed into (vs)p
(vs)q

p
g is transformed into (vs)p 3¢

A5

ﬁ!*u@l'ﬁl*cco

Al17.2

r qg—>r
The transformation of A17.2 into G is:
ifayb—>anbCec then uCa—->bCe.
Proof.
uyb (G5.1, G12.17, G5.12)
uCa—>ayb (G12.17, u y b, G5.12)
Further G12.221, G12.61, G12.18.

The relation between NI and NI'.

We shall call the theorems T; and T, equivalent, if

a. if T,, then T, is provable,

b. if T, then T, is provable.

Then the relation between NI and NI’ is:

a. every theorem of NI is in NI equivalent with a theorem,
that is provable in NT',

b. every theorem of NI’ is provable in NI.

Conclusion. :

We have compared three systems:

1. the system NI, as far as variables of propositional functions
are not mentioned explicitly in the descriptions of the formulas,

2. the system NT/,

8. the system G.

And we have found:

1. to every theorem of NI there exists an equivalent theorem
of NT',

2. every theorem of NI’ can be transformed into a theorem of
a system G’, consisting of G, the rule GS, the rule about restricted
substitution of  and the formulas (A)—(G)1),

1) Besides G2.12 and G2.13 have been replaced by G2.12’ and G2.18’ and it
has been forbidden to replace p by a proposition containing —.
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and so

8. every theorem of NI can be transformed into a theorem of
G'.
Besides:
4. every theorem of G’ can be transformed into a theorem of
NI + A17’, excepted G4.13; the transform belongs to NI'.

So NI’ + A17’ and G’ are isomorphic, if to NI’ an axiom would
be added that is the transform of G4.13.!)

It seems doubtful to'me that this axiom is necessary for a logical
description of the method of negationless intuitionistic mathe-
matics.

18. A possible revision of NI.
It is possible to strengthen the system NI by the addition of:

Ass TP % and L then PYT %
r r r

This axiom is very similar to the theorem 4.100. But in 4.100
in the premiss of the last derivation 3ps and 3gs had to be added.
Omission of these premisses means practically the supposition
that, if it is known that the sumclass p v ¢ and the class s have an
element in common, it is known that this element belongs to p

s
and to s (and then r is derived by means of ;_o_) oritis known that
r

this element belongs to ¢ and to s (and then r is derived by a3 )-
’

This supposition can be based on the supposition that, if it is
known that an element belongs to the sumclass p v g, it is known
that it belongs to p or it is known that it belongs to ¢. This
supposition is accepted in ordinary intuitionistic mathematics. 2)

If A4.5 is accepted, the former axioms A4.8 and A4.4 can be
proved. But further it would also be possible to prove the trans-
form of G4.13.

PVqg.A.~pvqg:—>¢q

G4.18

1) With the restriction that there is some uncertainty zbout the theorems
derived in NI by means of D10.

%) The interpretation of v in NI, however, is different from the intuitionistic
interpretation. Cf. the remark after 138.58. Therefore I have preferred to rcject
A4.5 in the system NI.
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Proof.
1 ~ 2
(1) P PVY 400 (2) ¢ [pvyql 0.9
q
3 I~
@ Tg 10414 3 3
—j7 4 4.30 ————11——————g 4.30
q—>pVvyq q—>~pvVvyg

3.21

4PV APV g
J:pvg.A.~pvy
Further (1), (2), A4.5, (3), A3.4.

(67]

(The premiss 3g corresponds with an extra premiss b y b in

G4.18, which changes G4.13 into an equivalent axiom.)

But, as far as I see, the transform of A4.5 into G is not provable
in G and not in G’. So NI + A4.5 seems to be stronger than G'.

Finally, I want to express my sincere thanks to Prof. Dr.
A. Heyting, whose suggestions have contributed much to the

improvement of this paper.

(Oblatum 22-9-52.)



