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Block ideals and arithmetics of algebras
by
W. E. Jenner!)

Most investigations on arithmetics of algebras up to the present
time have been concerned only with maximal orders (cf. [1], [5],
[6], [8]). In this case, the most agreeable sort of ideal theory
obtains and the results have had fruitful applications to the theory
of simple algebras and to class field theory (cf. [9]). One of the
first writers to discuss non-maximal orders seems to have been
H. Fitting [7]. Aside from its intrinsic interest, a study of the non-
maximal case would be profitable in view of the connection be-
tween the arithmetic in a group ring and the theory of modular
representations which has been elucidated by R. Brauer [4].

This paper lays no claim to originality and is intended only to
give a systematic account of results that are more or less already
known, although some are not in the literature. The paper is
divided into two parts since a considerable portion of the ideal
theory, that of part I, is applicable to rings of a broader category
than orders.

The writer is indebted to Professor Richard Brauer, under whose
direction this investigation was undertaken, for stimulating
advice and for access to certain of his unpublished results.

Part I. Block Ideals
1. Direct intersections.

Throughout Part I it will be assumed that O is a ring with unit
element 1. The discussion is restricted to two-sided ideals of ©
except where explicit mention is made to the contrary.

Ideals a and b are said to be relatively prime if (a, b) = (1) = O.

An ideal a is a direct intersection of ideals by, ..., b, if

(i) a= b,

i=1
(ii) (b;, b;) = (1) for i #7,
(iii) b, #(1) for 1 =1,2,...,7r.

1) This paper is based on the author’s doctoral dissertation, University of
Michigan, 1952.
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These conditions will be indicated by writing a = ~ b,.

i=1

An ideal is called a block ideal if it cannot be expressed as a
direct intersection of two or more ideals.

The following results of this section are elementary but, for the
sake of completeness, proofs are given, except for Theorem 1.1.1
the proof of which is trivial but rather tedious.

Lemma 1.1.1: If a = ;\1 b, and b, = r;l ;0o then a = Ny,

i= o=

Proor: Clearlya = M ¢,.If7 # §, then (¢, ¢;;)2 (b, b;) =(1)
If ¢ # A, then (c,, ¢;;) = (1). Therefore a = ™ ¢,

Lemma 1.1.2: If (a,¢) = (b, ¢c) = (1), then (ab, ¢) = (ba, ¢) =
(a Nb, c) = (1). :
Proor: This follows on observing that (a,c). (b, ¢c) =
(b, ¢).(a,¢) = (1) and (ab, ba) C a Nb.
Lemma 1.1.3: If a= A b, and b= » b, c= ~ b
i=1

i=1 i=r+l1
where 1 < r < s, then a =b ~ ¢

Proor: This follows by induction from the previous lemma.
LEmmA 1.1.4: If ay, ..., a, are relatively prime in pairs, then

r
O ;= 20,,), . . . 0y, where 7w ranges over all permutations of

Proor: For r =2, a; Nay = (a; Nay) . (a5, a5) C (0,05, 6,0,) C
a; Nag-and so a; Na, = (0,0, 4,0,). The lemma follows by in-
duction.

THEOREM 1.1.1: If a= fi\l b,, then Oja = €,/a —I— - + ¢,/a

wﬁere €, = N b, Conversely, if Da = §,/a —|— . + €, /a, then
JFd
r
a= N b, where b, = X €,. Furthermore, these constructions
i=1 i
are reciprocal.

,
CoroLrary 1.1.1: If a= m b, and g, ..., o, are arbitrary
i=1

elements of O, then the system of congruences & = p, (mod b;) where
t=1,2,...,r has a solution in O and the solution is unique
mod a.

CoroLLARY 1.1.2: If a = ™ b, then the b, commute mod a.

i=1
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As remarked above, the proof of Theorem 1.1.1 will be omitted.
Lemma 115: If a= b, and m is any ideal, then either
i=1

(a, m) = (1) or (a, m) = > (b,, m) where o ranges over the set S
of indices for which (b, m) # (1).

ProoF: Suppose (a, m) 7% (1). Then by lemma 1.1.2, Sis not
empty. Clearly (a, m) C ™ (b,, m) where o ranges over S. On the

other hand, 2(b,;), m) ... (by,, m) < (a, m) where = ranges over
all permutations of 1, ..., 7 and the lemma follows from lemma
1.1.4.

r
LEmMA 1.1.6: If5,Cb; for i =1,2,...,7 and N D, is direct,

i=1

7 r
then ™ b,C N Db, except when b, =0, for i =1,2,...,7.

=1 i=1 ’

Proor: If Nb, = N Db then by lemma 1.1.5, b, = » (b, b,)
i=1 i=1 c

where o ranges over the set of indices for which (b, b,) # (1).
Clearly ¢ = ¢ is the only possibility and so b, = b;for¢ = 1, 2,..., r.

LemMma 1.1.7: If (b, ¢) = (1), (ac, m) = (ca, m) and (ab, m) =
(ba, m), then (a(b Nc¢), m) = ((b Nc)a, m).

Proor: It suffices to consider the case m = (0). Then
bNe = (be, cb) by lemma 1.1.4 and a(bNc) = a(be, cb) =
(abe, ach) = (bea, cba) = (b Nc)a.

Lemya 1.1.8: If (a,b) = (1) and (ab, m) = (ba, m), then for
any tdeals N 2 a and B2 b, (AB, m) = (BA, m).

Proor: It is sufficient to consider the case m = (0) and to
show that if (a,b) = (1), ab = ba and a C ¥, then Ab = HYU. If
y € U, then there exist elements a e a and 8 e b such thaty = a« + f.
Now g=y—aebnNU and so yea + (b NA). Therefore
A=a+ (bNA). Now (b NAYD = (a, b). (b NAYb = a(b NA) +
+ 056 NAD Cab + BA C HA and so Ab C HBA. Similarly bA C Ab

and the lemma follows.

2. Block Ideal Decompositions.

From theorem 1.1.1, it follows that an ideal a is a block ideal if
and only if O/a is indecomposable (in the sense of direct sum). It
is well-known that any ring with unit element which satisfies the
maximum condition for two-sided ideals has a unique decomposi-
tion into a direct sum of indecomposable ideals. Furthermore, if
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the minimum condition holds for left (right) ideals which contain
a given two-sided ideal a of ©, then the maximum condition holds
for two-sided ideals containing a, provided © contains a unit ele-
ment. These statements, together with theorem 1.1.1, imply

THEOREM 1.2.1: Let a be an ideal of O such that either (i) the
maximum condition holds for ideals containing a or (ii) the minimum
condition holds for left (right) ideals containing a. Then a has a
unique expression as a direct intersection of block ideals.

r
LeEmMMa 1.2.1: [fa= Ql b; and m is a block ideal containing a,

then m contains exactly one of the b,.
Proor: By lemma 1.1.5, m = (a, m) = ™ (b,, m) where o

ranges over the values of ¢ for which (b,, m) % (1). Since m is a
block ideal, there can be only one term (b, m) 5 (1). Then
m = (b,, m) and hence b, C m. On the other hand, no b; for
j # o is contained in m since m # (1).

r s
LeEmMA 1.2.2: Ifa = b, = N ¢, where the ¢, are block ideals,
i=1 o=1

then each b, is contained in at least one ¢, and each b, is the inter-
section of the c, containing it.

Proor: By lemma 1.2.1, each ¢, contains exactly one b, If
some particular b, is relatively prime to all ¢, then (b,, a) = (1)
by lemma 1.1.2, a contradiction. Therefore there exists some ¢
for which (b;, ¢,) # (1). Now each ¢, contains some b; which
clearly must be this particular b,. This shows that each b, is con-
tained in some c,. Now let b, C Nc,;, where g(¢) ranges over the

e(?)

set of indices ¢ for which b, Cc,. Now a = A b, C - [ﬁc,_,m]
i=1 =1

= e(d)

= aand so by lemma 1.1.6, b, = Nc,y.
(i)
REMARK: Lemma 1.2.2 can be used to give another proof of
the uniqueness of block ideal decompositions.

LEMMA 1.2.8: If a and b are block ideals and the maximum
condition holds for ideals containing a N, then either a Nb is direct
or a Nb is a block ideal,

Proor: Ifa Nbisnota block ideal, then it has a representation
as a direct intersection of block ideals and by lemma 1.1.83 one may
assume a Nb = ¢; M ¢;. By lemma 1.2.2, ¢, Cq, say, and ¢, Cb.
By lemma 1.1.6, a = ¢; and b = ¢, and so the intersection a Nb is
direct.
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s
THEOREM 1.2.2: If a = N ¢, where the maximum condition

o=1
holds for ideals containing a, and where the c, are block ideals, then
the representation of a as a direct intersection of block ideals can be
obtained by distributing the ¢, into minimal systems S;, Sy, .. ., S,
such that every c, e S; is relatively prime to every ¢, e S; for © # j.
If b, is the intersection of the ¢, in S, then a = irgl b,.

Proor: Suppose S, consists of the elements ¢, ¢y, . . ., ¢,,. Now
¢, cannot be relatively prime to all of ¢,, ..., ¢, in view of the
minimal property of S;. If (c;, ¢;) 7 (1), say, then by lemma 1.2.8,
¢’y = ¢; Ny is a blockideal and by virtue of lemma 1.1.2, S, may be
replaced by S; = {3, €3, - . ., C,}. It is easily seen that S| has the
required minimal property and that repetition of this process
will lead to the desired result.

r
THEOREM 1.2.8: Ifa = N Db, where the b, are block ideals, then
i=1
any representation of a as a direct intersection of ideals ¢y, . . ., ¢,
s obtained by distributing the b, into disjoint subsystems Ty, T, . . ..
T, and taking for c, the intersection of the b, in T,.
The proof follows by an elementary argument from lemmas
1.1.3 and 1.2.2.

3. Prime Ideals.

Throughout this section it will be assumed that a is an arbitrary
but fixed ideal of © and that the minimum condition holds for
left (right) ideals of ©/a. In non-commutative ideal theory an
ideal p is said to be prime if whenever be C p for any two ideals
b and ¢, then either b C p or ¢ C p. It is easily shown, using the
Wedderburn-Artin structure theorems, that an ideal pa is
prime if and only if it is maximal (cf. [6]). The radical n of a is
the ideal n of O such that n/a is the radical, in the Wedderburn-
Artin sense, of D/a.

THEOREM 1.3.1: If n is the radical of a, then O/n = O;/n + .. —|—
9,/n where the O,/n are simple two-sided ideals. There are exactly
s prime ideal divisors of a. If s > 1, they are p, =20, and

e
n=r p. If s=1, then n is the only prime ideal divisor of a.
i=1

This is well known; it follows easily from the Wedderburn-
Artin structure theorems.
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Let a = A b, be the representation of a as a direct intersection
i

of block ideals. The s prime ideal divisors p; of a are distributed
into r blocks I3;, the block B; consisting of the set of all p, which
divide a given b;. One now proceeds to investigate the relations
between the block ideal components and the prime ideal divisors
of a given ideal.

1f the unit clement 1 of £/a is expressed as a sum of primitive
idempotents, 1 = ¢ +_. .. -+ &, then there exist elements ¢, . . .,
£, I L with e: in the residuc class g;suchthat 1 = ¢ + ... 4+ ¢,
where & = ¢, (mod a), &, 3% 0 (mod a), £,¢; = 0 (mod a) for ¢ # 7.
and no ¢, can be expressed as a sum of two other elements with
thesc properties. The left ideal De; is primitive mod a in the sense
that if 0 is a left ideal such that a Cb C D¢, + a, then b C n and
so b is nilpotent mod a (cf. [2]).

LeMva 1.8.1: Let ¢, €y - - o, €, be a system of ideals such that

(1 ¢; A (1) for 7 =1.2,...n
(1) (¢;e ¢;) = (1) for i 5 J.
(1) aC Nne Cn.

i1

T'hen each e, belongs to all the ¢, except one; for cach ¢; there exist
certain of the ¢, which do not belong to it. If 2, is the sum of those
e, not in ¢ then 1 =G 4+ ...+ (08 =1 (modc¢,)and Z; =0
(mod ¢;) for 7 #j.

Proor: No ¢, contains all ¢, since ¢; 7 (1). Supposc some g,
is In neither ¢; nor ¢; for some i 7 j. Then D¢, = (¢ ¢;)e, =
(Cigge €i8,) © (c; NDe,, ¢; NTe,) C n, a contradiction. Tt follows
that for @ 4, £, and ; can have no summand ¢, in common. It
follows from condition (iii) that cvery ¢, appears in some ;. The
last statement of the lemma is clear.

If 0=~ b, where the b; are block ideals, then there exist cle-

ie1

ments 7, ... 7, (the I, for the casc ¢; = 0;) such that 1 =
=y .=, =1 (modb,), 5, =0 (modbd;) for @ .£7.
Furthermore the 7; arc orthogonal idempotents mod a and they
lie in the center of £ mod a. If p,, . . ., P, arc the prime ideal divi-
sors of a, then there exist clements dy, . . ., 4, (the &, for ¢, = ;)
such that 1 =06, + ... 4+ 9, 9, =1 (mod p,). 4, =0 (mod p;)
for ¢ == j and the o, are orthogonal idempotents mod a.
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Let Py, . . ., p, be the prime ideals in the block B,. If &, N p,,
i=1

then ¢, is in the radical of b, so that ¢ ¢ b, for some 2 > 0. But

g —¢e,eaChbandsoe,eb,. Thercfore, if &, occurs as a summand

in 7, 1t does likewise in some 9, correspondmo tooneof p;, ..., p,.

The converse is trivial and so
(1) n; =0, -+ ...+ 0.

From the fact that if ¢, occurs as a summand in some §,, it also
occurs in 7, and since the 7, are in the center of £ mod q, it
follows that
(2) 70; == 0m; == 0; (mod a).

Two prime ideals p, 2 a and p, 2 a are said to be connected
directly if either 0,20, or 9,29, is not contained in a. They are
said to be connected if either p, = p, ora chain p, ..., p,, ..., p,
of prime ideals p, 2 a can be found such that any two adjacent
clements in the chain are connccted directly.

Tneorem 1.8.2: Two prime tdeal divisors of a belong to the
same block if and only if they are connected.

Proor: Suppose the prime ideals by, .. ., p, divide a and are
conneeted. By lemma 1.2.1, cach p; divides some b;, so suppose
b, € by, by € py where p; and p, arc connected directly, say 6,008,
is not in a. By relation (2) above, 7,07, is not in a. But 7, €b;
for { #17 and so 73,29, Ca, a contradiction. This shows that

Pp- - - . P, all belong to the same block.
Now let p;. ..., , be the prime idecals in B;. Suppose these p,
arc not connccted. say 0,20, + 0,29, Ca for ¢ =1, 2, , b

j=1t+1....,8 t <s. Then Oy, + 1,y Ca where Y=
=0 4+ ...+ 0, Yo =0+ ...+ 0. Set q, =b, + y Dy, for
1=1,2. I d,eq,. then r) €0, + L0, + aCh since
210, € a C b;. Therefore g, % . Similarly g, 7 ©. The sum of those
¢, which arc in b, is y3 = 1—1. Now ¢, = (b; + »,$y)0
(vp +7ve+ Vz) C by + 7Ly = g, since 0y, Cal by and y;ebh;.
Similarly g, C q; and £q,C C q,. Now 1 := 9, + v, + y, with
7s € by and so (qy, g5) = (1). By lemma 1.1.4, ; M G, = (G105, G20;)
C b, C g, NGy and so by = q; ™ gy, a contradiction. It follows that
the prime ideals in B; arc connected. The same argument works,
of course, for any B, and so the theorem follows.

Two prime ideals p, 2 a and p, 2 a are said to be related if either
they arc equal or a chain Pgr « + s Pps -« 5 b, of prime ideals p, 2 a
can be found such that no two adjacent elements of the chain
commute mod a.
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THEOREM 1.8.8: Two prime tdeal divisors of a belong to the
same block if and only if they are related.

Proor: It follows from lemma 1.1.8 and corollary 1.1.2 that
two related prime ideals belong to the same block. Now let

a= A b, where the b, are block ideals and let n = m p; be
i=1

the radical of a. Let S be the set consisting of the p; and decompose
S into minimal disjoint subsets S;, . . ., S; such that the ideals in
S; commute mod a with those in S; for ¢ # § (cf. [7]). The set of all
p; in a given S, all divide the same block ideal and so k = r. Let
b denote any fixed one of the b,. Let Ik, be the intersection of all
p; € S; such that b C p,. It is possible that I, is not defined for all
t=1,2,...k Suppose, however, that M,, ..., M, are the M,

t
which are defined; ¢t < k. Then # = N M, is theradical of b. It
i=1
follows from lemma 1.1.7 that the I, commute mod a. Then by
lemma 1.1.4, |’ = b + M, ... M,. There exists an integer ¢ > 0
such that N7 C b. The I, commute mod b and so M{ . ..M C b.

Set B, = M? + b. By lemma 1.1.2, (SIJZ‘,’,SR") (1) for ¢ # § and
so (B, B,) = (1) for ¢ # 4. Nowar\% g ... M4+ bCH

by lemma 1.1.4 and so b = (‘\ B;. Thls is impossible for ¢ >1
i=1

and so all prime ideal divisors of b are related.
THEOREM 1.8.4: Let a = m b, be the block ideal decomposition
of a; let n = m p; be the radwal of a with exponent o; n° C a. LetIN;

be the mtersectwn of the prime ideals in B,. Then the MM, commute
mod a and b, =M + a. Furthermore b, =M + a = M** 4+ a
for any positive integer A

Proor: It follows from lemma 1.1.8 and corollary 1.1.2 that
the M, commute mod a. Consequently M’... M Ca and a =
A (T 4+ a) = m (M= 4 q) = _r.r\l b, The theorem then fol-

i=1

lows from lemma 1.1.6.

CoroLrARY 1.8.1: Let a = b, be the block ideal decomposition

i=1
of a. Assume that all prime ideal divisors y,, ..., p, of a commute
mod a. Then each block contains only one prime tdeal, r = s, and
for suitable indexing, b, = p{ + a for ¢ =1,2,...,r where o is

the exponent of the radical of a. For each b,, o may be replaced by any
larger integer.
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CoroLLARY 1.8.2: Leta = A b, be the block ideal decomposition

i=1
of a. Assume that all prime ideal divisors of a commute in the ordinary
sense, that is, mod (0). Then the b; commute, a = ~ b,= IIb,; and
=1 i=1
b, = p{ + a as in corollary 1.8.1.
The proof follows by a trivial argument from lemma 1.1.8 and
corollary 1.8.1.

Part II. Arithmetics of Algebras

1. Orders and Ideals.

Let o be a Dedekind ring with quotient field £ and 4 an algebra
of finite dimension n over k. It will be assumed that 4 has a unit
element 1 coinciding with that of £.

DErFINITION: A subring O of A is called an order if it contains
the unit element 1 and is a finitely-generated o-module not contained
in a proper subalgebra of A.

Since an order is a finitely-generated module over a Noetherian
ring, it follows that the ascending chain condition holds for sub-
modules. Consequently there exist elements gy, . .., 6, D, s = n,
such that © = o{oy, . . ., g,}. There also exist elements 7,, . . ., 7,60
and ¢ 7 0 in o such that every element « € © has a unique repre-

sentation of the form « = ¢! X a;; with a, € 0. If ois a principal
i=1

ideal ring the 7, can be chosen with ¢ = 1. Such a basis is called a
minimal basis.

If v #0 is an element in the radical N of 4 with »" = 0 for
some 7 > 0, then the p-module generated by the products

i e oL oy with X #(i) < r is easily seen to be an order
t=1

containing ©. If N # (0), then there exists an element v ¢ N with

v¢©. It follows that if an algebra possesses maximal orders then

it is semisimple. If 4 is semisimple and separable, then every

order can be imbedded in a maximal order (cf. [6]).

DEFINITION, An additive subgroup N of A is called an ideal if
(O, AD) C A, A Nk +#~ (0) and there exists an element a # 0 in k
such that aA C 0. If AC O it is said to be integral; otherwise, frac-
tional.

By virtue of the ascending chain condition, every integral ideal
of © has a unique expression as a direct intersection of block
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ideals. If ¥ is integral and aea = A Mo, than aO C A and so
O/A may be regarded as an o/a-module where the operators act
in the canonical manner. The minimum condition for o/a implies
the minimum condition for o-modules 1l such that ACNC O
(cf. [10], p. 82). It follows that all results in part I apply to
integral ideals in orders.

2. Ideals generated by Ideals of o.

The main purpose of this section is to show that the block ideal
components of ideals of the form a%, where a is a non-zero integral
0-ideal, generate a multiplicative abelian group.

For a fixed prime ideal p of o let o denote the ring of p-integers,
that is, the set of elements of the form ab—! where a, be 0 and

(b, p) = (1). If M is an L-ideal, set M = M.

LEmma 2.2.1: If I is an integral O-ideal such that m = M No
is a power of p, then O/IN ~ @/2)32 where the isomorphism is canonical,
being induced by the injection map of O into 9.

Proor: If a e, let d be an element of o with (1) = (d, p) =
(d, m) such that da ¢ . Then « e (do, ma) C © + M. It follows
that © = © + M. If ﬂeﬁfﬁ N, let & be an element of o with
(1) = (h, p) = (h, m) such that hf ¢ M. Now S € (hf, mp) CIM and
so MO =M. Then LM = (O + M)/M ~ M NL = O/M
where the isomorphism is canonical.

LEMMA 2.2.2: Let R range over the set of integral O-ideals for
which N N o either equals o or is a power of p. Then yp: N — R is a
one-to-one mapping onto the set of all integral O-ideals. Furthermore,
p 18 an isomorphism with respect to sum, product and intersection.

Proor: It is trivial that y is a homomorphism with respect to
sum and product. If ae 2721 miﬂz, then there exists an element
d e 0 with (d, p) = (1) such that da e N; NN,. It follows that y is
a homomorphism with lespect to intersection. If N, % and
RNy, — €, then N, + Ny, — < and so one may assume %, C N,. By
lemma 2.2.1, O/N, ~ D/?R ~ D/N, where the isomorphisms are
canonical and so N, = N,. Consequently y is an 1somorphmn

Now let ¥ be any integral C-ideal. It is easily seen that T = Mm
where M = T NO. If M N o is a power of p, then M is in the do-
main of definition of y. If M Mo is prime to p, then it is easily
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seen that M = O and M, insofar as its behavior under p is concern-
ed, can be replaced by © which is in the domain of definition of .
Now assume that neither of these extreme cases holds and that

M = ~ B, where the B, are block ideals. It is easily seen, using
i=1

lemma 1.2.1, that the B; N o are block ideals of 0. Let N be the
intersection of those B; such that 8B, Mo is a power of p. Let £
be the intersection of the remaining %B,. By lemma 1.1.8, M=N A Q.

Now £ = © and since p1 isa homomorphlsm with respect to inter-
section, it follows that St = . This shows that the set of i images
under p coincides with the set of all integral O-ideals.

r
LeEmMMA 2.2.8: Let a0 = ™ B, where a is an integral o-ideal.
i=1
T
Then o*T = ™ B} where 1 is any positive integer.
i=1

Proor: The lemma is trivial for A = 1. Now assume a°~10 =
r r
o B°-1, By lemma 1.1.4, Q) B = 2By ... By, where =
- i

ranges over all permutations of the indices 1, 2, .. ., . Since, by
corollary 1.1.2, the B, commute mod af, it can easily be verified
that 285, ... 8%, C 2B} ... B5(B;y ... B,) + a°D. This

implies that A B? C 0’ and the lemma follows immediately.
i=1

LemMMaA 2.2.4: Let %y, ..., 7, be a minimal basis for D and

suppose the congruences £,m;, — n;&,= 0 (mod p"@) have a solution
E,for i =1,2,...,n and for each positive integer o. Then there

exists an element L € Z ﬂé:'), where Z is the center of A, such that for
o sufficiently large, ; = &, (mod pD).

Proor: Suppose 7,7, = Zc¢,n, and let & = X a;n; Then
n k=1 i=1
T a;(ci;u — C;ix) = 0 (mod p°0) for all 4, k. Set ¢, — ¢ =
i=1

birx-1n; and let = be the local prime of 0. Then
z bi,aj = nﬂ'yi (1)

where ¢ = 1,2,...,n% and y;e 0. By the theory of elementary
divisors there exists a unimodular transformation which maps
a; into a;., say, for § = 1, 2, ..., n and transforms the system (1)
into the form:
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el“; = %,

: L
erar =7 y7

!’ . 0',
0.a,,, = 7Y (2)

/_ c,,’
0.a, =7,
— 0,

0 '_nyn+l
o
0 = n"Y,.

wheree; #0fori=1,2,...,7and y;e 0. For o sufficiently large,
ay ... a, are in p and (0,...,0,a.,,, ... a,) affords a solution
to the homogeneous equations corresponding to (2). Now

Zd,,a,—l- E d,a, for i = 1,2, ..., n with d;;€0. The ele-

1%
j= i=r+l

n n
ment { = X a,, where a, = X d,; a;has therequired property.
i=1 J=r+1

Now let pO = (r\ B, where the B, are block ideals. By lemma

2.2.2, p0 = (r\ B, where the B, are block ideals. By lemma 2.2.3,
i=1

T

~ ro~
p°O = M B,°. By theorem 1.1.1, there exist elements e}, ..., e, in
i=1

O such that 1 =¢ + ... + ¢, with ¢, =0 (mod B]) for i # j
and e, =1 (mod %‘}). It is easily verified that the e, are in the
center Z mod p"bf) and so, by taking ¢ sufficiently large and apply-
ing lemma 2.2.4, one can obtain elements ¢; = ¢; (mod p£~)) with
e; e Z ND. Tt follows from this result, together with lemmas 2.2.2

and 1.1.8, that the B, commute. The inverse of an ideal of B, is

Bl = p~tII B,. If p, and p, are distinct prime ideals of o, then,
i

by lemma 1.1.8, every block ideal component of p;© commutes

with every block ideal component of p,. From these remarks

one readily deduces

THEOREM 2.2.1: The block ideal components of ideals a0, where
a is an integral ideal of v, generate an abelian group. The represen-
tation of an element of this group as a product of powers of distinct
generators s unique.

THEOREM 2.2.2: If Z is the center of A, then O = Z NY is an

order of Z. Ifp© = (rw B, where p is a prime ideal of o and the B;
i=1
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are block ideals, then pQ = (r\ I, where T, = B, NY are block
i=1
ideals of . Furthermore, B, = T,0.

Proor: Itis trivial to verify that O is an order of Z. From the
remarks preceding theorem 2.2.1, it follows that the &, are relati-
vely prime. It is easily seen using lemma 1.2.1, that the T, N o are
block ideals of o and that.E, N o = p. Now p~1(pO NLD) C L and

so pO NY= pQ. It follows that pQ = A %,. Now p = A T, 0 and
i=1 i=1

so B, = T, by lemma 1.1.6. If T, = I, » T} for some 1, then
B, =,/ =ITOH T/, a contradiction. The theorem fol-
lows immediately.

THEOREM 2.2.3: Let W be an integral D-ideal and let (YN o) O
= é\l B, where the B, are block ideals. Then U can be expressed

uniquely as a product W =Y, ... N, where N, divides B,, A,= (A, B,)
and the N, commute.
The proof follows easily from Theorem 2.2.1 and lemma 1.1.8.

3. Maximal Orders.

The results of the last section permit a development, different
from those usually given, of the prime ideal decomposition theorem
for maximal orders.

LEmMmA 2.8.1: If a block of pO, where p is a prime ideal of o,
contains a completely regular prime ideal B, then the corresponding
block ideal B is a power of B. Furthermore, every ideal which divides
a power of B is itself a power of PB.

Proor: The ideal B’ = BB is integral since P divides B. If
B = B’, then P*'B = B for every integer 4 > 0, which is impos-
sible by virtue of the ascending chain condition. A completely
regular prime ideal commutes with all other prime ideals (cf. [6])
and so by corollary 1.3.1, 8 = P’ + pO for some ¢ > 0. If
B C B’ C P’ for some prime ideal B, then P = B’ and, proceeding
by induction, it is easily shown that 8 = P* for some u > 0.
Similarly, if ” C A for some ideal A with » > 0, then A = P* for
some 4 > 0.

THEOREM 2.8.1: If O is a maximal order, then every ideal can
be expressed uniquely as a product of powers of distinct prime ideals.
The ideals of O form a multiplicative abelian group gemerated by
the prime ideals.
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Proor: In a maximal order, all prime ideals are completely
regular (cf. [6]). Let 2 be an integral L-ideal. Then (AN 0)O =
= PBf1... P! where the prime ideals P; commute by virtue of
either theorem 2.2.1 or the fact that completely regular prime
ideals commute. Then by theorem 2.2.3 and lemma 2.8.1,
A= P;r... Pl with », < u,. The extension to fractional ideals
and the uniqueness proof proceed as usual.

At this point it is easily shown using theorem 2.2.2 that if 4 is
central simple over k& and O is a maximal order of 4, then pD is a
power of a prime ideal where p is any prime ideal of o. This result
is due to Brandt [8]. As another application, consider the case of
a simple algebra 4, not necessarily central, where £ is a field with
a discrete non-trivial rank one valuation. Let © be a maximal
order with respect to the local integers of k. Then, since k has only
one prime, it is easily shown that every ideal of © has the form $*
where P is the unique prime ideal in £. A development of this
result for the case where & is a p-adic field has been given by
Hasse [8].

4. The Discriminant.

In this section it will be assumed that A is semisimple and se-
parable over k& Let oy denote the ring of p-integers of k and set
Op = 0. Let oy, ..., 0, be a minimal basis for £y with g,¢ O
for ¢ =1,2,...,n If a«,...,a,eA then the discriminant
Aoy, ..., a,) =det [S(x;x;)] where [ S(a;a;)] is the matrix with ¢ as
row index, j as column index, and where S(a) denotes the trace of
o in the right (or left) regular representation of A. It is known that
if B; = X ¢4, with ¢;;e kfori =1, 2,..., n,then 4(By, . . ., B8,)

i=1
= (det [¢;;])2A(ay, ..., «,). It is easily seen that if ay, ..., a,€D,
then 4(ay, . . ., «,) € 0. The p-component Dy of the discriminant of
£ is defined to be the greatest power of p which divides 4(oy, ...,0,).

LEMMA 2.4.1: Dp is the greatest power of p which contains all
elements Aoy, . . .y @,) for oy, .., €O.

Proor: Set 0.A4(oy, ..., 0,) = p*q where p does not divide g.
If «;, e O, then o, = X ¢;0; with ¢;; € 0p. Since the denominator of

i=1

det [c;;] is prime to p, it follows that A(«y, ..., «,) € ph
The integral p-ideal D generated by the set of all elements
Aoy, - . . «,) for a; € O is called the discriminant of O. From lemma



(15] Block ideals and arithmetics of algebras. 201

2.4.1 it follows that D = IID, and that there are only a finite

number of terms Dy # o.

THEOREM 2.4.1: Let D be the discriminant of O and D* the
discriminant of an order O* with O* 2 0. Then D* D D if and only
if O*D 9.

Proor: It suffices to.show that ® = D* implies O = D*.
Suppose D = D*. Let oy, . . ., 0, be a minimal basis for Dy with
0,9 and let o%, .. ., o} be a minimal basis for Dp* with % € O*.

n
Then o, = X ¢, ;0% for ¢ =1,2,...,n and where c,; e 0p. Since

i=1
Dp = ‘D;, it follows that (det [c;;])~* € 0y and so Dy = D; for all
primes p. For « € 0%, let q(«) be the set of elements d € o such that
da e . If a e O*, then for each prime p there exists an element
h e o with (h, p) = (1) such that ha e O. It follows that q(a) = o
for all « e O* and so O = O*.

Thering p/pLp can be construed as analgebraover oy/poy. Assume
now that k has finite residue rings, that is, o/a is finite for every
integral ideal a of k. Then if Op/pLy is semisimple, the centers of the
simple components are separable extensions of the ground field
and so the algebra £y/pCy is separable and has a non-zero discri-
minant (cf. [10]). Therefore Oy/pOy is semisimple if and only
if ®p = o where D =IIDy is the discriminant of O.

If £ is maximal, a prime ideal p of k is said to be ramified in O
at B, if in its prime ideal decomposition, pO = P ... P, ¢, is
greater than 1.

From the preceding remarks, together with lemma 2.2.1 and
theorem 1.1.1, the following result is readily deduced.

THEOREM 2.4.2: Let A be a separable algebra over k and assume
that k has finite residue rings. Let O be an arbitrary order of A and
let p be a prime ideal of k. Then the algebra 9 y/pDpover op/pop is sems-
simple if and only if Dy = o where D =I1Dy is the discriminant of

b
9. In particular, if O is mazximal then a prime ideal p of k is ramified
m O if and only if p divides D.
5. The Conductor.

If an order © is properly contained in another order D%, it is
natural to study the relation between the arithmetic of O and that
of £* Of particular interest is the case where £* is maximal.
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Using the fact that orders are finitely-generated o-modules, it is
easily shown that if © C £* then there exist elements ¢ % 0 in o
such that ¢O* C O. It follows that there exist non-zero O*-ideals
which lie in ©. The ideal generated by the set of all such ideals is
called the conductor § of O with respect to O*. An O-ideal U is said
to be regular with respect to O* if (U, F) = . An D*-ideal € is
said to be regular with respect to O if (€, §F) = O*. With each
integral ©-ideal U can be associated the integral O*-ideal {A} =
= O*YD*; with each integral O*-ideal € can be associated the
integral ©-ideal €° = €N .

LemMA 2.5.1: If the O-ideal W is regular, then so is {A}. If the
O*-ideal § is regular, then so is €°. In this case {A}° = A and
¢} =6.

Proor: If U is a regular O-ideal it is clear that {¥} is also re-
gular. If € is a regular ©*-ideal then there exist elements y € €,
4 € § such that y 4+ 6 = 1. But then y is clearly in O and so €° is
regular. The last statement follows from the relations {U}° =
(% FHAP (A, F) S A and € = ({€°}, F)C({€°}, F) S {€°}

THEOREM 2.5.1: The mapping A — {U} is a one-to-one mapping
of the set of regular D-ideals onto the set of all regular O*-ideals. It is
an isomorphism with respect to sum, product and intersection.

Proor: The first statement follows from lemma 2.5.1. If %, -
and 9, are regular ©-ideals, then so are (¥, %A;) and, by lemma
1.1.2, U;N A, and AU, It is easy to verify that the mapping
preserves sums and intersections. If weO*, «; e U, and o, e Ny,
then a0y € oy (Us, F)was(Ws, F) € {W Wy} and so {A,Wp} ={A;}.{Us}.
This completes the proof.

THEOREM 2.5.2: Let © be an order contained in a maximal
order 0* and assume that A is separable. Let ® and D* be the
discriminants of O and O* respectively. Let ¢ be the conductor of O
with respect to O¥. Then Dp* D Dy if and only if p is divisible by
a prime ideal divisor in O* of .

Proor: Let I’ be the conductor of O with respect to O)*. It
will be shown that §'= Fyp. If « € F’, then there exists an element
a € 0 with (@, p) = (1) such that ax ¢ O. Then O*(ax)O* C Op NO*
Now Oy O* is a finitely-generated o-module and so it contains
elements oy, . . ., o, such that Oy NO* = o{ey, ..., 0,}. Let b be
an element of o with (b, p) = (1) such that bo;e Ofori =1,2,...,
r. Then D*(aba)D* C O and so aeFy. Clearly Fy CF and so
F = Fy. Let F = Pl. .. PL be the prime ideal decomposition
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of & in O*. Set p, = P, N o. This is clearly a prime ideal of k.
If 1€y, then 1 = X Pal) where ¢ oy, and 2P, for

i=1
7=1,2,...,m. Now choose depo such that (d,p,) = (1) and

dc?eo for j =1,2,...,m. Then d = 2 dcn'? ¢ P, a contra-

diction. Therefore Fp, # Qp,. It follows that Dp*O Qp and so,
by theorem 2.4.1, ®p* D Dp,. On the other hand, if p is a prime
ideal of k not among p,, . . ., p,, then Fp = Op*. Therefore Dy* = Oy
and so SDp* = f‘st.
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