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The boundary layer problem for certain non-linear
ordinary differential equations

by

Howard G. Bergmann
(New York)

Introduction.

The theory of buckling of circular plates leads to a boundary
value problem for a pair of non-linear ordinary differential equa-
tions of second order depending upon a parameter. When this
parameter approaches zero as a limit, the solution will approach
a limit function which is no longer satisfied by all boundary con-
ditions. The non-uniform convergence in the “boundary layer”
can be studied by an appropriate stretching process.

These phenomena have so far been treated only for the special
equations resulting from the theory of plates, in particular in [1].
It is the intention of this paper to establish similar phenomena for
differential equations of a simpler type, which lend themselves
more easily to generalization.

The differential equations considered are

Pez = ’1‘92
kq.. +pg =0

where p and q are functions of « defined, without loss of generality,
in the interval — 1 < # < 1, with the associated boundary con-
ditions

P(—1) = py, p(1) = Py g.(—1) =0, ¢,(1) =0,

Py, Py being given constants.
We shall distinguish three cases:

Ipp,>0 II: py>0 III: p, <0
P2 >0 p: <0 p: <0

We are interested in,what happens to the solution p(z) as the
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parameter k approaches zero. We might expect that as k - 0, p
and g would approach limit functions satisfying the same boundary
conditions and the differential equations obtained by putting
k = 0 in the original equations. This is not true. There is indeed a
limit function and it does solve the so-called limit equations, but
it does not always satisfy the boundary conditions. More speci-
fically, we should expect that the boundary condition on g is lost
in the limit, for ¢,, disappears in the limit equation, and so it is
reasonable that the boundary condition on ¢ should no longer be
met. This is generally so; that in our case the boundary condition
for ¢ is assumed after all is quite accidental, due to the simplicity
of the particular problem. It turns out that ¢, does not converge
uniformly, although ¢ does.

However, the interesting result is that the boundary condition
on p may be lost, although the limit differential equation remains
of the same order in p. We shall show that if the original boundary
value is negative, the limit function will still assume this value;
however, if the assigned value is positive, it will no longer satisfy
the limit function—instead, the function will take on that value,
multiplied by a constant, —.47271. From these remarks, it is clear
that the limit solution is ¢ = O, p = a linear function, determined
by these new boundary values.

In order to establish these facts, we must investigate the details
of the non-uniform convergence. To do this, we introduce a stretch-
ing transformation in which the new variable depends upon the
parameter, which at the same time no longer occurs explicitly in
the differential equations. This follows the procedure of [1]. Con-
sidering ¢ now as a function of the new variable, it does converge,
the second order terms in the differential equations are not lost as
k approaches 0, and both boundary conditions are satisfied at the
fixed end point; but here the difference is that the interior region
as well as the other end is pushed out to infinity. How it behaves
there we settle by the methods of the calculus of variations. The
result is that if p, > 0 (assuming the left end to be the unstretched
one), the limit function assumes the prescribed value at the un-
stretched end, and —.47271p, at the stretched end; if p, < 0, the
limit function is the constant p, (cf. Fig. 1b). It is a strange
paradox that the limit value at the stretched end should be the
value assumed by the limit function at the unstretched end.

The limit function in the stretched variable satisfies the same
differential equations and boundary conditions as the function
in [1], so that in this paper the author has been able to use many
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of the numerical calculations made there. However, this paper
supplements that work by a proof of the convergence of the power
series expansion of the limit function in the stretched variable.
Use is also made here of the results in [1] of the stretched limit
process to investigate the limit process in the unstretched variable,
the situation again being similar to [1], § 10. However, certain
complications arise here, due to the boundary layer at both ends
in the problem discussed in this paper.

Specifically, our program will be as follows: with reference to
Case I (both boundary values positive), we formulate the problem
in terms of functionals (§ 1). This formulation enables us to apply
the methods of the calculus of variations, and prove uniqueness
and existence theorems (§§ 2, 8). Employing now the stretching
procedure, we next investigate the asymptotic behavior of the
solutions (§ 4). The limit solution in the stretched variable is now
expanded in a power series which is proved convergent (§ 5). The
information thus gained enables us to return to the original varia-
bles and discuss the limit state in the interior (§ 6). Here we find
an explicit representation for the limit solution in terms of the
unstretched variables. We conclude the paper with a dicussion of
Cases II and III (§ 7).

We close these introductory remarks with several figures.
illustrating the various cases.

poO
P
P
P2 1
__________ P
T—2 /)
—==- NP,
S R U AN
o == - e Y
-47271p, 47271

Fig. 1la.

Figure 1la illustrates Case I. Several
curves p*(x) are shown, for varying va-
lues of k 5~ 0. The limit solution p°(x)
[cf. Th. 6.2, P. 162] is represented by the
dotted line. We note the non-uniform
convergence, and the region of rapid
change moving toward the extremities
of the interval as k — 0.

In Figure 1b we see the corresponding
situation in the stretched variable. P°(z),
shown as a broken line curve, ap-
proaches the value —.47271 as ¢ - oo;
the end points of P*(t), at ¢t = a, move
toward the right as k — 0, i.e., as a— c0.
The convergence here is uniform in
every finite interval.
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=47271p, P : P
Fig. 2. Fig. 3.

Figure 2 illustrates Case II. The limit In Case III, p*(x) is the same linear
function p°(x) [cf. Th. 7.1, P. 167] hereis  function for all values of %, including
satisfied by the right hand boundary = 0. This is illustrated in Figure 3.
value, so that it is approached non-uni-

formly by p*(z) only on the left side,

i.e., we have here a boundary layer

phenomenon on one side only. A figure

for the stretched variable in this case

would resemble Fig. 1b, except that the

right end points of the several P¥(t)

would be below the axis, since P*(a) =

Pa/py is < O here.

§ 1. Formulation of the problem in terms of Functionals.

In order to investigate the existence and uniqueness of solutions
of our problem, it is convenient and useful to formulate the pro-
blem in a new way. Accordingly, we introduce the functionals

1
oy B =i fe)re
roz) Mg =k[ gere
(Los)  KHg) = [ piedde—dp—p)*

= [ o) — 4o —pu)1ta,
where p,(z) is a functional in ¢ through
(1o8) ap.(o)= [ ¢@ni— [ i+ | @) +200p)
or, alternately,

(1.04a) pa() = pa(1) — 3 f ¢(#)d,

and where

(1.05) f(@) = (p2 + P1) + @(py — p1)-
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The functional to be minimized is
(1.06)  W*g) = D*(g) — H*(g) + K*(g)
1
— | tha2— 41 + pElda — 4(ps— p°

By admissible functions we mean functions g(z) continuous in
— 1 < o £ 1, with L2-integrable drivatives in the same interval.
The minimum ‘problem, MF¥, is that of minimizing W¥(q); the
problem S* is that of making W¥*(q) stationary, in each case with
respect to admissible functions ¢*. The boundary value problem, B¥,
requires the determination of an admissible function ¢(2) possess-
ing a continuous second derivative, and satisfying the differential
equation

(1.07) e + Pg = 0
and the boundary conditions
(1.08) g:(—1) =0, ¢, (1)=0.

The function p(z) in (1.07) is defined by

(1.09) pe) =+ | paté)da

where p,(z) is given by (1.04). The function p therefore satisfies
the differential equation

(1.10) Pze = %qz
and the boundary conditions
(1.11) p(—1) =p, p(l) = p,

The first of (1.11) is immediately evident from (1.09); the second
results from substituting (1.04) in (1.09) and simplifying.

The connection between the problems S* and B* is based on
two “Green’s” formulas. They refer to the first variation

1
(L12) oW = 2f (kq.09. — $/90¢ + p.op.da,
-1
where dp, is defined, in accordance with (1.04a), by
1
(1.13) 0P, = dp.(1) — [ q(2)09(3)d.

Using product integration and the fact that p,, = 4¢3 we may
write (1.12) as our first Green’s formula:

1
(1.14) SWH(q) = 2 f ha.d0, — padq)d.
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If ¢ possesses a continuous second derivative, we may again
employ product integration, this time to simplify the integrand
¢.99,. We thus obtain

1
(1.15) OW*(q) = — 2f_l(kqw + pg)dgdz
+ 2k[g,(1)9g(1) — go(— 1)d¢(— 1)],

our second Green’s formula, which holds for all admissible func-
tions ¢ possessing continuous second derivatives. Formula (1.15)
yields immediately

THEOREM 1.1: A solution of B¥ solves S*.

The converse also holds, as we shall now prove.

THEOREM 1.2: A solution of S* (.-. also a solution of MF¥)
possesses a continuous second derivative and solves BY.

To prove Theorem 1.2, we make use of the following

LeEmmaA: Let R(x) be an L2-integrable function, and S(z) be a
continuous function such that

1 1
f RT  dz = f STdx
-1 -1

holds for all continuous functions T'(z) with L2-integrable deri-
vatives which vanish identically in the neighborhood of # = — 1
and # = 1. Then R(z) coincides (almost everywhere) with a
function R*which possesses the continuous derivative — S. We
note in addition that R* = R in case R is the derivative of a con-
tinuous function.

We apply this Lemma to R = kq,, S = pq, where ¢ is a solution
of S*. Since 6WW¥*(q) = 0 for the admissible variations d¢ = T, it
follows from (1.14) that kg possesses the continuous second deri-
vative — pgq; thus ¢ satisfies the differential equation (1.07). We
now apply (1.15); it yields
(1.16) 74(1)0g(1) — gu(—1)0g(— 1) =0
Now dq is arbitrary; thus, when among possible values, d¢(1) = 0,
then ¢,(— 1)d¢(— 1) = 0 implies ¢,(— 1) = 0; similarly, dg(—1)
= 0 leads to ¢,(1) = 0. Thus the boundary conditions (1.11) are
satisfied, and Theorem 1.2 is proved.

§ 2. Uniqueness theorems.

Continuing the notation used in § 1, we prove
THEOREM 2.1: There is at most one solution q of the minimum
problem M¥, apart from the sign of q.
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We first dispose of the case in which ¢ = 0 is a solution of M*,
In this case the functional W* is non-negative; otherwise there
would be a function ¢* with W¥(¢g*) < 0, and W¥*(q) = 0 would
not be the minimum. If ¢ is any solution of M* with W(q) =
D(q) — H(q) + K(gq) = 0, then for constant e, W(eq) =
e2[D(q) — H(q)] + ¢*K(q), as we see from the definitions of D,
H, K, and p, in (1.01—4). From the two preceding equations we
have W(eq) = (et — e2)K(q),, which would be negative for e < 1,
unless K(q) = 0. From (1.08) and (1.04), K = 0 implies ¢ = 0.
Hence ¢ = 0 is the only solution of M* if W¥ is non-negative.
From now on we may thus leave aside the case in which ¢ =0
solves M*,

We have noted in Theorem 1.2 that a solution of the minimum
problem M? also solves S* and the boundary problem B. Hence
Theorem 2.1 (for ¢ # 0) results from the following two theorems:

THEOREM 2.2: A solution q(x) #£ 0 of M* is nowhere zero in
the interval —1 < ax < 1.

THEOREM 2.8: A solution q(z) of B* which is nowhere zero in
the interval — 1 < x < 1 s, apart from the sign of q, the sole solution
of M*.

An immediate consequence of Theorem 2.3 is the following

CoroLLARY: The problem M* has only one solution, apart from
the sign of q, which is nowhere zero in the interval —1 <z < 1.

We prove Theorem 2.2 indirectly. We may assume p # a con-
stant, for otherwise ¢ =0, a case already considered. Let us assume
that the solution g(z) of M¥* vanishes for some value of z, say z,.
We now construct an admissible function ¢° for which W(¢®) <
W (q), in contradiction with the minimum property of ¢. First, let
us replace ¢ by | ¢ |. Since ¢ occurs in all three functionals only to
even powers, we observe that W(l q I) = W(q). We have

lgl.=¢, for —1=z=<ua
|gle=—¢, for z,<z=<1

We next introduce a positive functional n(z) # 0 with continuous
derivatives, and a constant e whose propertes will be assigned
later, and then define ¢* = Iq | + en. We note that

1 1
f [¢*(x)]2dz — f Fla)e = e . d*(a),
where

dé(z) = 2f1n(w) . Iq(w) | de + efln2(a:)dw.



126 Howard G. Bergmann. (8]

For future reference we note that
(2.01) d’(1) = 0; di(z) = —2n | q | — en?;
1 1
f z[2n | q | + en?lde = ad*(z) |}, — I d*(z)dx
1 -1

1
= d*(— 1) — 24, where 24 = f dé(x)dz.
-1
To obtain our contradiction, we make some calculations. First,
1
Dig)—Dlg) = k[ [1q12+ 2en, | gl + en— ) de
-1

1
= kef 2n,|q |, + enZ]dx. Next,
-1

Hg)— Hg) = }[ @) [1gl*+2en |g| + nt— 7] o

= epyd’(— 1) — eA(p; — p1)-

To calculate K(¢°)—K(q), we must first calculate p,(¢°) —p.(q)-
Using (1.04), somewhat altered, and (2.01), we obtain, after
straightforward calculations, the result

K(¢) —K(g) = f epaqldi(—1) —d'(@) — A)da + B,

1
where 4B is a temporary abbreviation for [d*(— 1) —d*(z)
-1

— A)%dz. Since d*(— 1) and A are constants, the integration of
the product of these numbers by p, can be effected. Recalling that
p(— 1) = p, and that p(1) = p,, we have

1
K(g*) —K(q) = e(pa—py) [d(—1) — 4] —e f Pudi(z)dz + B,
Since W = D — H 4+ K, we now have

1 1
W)= W) = ke[ (gl + enilde—c| p,d(a)as
-1 -1
—ep,d*(—1) + e2B.

Using product integration on the second integral, we may finally
write the right hand side in the form

1 1
= ef [2kn, | q|,—2np | q |]de + e2f [kn? — n?pldx + ¢*B.
-1 -1

We shall show that for a suitably chosen n the quantity in the
first bracket is negative, so that for a sufficiently small positive e,
W(q*) — W(q) will be < 0, contrary to the minimum property



[9] The boundary layer problem for certain differential equations. 127

of ¢. We must at the same time show that this quantity is not
identically zero.

Since g(z,) = 0 by hypothesis, we have ! q | = ¢ for < x,, and
— |q|=q for ¢ = x,. Hence p |q|= — kq,, for x < ,, and
P I q | = kq,, for # = x,. We note that here we are making use of
the fact that ¢ solves B* and hence satisfies the differential equa-
tion kq,, + pg = 0, also that ¢ is initially positive. This last we
may assume since the sign of ¢ is clearly arbitrary. We now
employ the fact that if a solution g(z) of such a differential equa-
tion vanishes at a point x = ,, then ¢,(x,) # 0 unless g(z) = 0.
Hence, in our case, ¢,(2,) 5% 0. Since ¢ is a decreasing function,
Qx(wo) <.

Examining the coefficient of e, we find

1 1 X, 1
2 f [k, )| ,—nplq|lde=2k f nalgludot2k [ g, dz—2k f NGead,
-1 -1 -1 £

which by product integration is

Lo 1
2k f n. (g1, —¢.]de + 2k f 12 (191, + g.de + hen(z) g, (@)-

As already remarked, | q Iz =g, for —1 < @ < @), so that the
first integral = 0; similarly, since |¢ |, = —g¢, for g, =2 <1,
the second integral also = 0. Hence the coefficient of e is merely
4kn(zy)q.(x)- n has been defined as positive throughout the range
of z, and, as we have seen, ¢,(z,) < 0. Hence the coefficient of e is
negative, so that our constructed function ¢* contradicts the mini-
mum property of ¢. This contradiction establishes Theorem 2.27

We now turn to the proof of Theorem 2.8. This theorem is equi-
valent to the statement: If ¢* is any solution of B* which does not
vanish for —1 <2 <1, then W(q) = W(q*) for every ad-
missible function ¢, and the equality holds only for ¢ = 4 g¢*.

Let p and p* be the functions corresponding to ¢ and ¢*, respec-
tively. We derive by product integration the identity

1 1
| ot —porras = 20— pp.) —2[ prpsda.
We now introduce the quadratic functional
1
7(q) = | (kg —p*e?)do.

Both the identity and the functional clearly exist for admissible
q. From (1.04), simplified,

1
pa1) = [ (1 + a)gide + H(ps—po)
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This, used in conjunction with (1.05), gives us

H(q) =p, f _lqzdw + 2(p2 — P1)P(1) — (P2 — p1)%

Employing this form of H, we have

1
Wiq) = f l(kq: —p*¢® + [p* —p,]e® + pi)de
— 2(p2s — P1)P2(1) + ¥ (p2 — p1)?
1 1
= T(q) + f lpidw — 2f lpZ P.dz + 3(p2 — p1)%

1
W(g*) = Tq") — [ (p2)rde + $ps—po)
Subtraction yields the identity :
1
(202)  Wig)—W(e*) = T(@)—T(q") + | (. —piPde
-1
Theorem 2.8 is a consequence of (2.02) and
LEmMA 2.1:  For admissible ¢
(2.08) T(g*) 2 0,
where the equality holds only for q = cq*, ¢ a constant.
Lemma 2.1 implies
(2.04) T(q*) = 0.

If Lemma 2.1 holds, (2.02) yields W(q) = W(g*), the equality
holding only for ¢ = c¢*, p, = p). This last statement gives

1 1 1 1
— 2dz -2 )a2dr = ! *)2dp 7 )(g*)%dz;
%queri (1 te)grdz %L(q )dw+if_l(1+w)(q )d

1 1
e, — 3] @—gdi =3[ 0+ a)g— )i

Since the right side is clearly a constant, while the left is a function
of z, the left integrand must be zero, i.e.,

¢g=+q* ,
Hence Theorem 2.3 is proved once the inequality (2.03) is esta-
blished. This inequality states that ¢* minimizes the quadratic

functional T(g). We proceed to prove Lemma 2.1.
Since ¢* > 0, we may introduce the function

(2.05) G = q/q*
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With this function G, we shall prove the identity

1
(2.06) T(q) =k| Glq*%dx

-1

holds. This identity implies that T(g) = 0, and that the equality
holds only if G, = 0 (since ¢* # 0), i.e., if G = ¢, a constant, or if
g = cq*. Thus Lemma 2.1 follows from (2.06). To prove (2.06) we
apply Jacobi’s identity

b

b b
f [f: + wlw,, f*ldz = fwz[w—lf]:¢v + w—lw:‘:f2

to w = ¢* and f = ¢, and obtain

1 1 1

(¢ + ¢* g, %dz = j lq"‘z[q*“q]idw + ¢* ¢l ¢? .
-1 — -
1

1
=JQWM+MWW
-1

However, g2 is finite, ¢* # 0, and ¢}(— 1) = ¢3(1) = 0.
1 1

k| @ il — k[ G
-1 -1

But kgq}, = — p*q*, so that we have

1 1
k| Gig**dx == f (kg + g*(kqy,)q?l d
-1

-1

1
=fyﬁ+¢ﬂ—wmmw
1
= f Lrgs —p*glde = T(q)

Hence Lemma 2.1 is proved, since (2.06) holds, and, with it,
Theorem 2.8.

§ 3. Existence theorems.

In this section we prove the existence .° the solutions of the
minimum problem M*. We apply direct me . ‘ds similar to those
used for linear boundary valuc problems (ci. 1, Vol. II, Chap.
VII). We use the same for:nu!+iion of the minimvn problem M*
asin § 1, « cccnt that we find an taer form of the fui- tional K(q)
mo:- onvewn..at. Functions 7 adwmissible with restec. to the
probl.w. A% in the wcnse of § 1 (P 122 g~ here vefe 2. 2 a-
k-admissible functions.
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For the new form of K*(q) we introduce the function y(z) by
means of the relation

(8.01) p(z) = {[f(z) —y(z)]
= —dy(x) + 32(ps ——p1) + 3(p2 + P1)
whence px(m) = %yx(w) + %(pz - pl)'

From (1.03) we have at once our new form of K:

1
(3.02) K¥g) = 3| yiao

If we express p as an integral of the equation p,, = 3¢* and
calculate the constants of integration by means of the boundary
conditions, we obtain

@08)  pe) =1 @—a)rdi — 1 @—ijpds

+1f @ —1)gdi+ @,

" Hence

x . - 1 . .
@ot)  y@o)=—1 @—idi + 1 @—dprds

e

We have then for future reference that

1)q%dz

0.05) v =—3[ a4 ¢pas— [ ipas

(3'06) ya:a:(m) = qz(w)
(8.07) y(—1) = y(1) = 0

Our theorem here is

THEOREM 8.1: To every k > O there exists at least one k-ad-
missible function q(x) for which W¥(q) attains its minimum.

Such a minimizing function will be denoted henceforth by ¢*(z);
it is uniquely determined (Th. 2.1) once the condition ¢*(0) = 0
has been imposed.

The proof of this theorem, as well as of those in § 4, is based on
a number of preliminary lemmas and inequalities, which we now
proceed to establish.

5 —
(8.08) f yde < Vb—a. V [‘byzd‘v (Schwarz)

J a
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A. Now y(z) =y(—1) + r E/;(Jz)di

cy@)] = |u=n) |+ | gatirai

f Yz dz
-1

2
since y(—1) = 0.

2

oy P = 2|y(—1) 24 2

f yzdx
-1

§2|w+1l.ifxygdi
-1

n§2

1
= 4«f y2dx from (8.08)
-1

1 1
(8.09) .-.| y¥(x)dz = Sf y2(x)dx; hence, from (8.02),
-1 -1

1
(3.10) y*(x)dz = 82K*(q)
-1
B. We next proceed to establish the inequality
1—c k
(3.11) f gtde < 2]/%,
—14¢ c

1—-c

We start with j
—14c

—1=v=—1+¢ and ¢ is a positive constant yet to be
determined, but necessarily < 1. From (8.06) we then have

1—c %
f g < — f Yol < — [,() — y,(0)]

~14¢c

%
g¥dx = f g*dz, where 1 —c=u =1,
v

1—c 2
- ¢da) < ) — 20,00 - 1.0) + 20).

—1+¢
Integrate with respect to w and then v. We have

1—c 2 —~1+c 1
cZ( f 1 qzdw) < f T 2 + 20 pato) + i) dudo
—1+4¢ - —c
1 —14c 1 ~1+c
<cf g +cf woyw—2[ yawdu|  y(o)o
—c 1 1

1 - 1—c -

1 -1
the last from (8.08). Since a? + b2 = 2ab,

¢ rl—c 2 1 —14c 1 —14c
cz(f q2dw) <c f Yidu+c f Yidv+ c[ yidu + yf,dvjl

—14¢ 1-c® -1 1-c -1

1 —1+¢ 1 —1+4¢
<c| Ydu-itc y2dv + 2CVJ yﬁduV y2dv,
—C 1—c -1

1 —1+c 1
< 2cf y2du-+2c Yodo < 2¢| yi(x)dr <8cK*(q), from (3.02).
-1

1-¢ -1
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Now dividing both sides of the inequality by ¢? and extracting the
square root, we have the desired result, (3.11).

C. Next, we shall show the existence of a constant g > 0 such
that H < 2gVK + }D/k for any k-admissible ¢ and all k > 0.

We start with
qg(@') = q(z") + r g.dv, —1s2'=s1, —1=a"=1
o

2
’”

.| q(a") 2 J q,dz

<2|q@@’) 2+ 2|2’ — 2dw [by (8.08)]

1
(L n)|2_|_2|wr___(rnl.J' lqzdﬂf

1
Recall that D¥(q) =IcJ q2dx; also, let us integrate (3.12) with
-1

(8.12) .-, |gq(@)

respect to a’ in the interval —1 to — 1 + ¢, and then with
respect to '’ over the interval — 1 4 ¢ to — 1 + 2¢, where ¢ is
the constant referred to in section B, P. 131.

—1+2¢ r—1+4c —1+2¢
J f g*dx’ dz" < 2cf | q(2") [2da”

—1+¢ —1+4¢
D(Q) _1+90J._1+c ’ vu l dl-" dl'”
—1+4¢
~1+¢ —1+42¢ 203D(q)
.. cf gidx = 2cf q¥de + ———
-1 —~14c k

—1+¢ —1+2¢ 2¢2D
(3.13) .-. f gtdx < zf g*dx + :
-1 —1+¢ I'f
We return to (8.12) and integrate twice again, first with respect
to @’ over the interval 1 — ¢ to 1, and then with respect to 2"’ over
the interval 1 — 2¢ to 1 —¢. We have

1 1—c 2 2D
(3.14) J q2d¢v§2f gde + =

1-c 1-2¢ l‘/

Add (3.13) and (8.14); then add f g*dx to both sides. Then

—1+c

—1+¢ 1 —1+2¢
f @?de + J Q?dx + ¢?de < 2[j q*dx + f 2dw]
-1 —l+c 1—c 1+c 1-2¢ .

+ J. Q?dz + 4c2DJk, or
—1+c
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1 1—c
(8.15) Q¥dx = 3f g*dzx + 4c2D|k
~1 =1+¢
Now from (1.05), if p, > p,, the maximum value, 2p,, of f(z)
in the interval —1 < # < 1 is attained when 2 = 1; if p, < p,,

the maximum value is 2p,, and occurs when # = — 1. From
1
(1.01), H %f f(x)q%*(x)dx, so that H < %max}‘(w)f q2dz.
-lsz=1 -1
Denoting by N the greatest of p,, ps, and 1, we may now write
1
(8.16) H¥q) < Nf q%dx
-1
Using (8.15) and then (8.11), we obtain
1-¢ 42N D 4e2ND
(8.17) H §3Nf gde + =2 NV 2
—1+¢
Now we choose ¢ = (8N )'l/'. Therefore, finally,
(8.18) H < 2gVK + D/2k,

where g = 8(2N)+ and is therefore a positive constant, greater
than 1, and depending only upon the constants involved in the
boundary conditions.

From (3.18) and (1.06) we deduce

(819)  Wig) = fj’+Kk(q) 2gVEHq)

D*(q)
2¢

v

+ (VK*q) —g)* — g

which implies

LeEmMMA 8.1: For k-admissible functions q, W¥(q) has a lower
bound, — g2, independent of k.

From (8.19) we obtain the following inequalities:

D*(q)

k
(3.20) K*(q) < 2W¥(q) + 4g*
H*(q) < 8W*(q) + 6g?

Consider now a set of k-admissible functions ¢ (with k£ not ne-
cessarily fixed) for which W* has an upper bound M. We conclude
from (8.20)

LEmMA 8.2: An upper bound M for W* implies upper bounds
for D*/k, H* K* which depend upon M but not upon k.

= 2W(q) + 28°
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We now prove the basic

LemmA 8.83: For a fized k, let q,, be a sequence of k-admissible
functions for which W*(q,,) is bounded. Then there exists a subse-
quence q, converging uniformly to a k-admissible function q such that

(8.21) lim D*(g,) = D*(q)
(8.22) lim H*(¢q,) = H"(q)
(8.28) lim K*(g,) = K*(q)
(3.24) lim W*(q,) = W*(q)

A bound for W implies, by Lemma 3 2, bounds for D, H,,, K,,;
i.e., the sequences f (¢m)2dz and } ]‘qz dx are bounded. In the

interval considered, f(z) is always > 0 whenever p; and p, are (as
they are in the present Case I), and is clearly bounded. Hence we
may explicitly assume

1 1
(8.25) [ree=a, [ @uie<s,
1

-1 L

A and B representing positive constants. Now

| 4a@) — an@) | = | [ (@u)ate

<V —a V J (gn)idz [by (8.08)]
< V2B [from the range of z & (8.25)]

Hence the sequence g,,(z) is equicontinuous. Moreover, all ¢,, are
bounded, for, as above,

In(@) — gn(@ f(qm )dz < Vaz+1. Vf (¢,)%dz < V2B
- gn(@) < ¢n(2) + V2B, whence | gu(@) |2 < 2| g(@) [ + 4B.

Integrate with respect to # between — 1 and 1. We have
2| ga(z) 2 < 2f (qm)?dx + 8B < 24 + 8B, from (3.25).

“.|gm(®)|? < A + 4B, whence gq,, is uniformly bounded. Thus the
sequence q., satisfies the conditions of Ascoli’s Theorem ([3], P
886). Thus we have the existence of a continuous limit function.
To establish our inequalities, we must also show that this limit
function possesses a quadratically integrable derivative. To this
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»
end, we assume for (q,,), the Fourier expansion X a{™u,(z). Then
1

1
a™ = f (9m)s%,(x)dz (aside from constant factors)
=l

1
by product integration.
-1

——] ;(qm[u,(w)]wdwﬂm(w) ()]

Ascoli’s Theorem showed that there is a subsequence of ¢, (z)

converging uniformly to the continuous limit function ¢(z); but

if in an interval a sequence of functions F, tends uniformly to the
b b

limit function F(z), then f F(z)dz = lim | F,(x)dz. Hence a™

approaches a limit, which we denote by a,. Then clearly

1

a4 = — f g, (@)], dz + q(2) - (@)
-1

1
From (3.25) f (¢)2dx < B; then Bessel’s inequality ([4], V. I,
-1

P. 451) gives us % [al™]2 < B. Then all the more % (a2 < B,
where R is arbitr;ilry; whence §[a,]2 = B, the coni'ergence cer-
tainly being true for a finite nulmber. Since R is arbitrary, how-
ever, we have ?.[a,]2 =< B. This inequality permits us to apply

the Riesz-Fischer Theorem ([5], V. II, P. 577). Thus there exists
a unique function k(z) for which a, are the Fourier constants and
which is quadratically integrable. We now proceed to demonstrate
that h(z) = q,(w) Let us consider an arbitrary function g(z) =

Zb u,(z), with sz << 00. Again from the Riesz-Fischer Theorem,

(m) is also L2- mtegrable Since both k(z) and (g,,), are L*inte-
grable, we may apply Parseval’s Theorem to obtain

1 )
f 8(2) @, (z)dz = Zb,al™; J g(@) h(x)
1 1

We claim that as m — oo the first of these expressions approaches
the second. We have

f_lg(m)[qm, (:I’) i h(w)] de = % br[ai’”) - ar]

= Zb P(a" —a] + Zbr[a‘"”—a]

R+1
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The absolute value of this last expression, by Schwarz-Cauchy, is

R -] (- -] -]
<Xlb|.|a™ —a| + bz{ 2 (m)z}
2] | | Vz Vgla,+V2[a,]

R+1

@ @

Since X b% < 00, we can choose R so large that X2 < e; and
1 R+1

because of the convergence of the a{™ to the a,, we can then choose

m so large that | a™ — a, | < e. Hence our previous expression is
R o —

<X lb, |.e+ Ve[V B + Vv B], which clearly can be made arbi-
1

trarily small.
Now let g(z) =1 for —1 Sz <3
= 0 for e <1.

Then from the result just obtained,

f [gn(@)],dz — f h(@)dz; e g(z) — gu(— 1) — f h(z)d.
-1 -1 -1
But we already know that ¢, (z) — ¢(2); hence g(z) —q(— 1) =
h(x)dz; that is, h(x) = gq.(z).
-1
The inequalities of our Lemma now follow almost immediately.

Indeed, the relation ¥ a2 < B is essentially (3.21). For (3.22) we
1

write
Hig) — H() = }[_fle)la} — ¢"1do.

Since, as already remarked, f(z) remains bounded, and ¢, tends
to ¢ uniformly, the right side — 0 as b — o0; i.e.,
lim H*(q,) = H(q)-
To prove (8.23), we derive the identity

%m—mm;wﬂzm—H+@rmﬂlm—ﬂm

1
— Py f (6 — gl
from the definitions of H, p,, and f in § 1. Hence, as before, the
right side — 0, so that p, — p, uniformly as b — co. Therefore,
1
p;, — pi. But K(q,) —K(q) = J (p;, — pi)dx. Hence, we have
-1

(8.28).
In view of (8.21—3), ¢ is k-admissible, and, moreover, (3.24)
* holds. Thus Lemma 3.8 is proved.
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We are now in a position to prove Theorem 8.1. We turn, there-
fore, to the problem of minimizing W*(q) by a k-admissible func-
tion ¢. From Lemma 3.1 we know that the g.L.b. w* of W*(q) is
finite; hence there exists a minimizing sequence, i.e., a sequence
of k-admissible functions gq,, for which W¥(q,,) has as limit w*. We
now apply Lemma 8.8; it yields the existence of a subsequence g,
and a k-admissible ,function ¢ = ¢ for which [cf. (8.24)]

W¥(q) = lim W¥(g,).

Since the right member here is the g.l.b. w* of W¥*, the equality
must hold. Hence q solves the minimum problem M¥. This proves
Theorem 3.1.

§ 4. Asymptotic solutions: uniqueness, existence, and con-
vergence.

In the preceding sections we have discussed the existence and
uniqueness of solutions of our problem for a fixed value, not zero,
of the parameter k. In order to determine the asymptotic behavior
of the solutions, it is necessary to formulate a limit boundary
value problem. A simple and rather natural procedure would be
by a passage to the limit in the original differential equations and
boundary conditions. If we let £ — 0 in the equations, they take
the form

Pz = 34" Pg = 0.

The only solution of these equations satisfying the boundary con-
ditions is ¢ =0, p = a linear function, with the constants in this
function fixed by the values of p at the boundaries. However, the
results of numerical calculations in [1] which are applicable here
indicate that wrong results are obtained by this procedure. In the
interior of the circular plate, the study of which gives rise to our
problem, the above procedure seems valid, but the constants
cannot be determined by using the values of p at the edge. The
constants can be fixed only by an investigation of the transition
phenomena from tension in the interior to the prescribed com-
pression at the edges—phenomena which occur in a narrow strip,
the breadth of which decreases as k — 0. These boundary layer
phenomena are related to the fact that the order of the system of
differential equations has been reduced in ¢, although remaining
the same in p. The above discussion indicates that the lost bound-
ary conditions are at the edge.

A treatment of such an edge effect requires that the scale be
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stretched with decreasing & in such a manner that the width of the
edge strip, or boundary layer, as measured in the new scale, does
not shrink to zero. This will be accomplished by introducing new
variables, first one that stretches the right hand edge off to in-
finity, and then one that does the same for the left hand edge.
Because of the symmetry of the problem, only one such stretching
need be studied in detail.

Accordingly, we make the transformation of independent and
dependent variables

(4.01)  t= (z+ 1)Vpyk, P =p/p, Q= Vk.q/p:

These transform our original equations into

(4.02) P, =13Q% Qu+ PQ =0,
with the corresponding new boundary conditions
(4.08) P(0) =1, P(a) = py/ps,

Qt(o) =0, Qt(a’) =0,

with ¢ defined in the interval 0 < ¢t < a, and where, as a conve-
nient abbreviation, we have set

(4.04) a = V2p,/k.

We note that £ — 0 implies @ — oo, and conversely; we shall use

these statements interchangeably. We observe also that the new

equations do not contain the parameter k explicitly, but that it is

involved in the right end point, as well as the interval of variation.
These new equations have the trivial solution

P = [(p,—p1)/ap,]t + 1, Q =0;

also, if there is another solution (P, Q), with Q = 0, then (P, — Q)
is also a solution, so that the sign of Q is arbitrary. We shall there-
fore assume () as positive whenever it is not identically zero.

In this section we wish to prove the existence of the solutions of
the minimum problem M* as restated for the new variable ¢, in-
cluding the asymptotic case M9, and to establish the convergence
of the solutions for k£ > 0 to the asymptotic solution (k = 0) as
k tends to 0. As before, we apply direct methods similar to those
used for linear boundary value problems.

We shall now formulate simultaneously the stretched problems
for k£ > 0 and for k = 0, the asymptotic case.

We require first functionals similar to those in § 1:
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(4.05) H*[Q*] = J:F(t)Qz(t)dt (4.05%) HO[Q0] = f "0ty
hd 0
(4.06) D¥[QF] = j :Q?(t)dt (4.069) DO[QO] = f :Q?(t)dt

(4.07) K*[Q*] = J “Pfdt——;(pzplpl\) (£.07°) K°[Q°]=I:Pf(t)dt

- [0 32

where P,(t) is a functional in @ through

(4.08) PHQ¥]=—} j “Qz(t")dt“ (4.08%) PY[QY] = —} f “opya

+ — f 1Q%(F)dt + = Pf(a %f Q2(%)dt, and
(4.09) Ft) =1+ (Pz — p1)t/ap;.
The functional to be minimized is

(4.10) WHQ*] = D*[Q*]— H*[Q*] + K*[Q]
(4.10°) WO[Q°] = D°[Q°] — H°[Q°] + K°[Q°]
By admissible functions we mean functions Q(t) continuous in
0tZa . 9 C. .05t a<©
0=t< oo with L2-integrable derivatives in 0<t< o and

. . . (4.05—7) finite for all k > 0, P¥
for which the integrals in (4.05°—70) are finite, P

(4.08)
(4.08°)°
of minimizing W*[Q*] (W°[Q°]); the problem S* (S°) is that of
making W* (W?) stationary, in each case with respect to admissible
functions Q. The boundary value problem B* (B°) requires the de-
termination of an admissible function Q possessing a continuous
second derivative and satisfying the equation

being defined by The mintmum problem M* (M°) is that

(4.11) Qu + PQ =0
and the boundary condition(s)
(412)  Q0) = Qua) =0 (4.120) Q,0) =o.

The function P(¢) in (4.11) is defined by

(4.18) Pit)y=1+ f:P;(Z)dZ,
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where P¥ (P?) is given by (4.08) ((4.08°)). The function P there-
fore satisfies the differential equation

(4.14) Py, = }0Q*
and the boundary condition(s)
(4.15) P(0) =1, P(a) = p,/p, (4.15°) P(0) = 1.

The condition at ¢ =0 is obvious from (4.18); that at t =a
follows from substituting (4.08) in (4.13).

The asymptotic problem as here formulated is identical with
the asymptotic problem treated in [1]; accordingly there is no
need to repeat that work here. We consequently take as proven
that the asymptotic problem has a solution and that, apart from
the sign of Q, the solution is unique.

Moreover, the theorems of §§ 1, 2, establishing the connection
between the minimum problem and the solution of the differential
equations, with the accompanying boundary conditions, and prov-
ing the uniqueness of the solution, are equally true for the func-
tions P and Q in the stretched variable ¢ and the corresponding new
functionals in (4.05—6—7); their proofs require merely the ap-
. propriate change in notation. Theorem 8.1 is similarly true in
terms of the stretched variable and functions for the case k& > 0;
for k = 0, we have its truth from [1], as mentioned in the preced-
ing paragraph. However, for convenience we restate the theorem
in these new terms:

THEOREM 4.1: For every k = 0 there exists at least one k-ad-
missible function Q(t) for which W*[Q] attains its minimum.

Here, as before, functions Q admissible with respect to the
problem M¥ in the sense given above (P. 139) are referred to as
k-admissible functions. Such a minimizing function as mentioned
in the theorem will be denoted henceforth by Q*(¢); it is uniquely
determined once the condition Q*(0) = 0 has been imposed
(Th. 2.1 and preceding remarks here).

Our real concern in this section, then, is the existence of solu-
tions for k tending to zero, and the convergence of these solutions
to the asymptotic solution. Since much preparation is necessary
in order to prove our principal theorem (4.2) in this section, its
statement will be deferred until we are ready for it.

Our subsequent results are based on a number of preliminary
inequalities and lemmas, which we now give. Since most of these
relations are identical with or analogous to those derived in § 3,
we merely list the results here.
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(4.16) rYﬂ(t)dt < 8aK*[Q]
0
(4.17) JHQZ(t)dt < 2V2K/c
(4.18) H*[Q] < 2gVK + }D In these
(4.19)  Y(t) = —2P(t) + 2t(p, — p1)/ap, + 2; whence

(4.20)  Y(t) = f; (1 — t/a]Q2(F)df + f:t[1~i/a]Q2(l)df;

(421)  Y,t)=— j :[i/a102<f>df+ f :Q2<f)df;

(4.22) Yu(t) = — Q%2).
Relation (4.20) results from (4.19) and the integral

(4.23) Pt)=—1} f; 1—t/a]Q2(F)dE—} f :t[l —/a)Q2(})dE+ F(t)

of the equation P,, = 102, with the constants of integration deter-
mined by the boundary conditions (4.08).
We note for future reference that Y(0) = Y(a) = 0; and that,

as before, K*¥[Q] = }J Y2(t)dt. Also, here ¢ = (8N)~'ss, where N
0

is the greater of 1 and the ratio p,/p,, and so is positive; and

g = 8(2N)’h, i.e., again a positive constant >1 and depending

only upon the constants involved in the boundary conditions.
As before, from (4.18) and (4.10) we deduce

(4.24) WH[Q] = $D*(Q] + K*[Q] — 2¢VK*[Q]
= §D[Q] + (VK*[Q] —g)* — &

which implies

LemMmaA 4.1: For k-admissible functions Q, W*[Q] has a lower
bound, — g2, independent of k.

From this Lemma, we obtain inequalities corresponding to
(8.20), except that the divisor k of D*(q) is dropped here. These
lead as before to

LEMMA 4.2:  Anupper bound M for W*[Q] implies upper bounds
for D*, H*, K* which depend upon M but not upon k.

In what follows we shall make frequent use of the following
well-known lemmas:

Lemma A: If f,(t) is a sequence of non-negative continuous
functions defined for 0 < t < 00 which converge uniformly in every
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finite interval to a limit function fy(t), then fo(t) is continuous, non-
negative, and
-] a
[ < tim [0
0 0

a—>®0

LemMA B: [If, in addition, for every e > 0, there exists a quan-

tity T = T(e) such that J f(t)dt = e for all a, then
T

fafs(t)dt — jwfo(t)dt as a — oo.
0 0

Now in the integrals of the functions P and Q taken from 0 to
o0, the contribution of the boundary layer at the stretched end has
disappeared as the curve was smoothed out. Hence we cannot
expect that the contribution of such integrals over the left bound-
ary layer and of those over the right boundary layer can be ob-
tained from the integral taken over the entire present infinite
domain. Therefore it is impossible further to investigate the pro-
blem without an additional transformation. We require one which
splits our interval in two, bringing the boundary layer of the
stretched end back to the finite portion of the interval; although
at the same time, the central region in the vicinity of the split
will then be carried off to infinity, its resulting inaccessability is
not troublesome, since this region is of no interest to us, and can
be studied, if desired, before this splitting. Accordingly, to apply
these lemmas and inequalities and continue our treatment we now
make the further transformation

(4.25) R=t for 0=t=<1ta
a—S =t for {a =t=a.

The functionals in (4.05—6—7) then become

al2 al2

(4.26) HMQ) — f F/(R)Q"*(R)AR + f F(S)Q""*(a — S)dS

0
= HYQ'] + H[Q"),

al2 , a2 .

(b27) D¥10) = [ Qpar + [ Qs = DHQ') + DHQ",
0 0

a[2 a2
(4.28) K*[Q] = %f YZdR + if Y¢S = K*[Q'] + K*[Q"],
0 0

respectively, where Q'(R) = Q(¢) for 0 <t < }a, =0 for la<it=a;
Q"(a—S)=0for0=t<}a, =Q(t) for }a<i<a;
Y'(R) and Y"”(a — S) are similarly defined;
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F'(R) =1+ R(py—pi1)/ap; F'(S) =1+ (a—S)(p;— p1)/ap;.
We note that Q’'(3a) = Q"' (3a) and that Y'(3a) = Y'"'(4a). Also,
in (4.28)

a/2 f§ a2 S ~ a/2
(4.29) Y;[Q] = ___J _ledR+f _Quzds +f Q;ng
0 a 0 a R
for ¢t < }a; while for ¢t = }a, we have

y al2 & - al2 -
0"%dR — f S 0243 + f 0'"2dS.
0o a S

al2
(ws0) viie1=[ %
o a
We now require the basic
LEMMma 4.8: Let k,, be a sequence of values of k tending to 0, and
let Q,, be a sequence of k,,-admissible functions for which W[(Q,,]
is bounded. Then there exists a subsequence Q,(R) of Q,(R) and a
subsequence Q. (a— S) of Q..(a—S) converging uniformly in
every finite interval 0 < R < Ry, < o and 0 =S < S, < oo,
respectively, to an L2-integrable limit function Qz(R) and Qg (S),
respectively, for which
(4.31) lim W[Q3(t)] = W°[Q,] + W°[Q,].
kE—0
By Lemma 4.2, a bound for W*» implies bounds for the se-
quences D[Q,.], H[Q,.], K[Q,]. In particular,

al2 al2
H*[Q,,] = F'Q%dR + F"Q.2dS < A, say, and
1] 0

al2 al2
D*[Q,] = [ [QL1%dR+ f [Q/]3dS < B, say, where A
0 0

and B are positive constants independent of k. From the second
inequality we have at once that

al2 a2
(4.32) %R < B, [ 10i%ds < B.
[} 0

In Case I, with p;, > 0, p, > 0, both F’ and F"’ are also > 0, so
that the first inequality above yields immediately

al2 a2
(4.33) F'Q2dR < 4, f F"Q2dS < A.
0 0

If p, = p;, both F’ and F" are = 1, so that (4.833) remains true
when the F* are deleted; if, however, p, < p,, we have somewhat
weaker forms. We have then the final results

al2 al2
(4.34) 02dR < 24, J- Q.2dS < 04,
1] 1]

where 6 = 1 when p, = p,, and = p,/p, otherwise.
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Since D[Q,.], H[Q,.], K[Q,,] are bounded, we may apply the
results of Lemma 8.8 for fixed k. Therefore there exists a sub-
sequence Q,(R) converging uniformly in every finite interval
0 = R < Ry < o to an L%integrable limit function Q,(R) for
which [ef. (8.21)]

Ry Ry
lim ["0}13dR 2 [ "104kdR
k—>0 0 [}
Clearly we can choose a k so small that $a > R,.
2 R,
ctim [oar 2 [ lonaar
k—>0 0 (1}
The left side is independent of R,, which is arbitrary; hence we
al2 Y
have finally that lim / [Q,)%dR gf [Qo]%dR. The treatment
(1}

k—>0 ]
of the functional involving Q"' is exactly the same, so that we have

(4.85)  lim D*[Q,] = D°[Q,]; lim D*[Q,"] = D°[Q,].

=0 >0

For the H’s, we begin with rle ‘0,2 dR <N J“/zQ;’dR, with N

as defined on P. 141, and ¢ neccessarily < }a. Tchen a—c = }a,

so that fale;ZdR < r_cQ,',zdR < 2V/2K]/c, the latter from (4.17).
c ¢

al2
Thus f F'Q,2dR < 2NV'2K/c. Since K*[Q’ ] is bounded by the

hypothesis on W*[Q,], then for a given e and ¢, both > 0, we
can choose a ¢ > ¢, such that 2N V2K /¢ = e, and a k so small that

c {4

f F'Ql*dR — f 072dR
0 o

This is possible because we have already proven the existence of

subsequences of Q,, converging uniformly in every finite interval
to a continuous limit function Q,.

c<%a. We further choose k& such that <e.

From thelast twoinequalities we have

al2 c
F'Q,2dR —f Q;’dR| =2e.
[} o
C
This result, in conjunction with (4.83), gives us f Q2dR < A + 2e,
0
C
so that all the more fonzdR = A + 2e. However, ¢, is as yet
0

Q0 @
arbitrary. Hence, f Q.2dR < o0, so that a fortiori J Q.2dR < 0.
[} Co

oo 0
We now choose ¢, such that f Q:2dR <e, whence f QdR <e.
o c
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Combining this with the preceding inequality, we have

al2 ©

J‘ F'Q}dR —f Q.2dR
] °
The treatment of Q"' is virtually identical with that of Q' above,

so that we have then

(4-36)  lim H*[Q,]'= H°[Qy); lim H*Q,] = H°[Q;].

k—>0 k—>0

k—>0 0

/2 Y
<8¢, or lim F'QdR = f Q2rdR.
[}

To establish the desired relations for the K’s, we employ the
identity (for ¢t < }a)
P2 — ’ ’ ’ s "
PP (VRI00 — YAI03)) = HOL0s) — H¥IO;] + HOQy )

1

— 101+ 22 [Vopar— [ rar + [opras— [ ojras]

Sy ———. f [0 — Q1dR.

Since we have already proven that Q, converges uniformly to Q,
in every finite interval, the integral with limits 0 to R clearly
tends to zero as k— 0. On the preceding page we showed that

al2
Q,2dR <e, so that Q,? satisfies the requirements of Lemma B;

c
similarly, so does Q,2. Hence this Lemma and (4.36) used in
the identity above yield the uniform convergence of Y%[Q,]
to Y%[Q,] as k— 0. Now applying Lemma A to K*[Q,] =

a2

3| [Y,)kdR, we have lim K*[Q;] = K°[Q,]. Again, the treat-
0 k—>0

ment of the right side (¢ = }a), involving Y [Q"'], is essentially the

same as the case detailed above. Thus we have the result
(4.87)  lim K*Q;] = K°[Qy]; lim K*[Q;] = K°[Q;].
k—>0 k—>0

From its definition,

W [Qy(t)] = D*[Q,] — H*[Qs] + K*[Q,]
= D*Q;] + D*Qy'] — H¥[Q;) — H¥[Q;] + K*[03] + K*(05'].
From this identity and (4.85—6—7), (4.81) now follows. Also,
from the same three relations, we see that Q, and Q, are 0-admis-
sible.
Before stating our next Lemma, it will be simpler to develop
the notation required in its statement. We recall that Q'(R)=0Q(t)
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for 0 <t < }a, while Q"(a — S) = Q(t) for }a <t < a. From
Theorem 4.1, we have the existence of the function Q%(¢), a solution
of the asymptotic minimum problem. Then by Q%(R) and Q°'(S)
we shall designate the solutions of the similar asymptotic minimum
problems set up for each half of the split interval. We now con-
struct the k-admissible function Q*(¢) as follows:
First we define Q*'(R) = QY(R) for 0 = R < a/4
= L'(R) for a/4 = R < }a,
where L’(R) is the linear function joining the points [4a, 0] and

[—:—, Q"'(;)]; similarly, we define

Q*(S) = Q¥'(S) for 0 =< S = a/4
= L"(S) for a/4 =S =< }a, where again L"'(S) is the

linear function joining the points [}a, 0] and [%, Q"”(%)]. We

note for later use that the absolute values of the slopes L’ and
4 4

L"” are —Q"'(%) and -—Qo"(%), respectively. Finally, we now
a a

define
0*(t) = Q*(R) for 0 =t =< {a,
= Q*’'(S) for }a =t = a.

We are now ready for
LEMMA 4.4:

(4-88) lim W*[Q*(t)] = W°[QY] + W[Q*"]

k—>0

We have DX[Q*(t)] = f Q¥ (t)dt
(1]

a2 , al2

- f O*(R)AR + j QX"3(S)dS
0 0
al4 a/2 al4 al2

- f 0%2dR + f L2dR + f 0v"2ds + f L2ds
0 al4 0 al4

a4 , a4 4 a a
= [Mowar + [Torras + 2 [om (L) + 0 (%))
[} [} a 4 4

Since Q% and Q"' are 0-admissible, f Q%2R < oo, f 0%"2dS < oo;
0 0

also Q% and Q°’ must remain bounded as k — 0. Hence, as k
does — 0, the last term — 0, while the first two approach

f Q%2dR and f Q%'2dS, respectively. Hence
0 0
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lim D¥[Q*(t)] = D°[Q] + D°[Q""].
k—>0
For H, we have H*(Q*(t)] = f aF(t)Q*Z(t)dt
0
a2 a/2
=I F’(R)Q*'z(R)dR—i—J F"(S)Q*"%(a — S)dS
(1] [\]
al4 al2 ald a2
=_[ F'QU2dR + J. F'L"?dR + J F""Qu'2dS + f F'"L'"2dS.
0 ala 0 ala

® o ()02
Now since f Q%2R < o0, f ¢
[ (1]

dR < 0. Hence RQ%?2 cannot

remain above a positive bound. Therefore, there exists a subse-
quence of R’s, with R — oo, such that RQ%?-» 0; in particular,

. a
then, for this subsequence, aQ%?2 (—I) — 0 as a — 00. Then

a2 a2
0= limI F'L'?dR < lim Max L""'I F'(R)dR

a/ASR=al2
. fa\ 1
= lim aQ° 2(-:1‘—) . [Z + 3(p: — s )/327’1] =0

(where we have used the definition of F’(R) on P. 143), i.e.,
al2 al2

lim | F'L'3dR = 0. Similarly, ]imf F”L'"?dS = 0. As shown
ala

al4

af2 00
in the derivation of (4.36), limf F'QU¥2dR = f QY%dR; also,
0

lim j F"Qu'2dS = f Q%'dS. Therefore
P

lim 4[Q*(t)) = [QiaR + L& ["gvaas
1 0

= H°[QY] + H°[Q""].
Lastly, for K we have K*[Q¥(1)] = J' Y2[0*(1)]dt = I Y2dR +
Y"zdS where Y*[Q*(t)], Y, and Y are as given in (4.21),

(4.29), and (4.80), respectively.
For each half of the split interval we must consider two cases,

according as the variable R (or S)is =< or = —Z—. We give the de-

tails for the left side only. Thus, if R = —Z:,
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ald
YE = "R — Q"R — f R g + f Q°"2d5
0
al2
+ 'S pmg§ + Q°'2dR + L'2dR,
ajs @ als

]
while for this case, Y =f Q%2dR. Now (omitting the various
R

indices on R and Q for simplicity) we may write
1

a/d
— | RQ%R = —f Q%R + — deR (b arbitrary), which in
aJo

b 00
turn = " f Q%R + Zf Q2dR. Since Q is here a 0-admissible
0 b

. :
function, f Q%R < 0. Hence, given an e >0, we may first choose
0

b such that }f Q%R < }e,and then choose an alarge enough so that
b

0 ald
(b/a)f Q2R < }e. Thus we have that as a—>oo,f §Q°'2dR—>0.
0 (1]

Hence, as k— 0, the first and third integrals in Y% above clearly
tend to zero; while from the argument on P. 88, the second, fourth,
and sixth integrals likewise tend to zero. Hence Y — Y as
k — 0. When R = a/4, the expression for Y¥ is the same as for-

merly, except that the single term f L'?d R replaces the last two

integrals of the first case, while Y § becomes f L2dR. 1t is at once

clear, then, that again Y¥ — Y as k — 0. Having the converg-
ence of the Y to the Y'R", s> we can apply Lemma A to K as
before; this gives us that

lim K*[Q*(2)] = K°[Q"] + K°[Q""].
Combining the results for D, H, and K, we have (4.38).

We now prove our principal theorem,

THEOREM 4.2: Given the minimizing function QF(t) and its
associated functions Q'*(R) and Q''*(a— S), with Q'*(0) =0,
Q""*(0) = 0. As k — 0, Q'*(R) and Q"'*(a — S) tend uniformly in
every finite interval 0 < R < Ry < o, 0 =S5 =S5, < o0, re-
spectively, to the minimizing functions Q% (R)and Q°'(S), respectively,
with Q¥(0) = 0 and Q°'(0) = 0. These limit functions are unique,
and, moreover, W*[Q'*(R)] — W°[Q"] and W*Q'*(a —S)] —
wergoen.
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We now take any sequence of positive values of k tending to
zero, and solutions Q*(¢) of the corresponding minimum problems
M* — solutions which exist according to Theorem 4.1. The values
of the minima, w¥*, of W*[Q*] have the common upper bound zero,
i.e.,, w* £ 0. This follows immediately from WZ*[0] = 0, since
Q = 0 is an admissible function. We can therefore apply Lemma
4.3 to the sequence Q% with k& — 0. This Lemma assures the exist-
ence of the subsequences Q'(R) and Q/(a — S) converging in
the sense of the Lemma to 0-admissible limit functions Q,(R) and
Q,'(S), respectively. From now on, Q* refers to such a sequence.
From (4.31),

(4.89) lim W*[Q*(t)] = W°[Q,] + W°[Q,]-
We proceed to show that Q, and @, solve the corresponding mini-
mum problems M°.

The minimum problem M?9, according to Theorem 4.1, has a
solution Q*(t) for which, by Lemma 4.4,

(4.40) lim W*[Q*(#)] = W°[Q] + W°[Q*"].
As a consequence of the minimum properties of Q*(¢) and Q*(z),
(4.41)  w® = WO[QU] + WO[Q*'] = W°[Q,] + W°[Qy),

(4.42) wh = WHQ¥] < WHQ*I.
This last gives
(4.48) Tim W*[Q*] < lim W*[Q*].

Successive consideration of (4.48), (4.40), (4.41), and (4.39)
yields

(4.44) Tm W*[Q*] < Tim W*[Q*] = W°[Q"] + W°[Q*"]
< WO[Q,] + W°[Q,] < lim W*[Q*].

Since l@ Wk[Q*] = im W*[Q*], this implies the equality

(4.45) WO[QY] + WO[Q'] = WO[Q,] + W°[Q,].

This, in turn, implies

(4.46) WO[QY] = WO[Q,]; W[Q™] = W°[Q,];
for otherwise either WO[Q"] > W°[Q,],
or WO[Q*"] > W°[Qy].

However, each of these alternatives is impossible, since Q% anc
Q% are solutions of the minimum problems. Hence (4.46) holds
Since WO°[Q?] is the g.Lb. of W° for the left hand stretched asymp
totic problem, and W°[(Q%’] the same for the right, it follows tha
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the functions Q = Q,(R) and Q = Q,'(S) are the solutions of the
two minimum problems M* for k =0, with Q,(0) =0 and
0,/(0) = 0.

From Theorem 4.1 and the results of [1] (Th. 8.1) for the asymp-
totic problem, we know that each minimum problem M?° has at
most one solution Q with Q(0) = 0. Therefore Q¥ = Q, and
QY = Q,; i.e., all convergent sequences Q'*(R) and Q"*(a — S)
converge to the same limit functions Q% (R) and Q%'(S), respec-
tively. If a sequence has the property that every subsequence
contains a convergent subsequence with limit L, and if L is the
same for all such convergent subsequences, then the original
sequence itself converges to L. Therefore we can conclude in our
case that the solutions Q'*(R) and Q"'*(a — S), with Q'*(0) = 0
and Q"’¥(0) = 0, of the minimum problems M* converge, as k — 0,
to the unique solutions Q%(R) and Q%’(S), respectively, [with
Q%(0) = 0 and Q%’(0) = 0] of the minimum problems M°. This
completes the proof of Theorem 4.2.

We conclude this section with

THEOREM 4.8: For a fized t, P*(t) - PY(R) if 0 <t = }a
and — PY'(S) if }a =t <a, as k— 0.

In the proof of Lemma 4.3, we showed the uniform convergence
of Y¥to Y% and Yg*to Y as k— 0 [P. 145). Since both Y'¥(0) =
Y%(0) = 0 and Y''*(0) = Y%’(0) = 0, the foregoing gives us the
uniform convergence of Y'*(R) to Y%(R) and of Y'*(a — S) to
Y%’(S). From the definition of Y (¢) in (4.19) this implies that

PX(t) — t(py— py)fap, - P¥(R) if 0 <t < }a
— PY(S) if }a =<t < a, uniformly.
Since @ — o0 as k — 0, for a fixed ¢, t/a — 0 with k. Hence, for a

fixed t, P*¥(t) > PY(R)if0 < ¢ < }a,and - PY'(S)ifda =t <a
as k — 0.

§ 5. Expansion in series.

Before we can discuss the limit procedure in the interior, it is
necessary to have some numerical details concerning the asympto-
tic solution of the stretched problem. The reader will recall that
this asymptotic problem was precisely formulated at the beginning
of § 4 [cf. Pp. 138—9).

Accordingly, we introduce new variables @, y, 2 (not to be con-
fused with the space variables used earlier) as follows:

(5.01) @ =je™, y=—w2P(t), 2 = }V2W2Q(t),
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where § and w are numbers to be determined. The interval for
zis J, < ¢ < j, where j, = je="", and tends to zero as a becomes
infinite. In these new variables, the differential equations (4.02)
become
(5.02) 2(2y,), + 22 = 0
z(x2,), — yz = 0.

The introduction of the new variable z has the effect that the
resulting differential equations (5.02) possess solutions expressible
as power series in a:

(5.08)  y=3 (— 1)yt z = B (— 1)z,

k=0 m=0
Substituting these series into (5.02), we find the following formulas
for y, and z,:

(5.04) (2k)y, = X 2,2, k=1,2,...
m+n=k—1

(5.05a) (2m + 1)z, = 2 2,Y: m=0,1,
n+k=m

From the second equation, m = 0 yields 2z, = Y42, Assuming for
the moment that z, 7 @, this coefficient is then arbitrary; we
assign to it the numerical value z, = 4, for the reason given below.
Obviously then y, = 1. We may now rewrite (5.05a) as a proper
recursion formula:

m—1

(5'05) 4m(m + l)zm = X RnYm—n
n=0

It is found amply sufficient to calculate ten terms in each series.

We turn now to consideration of the boundary condition associa-
ted with (5.02). The right hand end values, now taken off to infini-
ty, are automatically satisfied in view of (5.02) and the assumed
development into the power series (5.08). The boundary conditions
(4.08) for ¢ = 0 become

(5.06) Y(j) = —w™, 2(j) = 0.
The second is a transcendental equation in j, to be solved for its
lowest root, which is found to be j = .98618. (The reason for
assuming z, = 4 was to make j ~ 1). This value inserted in the
first equation determines w, which is found to be w = .68754.
Once j and w are determined, the limit boundary value problem
is solved in principle. The function P(t) begins with the prescribed
value P(0) = 1, decreases monotonically, assumes the value zero
at t = .941, and approaches the value P(0) = — w? = —.47271
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as t — oo, the latter value resulting from (5.01). The function Q(t)
decreases monotonically and approaches zero as t tends to in-
finity. 1)

The results just obtained were predicated on the assumption
that z, # 0. We must now consider the alternate possibility. If
2, does equal zero, then it is y, that is arbitrary. In this case it is
not difficult to show that if y, is not chosen in the form (2m + 1)32,
all remaining coefficients in both series are zero. Thus this choice
of y, leaves us with the limit solution of the trivial case, y = y,,
2=0 (cf. § 4, P. 188). If on the other hand, y, s chosen = (2m--1)2,
m any integer, then the only non-vanishing coefficients are yj,
Yomiw Yztzme1)s « - » AN 2y Rzpni1s Zgmaps - - -« Lhis gives us, then, an
infinitude of solutions, depending upon the value of m. However,
each of these solutions may be reduced to (5.08) by a transforma-
tion which simultaneously carries the original differential equa-
tions into formally identical equations in the new variables. Hence
this choice of y, does not lead to an essentially new solution. Con-
sequently, taking z, = 0 lcads to results which are either not new
or of no interest.

We turn now to a proof of the convergence of the solutions
(5.08). For this purpose we first establish the inequality

k+1 1

(5.08) — < (k4 1)1

ZT (k—1i + 2)2

We remark at once that the pairs of terms of the sum equally
distant from either end are identical. Next, we assert that

1 1 1 1 .
—. _ > - . - for certain ¢’s.
1t k—1+2 14+1 k—1+1
This is true if C+1)k—t+1)>ik—i+ 2),
ie., if E+1) >4

Hence the terms of our sum decrease after the first, (k 4 1)-3,
until we reach either the two equal — and minimum — central
terms (when &k + 1 is even), or else the single minimum middle
term (when k 4 1 is odd), and then begin increasing until we
reach the last term, again (k -~ 1)~2. This follows from the in-
equality just demonstrated and the fact that, for positive integers,

1) The numerical results in the foregoing paragraph are taken directly, with
only partial verification, from the Friedrichs-Stoker paper referred to previously.
This is another point where the two papers are identical in form.
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a > b implies a? > b% Hence we have
k+1 ] 1 1
—. (k41
e RS VA
< (k4 1),

our desired result.
Referring now tosthe coefficients (5.04) and (5.05) of the ex-
pansion in series, we shall prove by induction
(5.09) Zpy = 28/n* and
(5.10) Yp1 = 24/n?
Using the recursion formulas (5.04—5) we calculate
Yo=1 41 =4, y. =1, y; = 2/9, and
=4, 23 = 2, 3, =4}, z3 =11/108,
except that z;, being arbitrary, was assumed as 4, as discussed
earlier in this section. We observe that these values verify (5.09)
and (5.10) for n =1, 2, 8, and 4.
For our double induction, we assume that (5.09—10) hold for
all » from n = 4 to n = k, the earlier cases having been verified
directly. Then (5.04) gives

(2’0)2?/1: sz“n = ZZ mBk—m—1

= X [2/(m + 1)*][2%/(k — m)?] [using (5.09)]

ko1 1 . ,
<96211,2'__——(k—i+1)2 [with m + 1 = 1]
= 28/k (from (5.08), with &k 4+ 1 = k]

Y = 24/k%, which is < 24/(k + 1)% for k = 8.
Since our induction started with k = 4, we have that when (5.09)
and (5.10) are true for n = k, (5.10) is true for n = k 4 1. What
about (5.09) then? We have
ak(k + 1)z = X2, Yiem which, by hypothesis,
k—1

< T [2%/(m + 172k —m + 1)
1

=273 — 0 — ith 1=1
2 21:7'2 G ire) [with m + 1]
< 7k§:1 1 1 [adding an extra term
2 Tl (k—7i+ 2): on the right]
Akl + 1)z, = 27/ (k4 1) [from (5.08)]

2 = 28/k(k 4 1)% which is < 23/(k 4+ 1)% whenever
k = 4. Again, since the induction started with &k = 4, we have
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shown that when (5.09) and (5.10) are true for n = k, (5.09) is
also true for n = k + 1. With this result, (5.09) and (5.10) are
established for all n.

We are now able to prove the convergence of (5.08). For the
first series, y,2?* < 2%%*/(k + 1) = u,, say. Using the Cauchy
Ratio Test for the u-series, we have

lim Y7 — o2 lim % —

n—s>wo U, n-—>0o (n + 1)2
Thus the u-series converges at least for — 1 < @ << 1. However,
the range of z is 0 =j, S o <j = .98618 < 1 [cf. Pp. 150—1].
Hence the u-series is convergent for all values of @ under consider-
ation, and therefore, by comparison, so is the series for y. The solu-
tion z is seen to be convergent in exactly the same manner. Thus
both power series expansions in (5.03) are convergent. Moreover,
these series converge uniformly ([4], V. I, P. 3892).

The information just obtained about the asymptotic solutions
PO, Q° of the stretched problem enables us to derive some inequa-
lities involving p, ¢, our original unstretched functions. These
inequalities will be of great use in our study of the limit procedure
in the interior, to be discussed in the next section. We also desire
some numerical properties of the limit functions as expanded in
the power series, as well as two theorems identifying these func-
tions with the limit functions of § 4.

o

Since the alternating series z = X (—1)™z,2?"*, with
. m=0
3,-1 = 8/n?% is uniformly convergent for all z’s considered, we
may write 2z < gz — 2,2%, or, using the calculated values of
2;, 8 < 4@ — 22%. Transforming back to our stretched variables

by (5.01), we have
o) < \/5102(47'6“’“ _ 27'36—3’”)

2% .1

where j = .98618 and w = .68754. Hence we have

Q%) < 2ut(1652%-2vt — 16j%4vt),
Moreover, because of the uniform convergence, we may differen-
tiate term by term, and the result is also uniformly convergent
Similariy, Q2 and Q? may be integrated term by term. Hence we
also have

Qu(t) < V2uP(— 4je=** + 6%3*) and

Q2(t) < 2wb(1652e2wt — 48j4e—4¥t),

Since the lim e~ = 0 as t — oo, with r any positive constant, and
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and fe"‘dt is essentially e, we have

(5.11) Q(t) —> 0 as t — oo;
Q0
(5.12) DO[Q] =J Qidt is finite, i.e., exists;
[}
(5.18) H"[Q]"zf Q2%dt  is finite, i.e., exists.
[
Using the series for y, we find
P(t) = — w?(1 — 492729t + jletvt .. .);
P,(t) = — w?(8j2e2wt — 4gte~1vt. . .);
[P,(t)]? < wb(64g%e1"t). Hence

(5.14)  KO[Q] — J' Pt s finite, ie., exists.
0

We are now prepared for our theorems. First,

THEOREM 5.1: The function Q(t) defined by the infinite series
(5.08) is identical, for 0 < t < }a, with the unique limit function
QY(R) referred to in Theorem 4.2.

From (5.12—38—4), we see that the admissibility conditions are
all satisfied by the power series function Q(¢). It is also a solution
of our differential equations and satisfies the boundary conditions
at the finite end — these were used, we recall, in the calculation
of the constants § and w. From Theorem 4.2, the limit solution
QY(R), for 0 =t =< }a, is unique, apart from sign and once the
restriction Q%(0) = 0 is imposed. Hence Q(¢) is identical, for
0 =<t = }a, with QY(R).

THEOREM 5.2: The function P(t) defined by the infinite series
(5.08) is identical, for 0 =<t < }a, with the unique limit function
PY(R) referred to in Theorem 4.8.

Writing the series for z in terms of Q and {, we have

WV Q(t) = S (—1 )™z, (je=**)#™+1,  whence

@ k-1
Q2(t) = 2wt Z ( z (__ 1)k+lzmzn)j2ke—2kwt,
3

=1 \m=0
while the expressions for P(t) and P,() were given above.
Elementary calculations show that for the power series functions,
P,(t)=— a}f Q2(%)d%. This is the same relation [cf. 4.08°), P. 139]
t

satisfied by P of the minimum problem. Hence the derivatives of
the two functions are identical, so that the functions themselves
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can differ at most by a constant. Howcever, both functions satisfy
the boundary conditions at the finite end. Conscquently, they are
identical.

We claim here that the restriction on the values of ¢ to the inter-
val 0 £t < 1ais not a serious ong, for, given any numerical value
of ¢, however large, we shall ultimately come to a k so small that
t is = la. The inner significance of this will be made clear very
shortly, when we shall also answer a question which naturally
arises here — what rolcs do Q9’'(S) and I’°’(S) play?

We conclude this section with the devclopment of the inequa-
lities referred to on P. 154, and the interpretation just promised.

We return to the discussion of P. 151. Since the limit
function I’°(¢) is a monotonically decreasing function with its
zero at t = .941, we can sclect a value of ¢, say t =1, > .941,
such that I’°(l) < 0; moreover, because of the uniform converg-
ence of P%(t) to PY(R) — now cstablished identical with 1°0(t) for
0 =t = 4a — with ¢ fixed but = }a, (cf. Th. 4.3), we can find a
valuc of k. k == k7, such that for all & < k' all £s under considera-
tion will be £ }a and P¥(l) < 0. Specifically, we shall choose our
k" so that

(5.15) 2Po(l) < Pk(l) < 3 PO(l).

Sinee % is a known function and [ a definite quantity, P°(I) is a
definite quantity independent of k.

Now P, = 10% so that P is everywhere concave upward. For
k = 0. P¥0) = 1, P*a) == p,/p,, where the latter value is positive
whenever p,, p, have the same sign. Consequently, for 0 < kb < £/,
P¥* starts out at 1 1, crosses the axis somewhere to the left of [,
remains negative for a while, and then recrosses the axis to be-
come positive again before ¢ = a. Henee our k&’ can be determined
such that P* remains negative for I ¢ < }a and for £ = k.
Returning now to the original variables and functions of §§ 1, 2,
and 3 by means of the inverse of (4.01),

(5.16) r=tVikjp, =1 =2/a—1
we have from (5.15) that
(5.17) pF(r) <0 for v, =@ <0,
where 2, is the transform of [; ic., @, = 2l/a — 1. We note that
I —>—1as k—0.

It was remarked in the introduction to § 4 that because of the

symmetry, a detailed study of the stretehing procedure was nee-
essary for one side only. However, at this point we find it required
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to cxamine briefly the stretching off to infinity of the other side;
this will provide us with another inequality analogous to (5.17),
as well as a full insight into the dual limit situation.

Accordingly, we subject our original variables and functions
to the transformation

(518) T = (1 —a)Vpyfks P =plps Q = Vig/p,.
This gives us the new equations
(5.19) Prr = $0% Qrr + PQ =o,

and the new boundary conditions

(5.20) P(0) =1, P(4) = pi/ps
QT(O) =0, QT(A) =0,

with 0 < T < A, where 4 = 2Vp,/k.

We note that this variable T is essentially the S of § 4. There
S=a—t=a—3}a(x + 1) = }a(l —2), while here directly
T = }A(1—wa). The only difference is in the constant factors p,,
p; involved in a and 4. Actually a = V'p,/p,4, so that precisely
S = Vp,/p,T. This relationship affords the insight promised on
P. 156.

For 2’s on the left side of the original interval, i.e., for — 1 <
& = 0, (4.01) carries us into the stretched variable ¢ in the range
0 =<t =< 1a. Theorems 4.2 and 4.3 demonstrated that for this
range Q%(¢) and P*(t) approached unique limit functions (apart
from sign) Q% (R) and P%(R), respectively, which the theorems of
this section in turn identified with the power series expansions of
@ and P with the right side carricd off to infinity. In this discus-
sion, if ¢ is given in terms of a, it must be held < 1a, to be a trans-
form of an @ from the left side; but if ¢ is given merely as an arith-
mctical quantity, it may always be regarded as a transform of such
an x, for we can always consider £’s sufficiently close to 0 that }a
is larger than any preassigned numerical value. Hencee, as remarked,
the restriction on ¢ in Theorems 5.1 and 5.2 is not a scrious one.

When we arc concerned with %’s on the right or positive side
of the original range, we employ the transformation (5.18) which
carries us over into the streteched variable 7, now held in0 <7 <
34. Wc observe that the new cquations in 7" are identical with
those in ¢, as arc the boundary conditions, exceept for those at A
and a, respeetively. However, in the expansion giving PO(t) it is
precisely the boundary condition at the non-zero end which can
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no longer be satisfied. Hence the power series expansion of the
function P°(T) is formally identical with that for P°(f). Because
of this formal identity with the expressions in the variable £, § 4
demonstrates also the existenee of unique limit functions analo-
gous to Q¥(R) and Q’'(S) — let us temporarily refer to them as
Q, and Q,, vespeetively. As in Theorem 5.1, we should find the
Q(T) of the power scrics expansion identical, for 0 < 7 < $4,
with Q.. and we should ignore the Q,, as we did here. But the
relationship between S and T referred to above makes it clear
that this @ is really our oid Q%’(S), apart from a constant factor
“involving p; and p,; whenee by a second reflection, Q, is the same
as QU(L). Thus, finally, the true nature of the limit situation is
made apparent

For 2's on the left, our stretehed function Q*(¢) approaches uni-
formly thc limit function Q%(R), while for a’s on the right, we
cmploy the stretehed function Q¥(T'), which approaches uniformly
its limit funetion, Q4. essentially Q97(S). Thus there arc only 2 —
and not 4 — distinet limit functions to be found for the stretched
variable. Specific properties of these functions can be found by
usc of the power scries expansions, which also afford a proof of
the convergence of the limit functions as ¢t — oo.

When we consider the interior, the appropriate transformatiouns
and the numerical results obtained here enable us to give explicit
form to the limit functions approached non-uniformly by the
original unstretched functions p and g¢.

We return to our numerical work. Since P°(T) is formally iden-
tical with 1’°(#), then here again °°(T') begins with the value + 1
at T = 0, becomes 0 at 7" = .941, and decrcases monotonically
to —. 47271 as T — o0. Henee, as before, we can choose a value
of T, sav 7" = r, > .941, such that P°(r) < 0, and choosc a %, k.
such that for all /. = k7, T will remain = {4 and
(5.21) 2P%r) < Pk(r) < 1P%r).

Numcrically, we may take I = r, whenee PO(l) = P%(r), because
of the formal identity. Also, as before, our £ can be determined
such that P*(T) remains negative for r = T = 4, lor £ < k&7
Therefore, similarly,

(5.22) pia) < 0 for 0 = o = a,

where &, = — 2r/4 -+ 1. Again we note that @, — + L as & — 0.
Thus we have
pH(x,) = p, Pr(

) = 4p PO(1), a constant independent of k; and
PH(a,) = pPH(r) =

- 32 2%(r), a constant also independent of k.

lin H’\
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Now in our cquation p,, = $¢% ¢q # 0 for non-trivial solutions.
Hence p is always concave upward. Thercfore, for all 2 between z;,
and @, and for k < I*, the smaller of " and k", p¥(2) < the larger
of ip, P°(l) and LIp,P0(r). If we denote the absolute value of the
larger of these two values by the constant ¢, we can then conclude

Lemma 5.1:  There exists a constant ¢, positive and independent

of k, and a value k*, such that for all I < I*
(5.23) pix) = —e¢
for &y < & =< a,, the end points being described above.

We now give some results for g(z), also needed in the next
scetion. First, since in the interval of Lemma 5.1, p*(z) < 0 for
k < k*, the differential cquation kq,, + pg = 0, with ¢ taken as
> 0 (since its sign is arbitrary), shows that ¢ is concave upward
here; it has points of inflection at the zcros of p*(z). Thus there
exists a minimum value of ¢ between these zeros, say at @ = m.

Next, from Theorem 4.2, Q*(¢) — QY (R) for a fixed {(< }a) as
Ik — 0. Therefore there exists a value of k, say L', and a positive
constant d’ such that

0< Q) =d for E=kK and I St <
Similarly, we have a k" and a d’’ such that
0<QT)=d" for k=Fk” and r =T < }4.

Returning to our original variables, we have

LemMA 5.2: There exists a positive constant d and a k = k*
such that for all kk < k*

(5.24) 0 < q¥(x) = d/\Ek
for x; = x < a,.

Here d is the smaller of 4’, d”’, and k* the smaller of k', k.
We now turn, in § 6, to a study of the interior.

a.

&

§ 6. Limit state in the interior.

While the limit procedure in § 4 concerns the boundary layer,
we deal in this section with the limit procedure in the interior of
the plate as & — 0. For this study, we return to the original equa-
tions in the unstrctched variables. These equations were, we recall,
A Pre = 39°

B L@,y —pg =0 —1=Z2

A
I\
|._

while the boundary conditions were

C p(—1) = py, p(+1) = p,,
D 9.{—1) =0, q,(+1)=0.
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An integral of 4 may be written in the form

zldz + c'x + ¢”

pw) =3[ @

In calculating the constants ¢’ and ¢”’, we employ the value = m,
the abscissa of the minimum of ¢*(z), whose existence was shown
at the close of § 5. These constants are

¢ = pk(m) f ¢*(x)dx

and
" = ptm) — mptm) + 3 [ 02(3)di.
Using these valucs, we have the representation
(601) pH@) = 3 [ (v — F1qE)d + (e — m)pEm) + pH(m);
whence
(6.02) pi) = 3 [ @)z + piim).

Our subsequent discussion will be based on the following for-
mulas. which hold for all & > 0:

(6.03)  pHa’) — pH(a”) = ‘%f (@' — & )g*da
Y f [ — #]g%dF + (2" — a”')pE(m);

604) k@) = [ o —Ep@) ()i + kyi(m):

(6.05) klgH(a')—q*(x")] = f " [i—a')(—p)gdi—ha"—a'lg(@");

z’

(6.06) klgH(a"")—gH(a')] = f (@& )(—p)gdd + k2" —a’Jgk().
P

We are now preparcd to prove

THEOREM 6.1: As k— 0, k=¥q"(x) — O uniformly in cvery in-
terior interval x_ S @ < a,.

We recall the quantities @, and @, introduced in § 5, Pp. 156 and
158. They were the transforms of certain values of the stretched
variables and hence dependent upon k. We noted that they ap-
proached — 1 and -+ 1, respectively, as k — 0.
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To prove our theorem we consider two possibilities regarding
the position of m — it is either to the left of x, or to the right of «,.
Assuming first the latter, we have

gi(xr) =0 for , < x < m;

whence
@) = g*a”) for m; S’ <o’ <m,

and
¢*(z) =d/VEk for x, <z <z, from (5.24).

Hence in (6.05) wec decrease the right member when we replace
—p by ¢ [by (5.23)], q(z) by ¢(z''), and omit the second term. We
have then

, s CqE(a")
q* (@) — q*(2"") > — ,l,

f (z —a')dz.
Considering that ¢*(z) > 0, and that ¢*(z) <d/Vk, the left
member of this inequality is < d/Vk.

- d|VE > ki )

S — )

or

Ef ! 2
o) 2
vk c(z

If m < «,, we consider the interval m < z < «,. Herc ¢f(z) = 0,
whence ¢*(2’) < ¢*(z”’) form < 2’ < 2" < «,; as before, ¢*(z) <

(6.07) na <z’ <m

x')?

d/V'k. Hence, in (6.06) we decrease the right member when we
replace — p by ¢, ¢(z) by ¢(z’), and omit the second term. Now
we have

cq®(x’ . g~
) — @) > T (@ s,
Again, the left member is < d/\//?‘.
— oyl ’
odVE>Y ;w_) CMa" — '), or
k(' 2d
(6.08) 7 \r_) < - mE=xr <’ Za,.

! Y
v
Vi c(x ')

In (6.07) let us set 2" = a;, and let 2" = @, ranging over the inter-
val x, < @ =< m;in (6.08) set 2"’ = x, and lct &’ = «, ranging over
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the interval m < @ < @,. We have then the two relations, valid
for every & considered:

ko 2d .

(6.09) 7 (/_) n rmayp<<srsm
vk e(r—.uay)?
Bla 2d )

(6.10) : 1 (,'—) < B rmomse <.
VE e, — o)

Hence we have for v, < @» < o,

) 2] 1 1
(6.11) Vi < N [(_f__ 'E + (@, — ‘1')'3:|.

Let us now take any interval in the interior: —1 <o S0 =

2, < + 1. Since @, and @, depend upon A, then corresponding to

any n > 0, with v_ —n > —1 and v, + n < + 1, we can find
a k, such that, forall k <k, 0, <w_ —nandwx, > @, + n. Then

from (6.11) we have that for all & < &,

Ela 4d
ﬂj<z
Vk cn?

(6.12) —l<r_sesa, < +1
This inequality proves Theorem 6.1.

Our other theorem in this scetion is

THEOREM 6.2: As k— 0, pF(r)—> p°(v) uniformly in cvery
interior interval v_ < v < vy, where pO(x) is the lincar function

po(x) = R(AT27L)[(py — p2)¥ — (P1 + P2)]-
In (6.03) we had

2’

P — P + @ — ) pin) = 3| (@ — By

’”

&

— }J (" — @)g*de.
m

1. Suppose @, =& <2’ = m.

The right side of the equation above may be rewritten as

i m

&
%f (v—2")g*dae + },J (" —a")g*de. Here cach integral is = 0.
o i
Now an immediate consequence of (3.23—4), i.c., of p¥(r) = —¢
and 0 <g*(x) <d/Vk for v, <o <, is that @2 < [dfe v k] [—pq]-
Since the right side of (6.03) as rewritten above is = 0 for the
assumed positions of @ and 2”’, we inercase the right side when

we renlace g2 bv [d/e \/7;) [— pval. Thus



[45) The boundary layer problem for certain differential equations. 163
(') — pH@) + (@7 — ' )pE(m) < HdJeVE] .
x’ &’
[ @ — o= — [ @ — o) poii |
m m

< 3[djeVE] . U (@' — X)pgdr — f (@' —x )pqdi‘]
< Jde'WVE[gH@') — ¢*(2”)], from (6.04).

2. Suppose next that », S 2" S m <2” Za,.
In this case the integrals on the right side of (6.03) may be

m 2’
written in the form } I (.f'—.r’)q?d.f'——%J. (¥ —x)g¥dx. Since
x’ m

here both integrals are positive, we increase the right side when
we drop the second term, and replace ¢2 by [d/cVk][— pql, as
before. Then

PHE) — P+ (@ — k) S 3LV [ — Eopgdi
=< ide? Vz[q"(.z")—qkz))z.)], as before.
3. Finally, suppose m < @' <2” =, ,
Again our integrals on the right are !_;J‘I (@' —a)g*de —

-
3| (@”"—x)g?dr — both positive, so that we may once more drop
m

the second term and make the replacement for ¢ Then as before

(6.13) pH@’) — pH@”) + (2 — 2)pk(m)
< 3deWk[gH@') — ¢¥(m)].

Since m is the minimum point for ¢, ¢*(m) < ¢¥(@”") for any a”.
Hence we may use (6.13) for all three cases, i.e., we have (6.13)
for v, S0 <2’ =S,
From (6.13) we prove Theorem 6.2. Scveral steps are necessary.
1. Let us choose @' = 2, and 2" = x,. We have
—

(A -
(t,— ) PEOn) = <= [g4) — *(m)] — [p(w) — pH(a)]-

Since @, > — 1 and @, — 1 as k — 0, the quantities in the last
bracket approach p, and p,, rvespeetively; from (6.07—S8), the
quantitics in the first bracket are bounded; finally, @, — &, re-
mains bounded as k — 0. Henee p¥(m) also remains bounded as
k — 0. Therefore we can choose some convergent subsequence of
ks so that p¥(m) — M, a fixed number, as k — 0.

2. In (6.13), now set @' =, and @"’ = a*, a fixed 2. Then
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dV'k
PH@) — pHa*) + (@ — @) pim) | < — = [¢@) — ¢*(m)).

From (6.07—8), V. Eq"(wl) and V'kq*(m) both — 0 with k. For the
sequence of k’s being considered, p%(m) — M, a fixed quantity;
a* — x, is bounded; and p*(x,) is fixed by definition, lying be-
tween }p, P%(l) and 2p, P°(l) [cf. P. 156, (5.15)]. Hence p*(z*) is
bounded for any fixed «*. Therefore we can now select a sub-sub-
sequence of k’s such that p*(a*) converges to a limit U.

3. Finally, set 2’ = @, '’ = a*, both fixed values of x. Then
(6.13) becomes

av'k
| PH(@) = pHa*) + (@ — 2)phim)| < — = [g4(@) — ¢"(a*)].

For fixed interior a’s, (6.12) shows that the right side — 0 as
h — 0. We have already shown that p*(z*) and p%(m) approach
limits U and M, respectively. Also, 2* — @ is bounded. Hence
p*(x) converges to a limit, say p°(x), as k — 0, for interior a’s.
More specifically, we have

p(z) — U + (a* —a)M = 0,

or
po(a) = U — M(a* —2),

so that p%«) is a linear function. To determine its precise form,
we return again to (6.13). Recalling that p*(2) = p, P*(t) and that

P10Q*(t) = Vi;q"(w), we have

d —
@ )pa(m) | = 3 — [PQ* () — Vkg*(m)),

| P PH(t') — pH(a) + (2

where ' > [, but is a fixed value, and x is a fixed interior x. Then
in the limit, as k£ — 0, we have

d
| Py PO) — p°@) + (2 + DM | < 3—p,0°(t),

from Theorem 4.3, and the results of the preceding paragraphs.
Now let ¢ — co. From (5.11), we know the right side goes to 0.
Hence
p@) = pyPO(c0) + M( + 1).
For x = —1,
P(—1) = p, P*(0)
= — .47271p,.

To calculate the other end point, we use the transformation T
[cf. Pp. 157]. We have
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d _
| P PH(T')—p*(2)+ (2 —a") pl(m) | < 3 [P OXT') — Vkgt(a)],

where T’ > r = I, but is fixed, and « is a fixed interior . In the
limit,
d
| P PYT) — p*@) + (2 — )M | < §—pyQ(T").
Again, we let 7' — oo. We have
p°(@) = pa PO(0) + M(z —1).

If z=1,
P°(1) = paPO(c0)
= — .47271p,.
Thus p°z) is a linear function whose values at # = — 1 and
& = -+ 1 are —. 47271p, and — .47271p,, respectively. These
values enable us to calculate M explicitly; for, using # = — 1 in
the last limit relation (or # = + 1 in the first), we obtain
PO(— 1) = — .47271p, — 2M,
i.e.,
— AT271p, = — .47271p, — 2M.
Hence

M = lim p;(m) = }(.47271)(p, — Pa)-

k—>0

Therefore, finally,

P°(2) = $(.47271) . [(p1 — pa)2 — (p1 + Pa))-
This statement completes the proof of Theorem 6.2, and, indeed,
our study of the problem for the case where both boundary values
are positive. We consider the remaining two possibilities, referred
to in the introduction, in the following, and concluding, section.

§ 7. Cases II and III: one or both boundary values negative.

In discussing the solution of our problem with one or both
boundary values negative, we find we are able to utilize many of
the results obtained in our study of Case I. Only slight modifi-
cations are required to give us the desired solution. We shall find
that there is no boundary layer phenomenon at an end where the
boundary value is negative.

Case II:

P >0, py <O.

We start with the same equations

Pm=%qz and kqu+pq=0, —1l=z=1,
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and the boundary conditions

p(—1)=p; >0, p(1) = p, <0, g,(— 1) =¢,(1)=0.

Since we have already studied a stretching of the positive end,
here we shall make a transformation taking the right — and
negative — end off to infinity. We require the same transforma-
tion as in § 4:

t=(z+1)Vpik, P=plp, Q= Vka/p;.
These transform our original equations into

Ptt:%Q2’ Qtt+PQ:0’

and the boundary conditions into

P(0) =1, P(a) = ps/p1, 0i(0) = Qi(a) =0,

where a has the same meaning as before, in (4.04). These equations
are identical with the ones used in § 4, except that the ratio p,/p,
is now negative. The remainder of § 4 follows precisely as before.

Similarly, the material of § 5 through P. 156 is also valid here; at
this point, however, an important simplification enters the dis-
cussion. As before, P%(f) is a monotonically decreasing function
with its zero at ¢t = .941. Hence we can choose a value of {, say

=1, > .941, such that P°(l) < 0; again because of the uniform
convergence of P*(t) to PY(R)[= P°) for 0 <t < }a] for ¢
fixed and =< }a, as k — 0, we can find a value of k = &' such that
for all & < k’ all #'s under consideration will be =< }a and P¥(l) < 0.
Since P, = $Q? P is still everywhere concave upward, and for
k # 0, P¥0) = 1, P*a) = p,/p, < 0. Hence for 0 < k < k', P*
starts out at -+ 1, crosses the axis somewhere to the left of t = [,
and becomes and remains negative, assuming the negative value
Ps/pP; at t = a. Accordingly, we have here (5.17) with the interval
of validity extending on the right to + 1 instead of to 0. This leads
us then to

LemMA 7.1:  There exists a constant ¢, positive and independent
of k, and a value k*, such that for all k < k*, p*(x) =< —c¢ for
<=+ 1, x, being the transform of t = 1.

Since in the interval of this Lemma, p*(2) is negative for
0 < k < k*, the differential equation kq,, + pg = 0, with ¢ taken
as > O (since its sign is arbitrary), shows that ¢, is an increasing
function throughout this interval. But ¢,(+ 1) = 0; hence ¢,
must be negative up to 2 = 1, and the minimum of ¢ is at this
point; i.c., in this case m = 1.
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Lemma 5.2 carries over here, too, except that our interval is
again extended, as in Lemma 5.1. We have

LeEmMMA 7.2: There exists a positive constant d and a k = k*
such that, for all k < k*, 0 < ¢*(z) = dVk form; 2 < 4 1.

Turning to § 6, we have substantially the same results here as
through (6.12), but with -4 1 replacing m. Theorem 6.1 still holds,
but here p°(x) is a different linear function. Instead, we have

THEOREM 7.1: As k— 0, p¥(xz) — p°(z) uniformly in every
interior interval —1 < x_ = < + 1, where p’x) ts the linear
function

p°(@) = $[(py + -47271p, )z + p, — .47271p,].
As on Pp. 162—168, we can show here that

(7.01) | p*(@') — p*(a”) + (2" — 2')pk(1)|
avk
=i 0 [¢¥(@') —g*(=")],

with 2, <2’ <2 < 1. Now as in step 1 on P. 168, if we choose
&' =, and 2’ =1, we can show that p%(1) remains bounded as
k— 0, so that we can choose a convergent subsequence of k’s so that
pE(1) > M, a fixed number, as k — 0. Then, taking 2’ = a; and

1

' = z*, some fixed x, we obtain the result that p*(z*) is bounded
for any fixed z*, and that we can accordingly select a subsequence
of k’s such that p*(z*) converges to a limit, U, as k — 0. Next, as
in step 8 on P. 164, we set @’ == x and 2" = z*, both fixed values of
z, and similarly deduce the existence of our linear limit function

p’z) = U — M(z* — z).
To determine which linear function we have, we return to (7.01),

recalling that p*(2) = p,P*(t), and that p,Q*(t) = \/Eq"(m) We
have

(1.02) | pPEE) — pH(a) + (@ — 2)pi(1))|
d —
= 31— [PQH(E) — Vg (@)].
When k£ — 0, we have
d
| P POE) — pP2) + (@ + DM | < 3—piQ°()-

Now let ¢ — o0. Then

p1P(0) —p°(@) + M(z 4 1) = 0.
For 2 = —1, p°—1) = p,P%(0) = — .47271p,.
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We return now to (7.02) and substitute 4 1 for @. At this stage
in Case I we could not do this, since our inequalities were valid
only up to z,, so that we could use the end point values only after
the limiting process had been effected. Here, then, we have

d —
| PPHE) — PH1) + (1 —2)pA1) | S $— [Pa0H(E) — VEgHD)).

Now we let k — 0. Since @ = 2¢/a — 1, then for a fixed ¢, say ¢/,
&' — —1 as k— 0. Hence we have

| PPUE) — py+ MO+ 1)] S 42 000,

Finally we let ' — co. Then

p1P°(00) — p, + 2M =0,
whence
M = }[p, — p, P%(0)].

Therefore p%(z) = p,P°(w0) + ¥(z + 1)[p; — p,P°(0)], or, using
the value of P%°(0) = — .47271,

P%z) = }[(p; + .47271p,)x + p, — .47271p,],
the limit function for Case II.

Case II1I:
P <0, p; <O.

_Since in this case it is our conjecture that there is no boundary
layer phenomenon, we should expect to find the stretching proce-
dure unnecessary. This is indeed the situation.

We begin with the formulation of the problem in terms of the
functionals H*(¢q), D*(q), K*(q), and W¥(q)=D—H + K,
exactly as given in § 1. We establish the same theorems in precisely
the same manner. Instead of the theorems of § 2, however, we
have here

THEOREM 7.2: The only solution of the problem B* is ¢ = 0.

From the differential equation p,, = 4¢* and the boundary
conditions p(— 1) = p;, p(1) = p,, we -have the

CoroLLARY: In case 111, p*(x) is the linear function

p*(a) = $[(pe — p1)x + (P2 + P1)l-

To prove Theorem 7.2, we observe that the functional H is
always negative when both p; and’'p, are negative. This may be
more readily seen if one writes the coefficient of ¢2 in the integrand
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in the form p;(1 — z) 4+ p,(1 4+ z). Hence the functional W is
non-negative. We have already shown(P. 125) that in this event,
¢ = 0 is the only solution of the minimum problem M¥. Theorem
7.2 then follows from Theorem 1.2.
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