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The boundary layer problem for certain non-linear
ordinary differential equations

by

Howard G. Bergmann
(New York)

Introduction.

The theory of buckling of circular plates leads to a boundary
value problem for a pair of non-linear ordinary differential equa-
tions of second order depending upon a parameter. When this
parameter approaches zero as a limit, the solution will approach
a limit function which is no longer satisfied by all boundary con-
ditions. The non-uniform convergence in the "boundary layer"
can be studied by an appropriate stretching process.
These phenomena have so far been treated only for the special

equations resulting from the theory of plates, in particular in [1].
It is the intention of this paper to establish similar phenomena for
differential equations of a simpler type, which lend themselves
more easily to generalization.
The differential equations considered are

where p and q are functions of x defined, without loss of generality,
in the interval 20131 ~ x ~ 1, with the associated boundary con-
ditions

pl, P2 being given constants.
We shall distinguish three cases:

We are interested in,what happens to the solution p(x) as the
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parameter k approaches zero. We might expect that as k ~ 0, p
and q would approach limit functions satisfying the same boundary
conditions and the differential equations obtained by putting
k = 0 in the original equations. This is not true. There is indeed a
limit function and it does solve the so-called limit equations, but
it does not always satisfy the boundary conditions. More speci-
fically, we should expect that the boundary condition on q is lost
in the limit, for qxx disappears in the limit equation, and so it is
rea.sonable that the boundary condition on q should no longer be
met. This is generally so; that in our case the boundary condition
for q is assumed after all is quite accidental, due to the simplicity
of the particular problem. It turns out that q., does not converge
uniformly, although q does.
However, the interesting result is that the boundary condition

on p may be lost, although the limit differential equation remains
of the same order in p. We shall show that if the original boundary
value is négative, the limit function will still assume this value;
however, if the assigned value is positive, it will no longer satisfy
the limit function2013instead, the function will take on that value,
multiplied by a constant, -.47271. From these remarks, it is clear
that the limit solution is q ~ 0, p = a linear function, determined
by these new boundary values.

In order to establish these facts, we must investigate the details
ofthe non-uniform convergence. To do this, we introduce a stretch-
ing transformation in which the new variable depends upon the
parameter, which at the same time no longer occurs explicitly in
the differential equations. This follows the procedure of [1]. Con-
sidering q now as a function of the new variable, it does converge,
the second order terms in the differential equations are mot lost as
k approaches 0, and both boundary conditions are satisfied at the
fixed end point; but here the difference is that the interior region
as well as the other end is pushed out to infinity. How it behaves
there we settle by the methods of the calculus of variations. The
result is that if pi &#x3E; 0 (assuming the left end to be the unstretched
one), the limit function assumes the prescribed value at the un-
stretched end, and -.47271pi at the stretched end; if pi  0, the
limit function is the constant pi (cf. Fig. ib). It is a strange
paradox that the limit value at the stretched end should be the
value assumed by the limit function at the unstretched end.
The limit function in the stretched variable satisfies tlie same

differential equations and boundary conditions as the function
in [1 ], so that in this paper the author has been able to use many
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of the numerical calculations made there. However, this paper
supplements that work by a proof of the convergence of the power
series expansion of the limit function in the stretched variable.
Use is also made here of the results in [1] of the stretched limit
process to investigate the limit process in the unstretched variable,
the situation again being similar to [1], § 10. However, certain
complications arise here, due to the boundary layer at both ends
in the problem discussed in this paper.

Specifically, our program will be as follows: with reference to
Case 1 (both boundary values positive), we formulate the problem
in terms of functionals (§ 1). This formulation enables us to apply
the methods of the calculus of variations, and prove uniqueness
and existence theorems (§§ 2, 3). Employing now the stretching
procedure, we next investigate the asymptotic behavior of the
solutions (§ 4). The limit solution in the stretched variable is now
expanded in a power series which is proved convergent (§ 5). The
information thus gained enables us to return to the original varia-
bles and discuss the limit state in the interior (§ 6). Here we find
an explicit representation for the limit solution in terms of the
unstretched variables. We conclude the paper with a dicussion of
Cases II and III (§ 7).
We close these introductory remarks with several figures.

illustrating the various cases.

Figure la illustrates Case I. Several
curves pk(x) are shown, for varying va-
lues of k ~ 0. The limit solution p°(x)
[cf. Th. 6.2, P.162] is represented by the
dotted line. We note the non-uniform

convergence, and the region of rapid
change moving toward the extremities
of the interval as k - 0.

In Figure ib we see the corresponding
situation in the stretched variable. P°(t),
shown as a broken line curve, ap-
proaches the value -.47271 as t ~ oo ;
the end points of Pk(t), at t = a, move
toward the right as k ~ 0, i.e., as a~~.
The convergence here is uniform in

every finite interval.
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Fig. 2.

Figure 2 illustrates Case II. The limit
function p°(x) [cf. Th. 7.1, P. 167] here is
satisfied by the right hand boundary
value, so that it is approached non-uni-
formly by pk(x) only on the left side,
i.e., we have here a boundary layer
phenomenon on one side only. A figure
for the stretched variable in this case
would resemble Fig. 1b, except that the
right end points of the several Pk(t)
would be below the axis, since Pk(a) =
p2/p1 is  0 here.

Fig. 3.
In Case III, pk(x) is the same linear
function for all values of k, including
k = 0. This is illustrated in Figure 3.

§ 1. Formulation of the problem in terms of Functionals.

In order to investigate the existence and uniqueness of solutions
of our problem, it is convenient and useful to formulate the pro-
blem in a new way. Accordingly, we introduce the functionals

where px(x) is a functional in q through

or, alternately,

and where
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The functional to be minimized is

By admissible functions we mean functions q(x) continuous in
1 ~ x ~ 1, with L2-integrable drivatives in the same interval.
The minimum problena, Mk, is that of minimizing W k(q); the
problem Sk is that of making Wk(q) stationary, in each case with
respect to admissible functions qk. The boundary value problem, Bk, 
requires the determination of an admissible function q(x) possess-
ing a continuous second derivative, and satisfying the differential
equation

and the boundary conditions

The function p(x) in (1.07) is defined by

where px(x) is given by (1.04). The function p therefore satisfies
the differential equation

and the boundary conditions

The first of (1.11) is immediately evident from (1.09); the second
results from substituting (1.04) in (1.09) and simplifying.
The connection between the problems Sk and B k is based on

two "Green’s" formulas. They refer to the first variation

where 03B4px is defined, in accordance with (1.04a), by

Using product integration and the fact that pxx = !q2, we may
write (1.12) as our first Green’s formula:
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If q possesses a continuous second derivative, we may again
employ product integration, this time to simplify the integrand
qx03B4qx. We thus obtain

our second Green’s formula, which holds for all admissible fune-
tions q possessing continuous second derivatives. Formula (1.15)
yields immediately
THEOREM 1.1: A solution of B k solves Sk.

The converse also holds, as we shall now prove.
THEOREM 1.2: A solution of Sk (~ also a solution o f Mk)

possesses a continuotis second derivative and solves Bk.

To prove Theorem 1.2, we make use of the following
LEMMA: Let R(x) be an L2-integrable function, and S(x) be a

continuous function such that

holds for all continuous functions T(x) with L2-integrable deri-
vatives which vanish identically in the neighborhood of x = 2013 1
and x = 1. Then R(x) coincides (almost everywhere) with a
function R*which possesses the continuous derivative - S. We
note in addition that R* = R in case R is the derivative of a con-
tinuous function.

We apply this Lemma to R = kqx, S = pq, where q is a solution
of S k. Since 03B4Wk(q) = 0 for tlie admissible variations ôq = T, it
follows from (1.14) that kq possesses the continuous second deri-
vative 2013 pq; thus q satisfies the differential equation (1.07). We
now apply (1.15); it yields

(1.16) qx(1)03B4q(1) 2013qx(20131)03B4q(20131) = 0

Noiv ôq is arbitrary; thus, when among possible values, 03B4q(1) = 0,
then qx(20131)03B4q(20131) = 0 implies qx(2013 1) = 0; similarly, 03B4q(20131)
== 0 leads to qx(1) = 0. Thus the boundary conditions (1.11) are
satisfied, and Theorem 1.2 is proved.

§ 2. Uniqueness theorems.

Continuing the notation used in § 1, we prove
THEOREM 2.1: There is at most one solution q o f the miniînutn

problem Mk, apart front the sign of q.
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We first dispose of the case in which q ~ 0 is a solution of Mk.
In this case the functional Wk is non-negative; otherwise there
would be a function q* with Wk(q*)  0, and Wk(q) = 0 would
not be the minimum. If q is any solution of Mk with W(q) =
D(q) - H(q) + K(q) = 0, then for constant e, W(eq) =
e2[D(q) - H(q)] + e4K(q), as we see from the definitions of D,
H, K, and px in (1.01-4). From the two preceding equations we
have W(eq) = (e4 2013 e2)K(q)" which would be negative for e  1,
unless K(q) = 0. From (1.03) and (1.04), K ~ 0 implies q - 0.
Hence q - 0 is the only solution of Mk if Wk is non-negative.
From now on we may thus leave aside the case in which q - 0
solves Mk.
We have noted in Theorem 1.2 that a solution of the minimum

problem Mk also solves Sk and the-boundary problem Bk. Hence
Theorem 2.1 (for q fl 0) results from the following two theorems:
THEOREM 2.2: A solution q(x) ~ 0 of Mk is nowhere zero in

the interval - 1  x  1.

THEOREM 2.3: A solution q(x) of Bk which is nowhere zero in
the interval - 1 ~ x ~ 1 is, apart from the sign o f q, the sole solution
o f Mk.
An immediate consequence of Theorem 2.3 is the following
COROLLARY: The problem Mk has only one solution, apart from

the sign o f q, which is nowhere zero in the interval - 1 ~ x  1.

We prove Theorem 2.2 indirectly. We may assume p ~ a con-
stant, for otherivise q =0, a case already considered. Let us assume
that the solution q(x) of Mk vanishes for some value of x, say xo.
We now construct an admissible funetion qe for which W(qe) 
W(q), in contradiction with the minimum property of q. First, let
us replace q by 1 q 1. Since q occurs in all three functionals only to
even powers, we observe that W(|q| ) = W(q). We have

We next introduce a positive functional n(x) ~ 0 with continuous
derivatives, and a constant e whose propertes will be assigned
later, and then define ql = |q 1 + en. We note that

where
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For future reference we note that

To obtain our contradiction, we make some calculations. First,

To calculate K(qe)2013K(q), we must first calculate px(qe) 2013px(q).
Using (1.04), somewhat altered, and (2.01), we obtain, after

straightforward calculations, the result

where 4 B is a temporary abbreviation for [de(20131)2013de(x)-i
2013A]2dx. Since de(20131) and A are constants, the integration of
the product of these numbers by px can be effected. Recalling that
p(20131) = p1 and that p(l) = p2, we have

Since W = D 2013 H + K, we now have

Using product integration on the second integral, we may finally
write the right hand side in the form

We shall show that for a suitably chosen n the quantity in the
first bracket is negative, so that for a sufficiently small positive e,
W(q,l) 2013 W(q) will be  0, contrary to the minimum property
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of q. We must at the same time show that this quantity is not
identically zero.

Since q(x.) = 0 by hypothesis, we have I q | = q for x  xo, and

2013|q| = q for x &#x3E; xo. Hence p|q| = 2013 kqxx for x ~ xo, and
p|q1 = kqxx for x ~ xo. We note that here we are making use of
the fact that q solves B k and hence satisfies the differential equa-
tion kqxx + pq = 0, also that q is initially positive. This last we
may assume since the sign of q is clearly arbitrary. We now
employ the fact that if a solution q(x) of such a differential equa-
tion vanishes at a point x = xo, then qx(x0) ~ 0 unless q(x) ~ 0.
Hence, in our case, qx(x0) ~0 . Since q is a decreasing function,
qx(x0)  0.

Examining the coefficient of e, we find

which by product integration is

As already remarked, |q|x = qx for 20131  x ~ x0, so that the
first integral - 0; similarly, since |qx = 2013 qx for xo Ç x Ç 1,
the second integral also ~ 0. Hence the coefficient of e is merely
4kn(x0)qx(x0).n has been defined as positive throughout the range
of x, and, as we have seen, qx(x0)  0. Hence the coefficient of e is
negative, so that our constructed function ql contradicts the mini- -
mum property of q. This contradiction establishes Theorem 2.2.
We now turn to the proof of Theorem 2.3. This theorem is equi-

valent to the statement: If q* is any solution of Bk which does not
vanish for 20131 ~ x ~ 1, then W(q) &#x3E; W(q*) for every ad-
missible function q, and the equality holds only for q = Jh q*.
Let p and p* be the functions corresponding to q and q*, respec-

tively. We derive by product integration the identity

We now introduce the quadratic functional

Both the identity and the functional clearly exist for admissible
q. From (1.04), simplified,
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This, used in conjunction with (1.05), gives us

Employing this form of H, we have

Subtraction yields the identity

Theorem 2.3 is a consequence of (2.02) and

LEMMA 2.1: For admissible q

where the equality holds only for q = cq*, c a constant.

Lemma 2.1 implies

If Lemma 2.1 holds, (2.02 ) yields W(q) &#x3E; W(q*), the equality
holding only for q =- cq*, px = p£. This last statement gives

Since the right side is clearly a constant, while the left is a function
of x, the left integrand must be zero, i.e.,

Hence Theorem 2.3 is proved once the inequality (2.03) is esta-

blished. This inequality states that q* minimizes the quadratic
functional T(q). We proceed to prove Lemma 2.1.

Since q* &#x3E; 0, we may introduce the function
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With this function G, we shall prove the identity

holds. This identity implies that T(q) ~ 0, and that the equality
holds only if G. = 0 (since q* ~ 0), i.e., if G = c, a constant, or if
q = cq*. Thus Lemma 2.1 follows from (2.06). To prove (2.06) we
apply Jacobi’s, identity

to 03C9 = q* and f = q, and obtain

However, q2 is finite, q* ~ 0, and q*x(2013 1) = q*x(1) = 0.

But kq*xx = - p* q*, so that we have

Hence Lemma 2.1 is proved, since (2.06) holds, and, with it,
Theorem 2.3.

§ 3. Existence theorems.

In this section we prove the existence " the solutions of the

minimum problem Mk. We apply direct me xls similar to those
used for linear boundary value problems (ci. ’l, Vol. II, Chap.
VII). We use the same formulation of the minimum problem Mk
as in § 1, rcept that we find am tiier form of the func tional K(q)
mo-- onveient. Functions Ã 7 admiss’ble with respect to the

problem Mk in the sense of § 1 (P 123 x-. - h ere refe to as

k-admissible functions.
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For the new form of Kh(q) we introduce the function y(x) by
means of the relation

whence

From (1.03) we have at once our new form of K:

If we express p as an integral of the équation pxx = 1 2q2 and
calculate the comstants of integration by means of the boundary
conditions, we obtain

Hence

We have then for future reference that

Our theorem here is

THEOREM 3.1: To every k &#x3E; 0 there exists at least one k-ad-
missible function q(x) for which Wk(q) attains its minimum.
Such a minimizing function will be denoted henceforth by qk(x);

it is uniquely determined (Th. 2.1) once the condition qk(0) ~ 0
has been imposed.
The proof of this theorem, as well as of those in § 4, is based on

a number of preliminary lemmas and inequalities, which we now
proceed to establish.

(Schivarz)
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B. We next proceed to establish the inequality

We start with 1-c-1+c q2dx ~ un q2dx, where 1 2013 c  u  1,

1  v ~ - 1 + c, and c is a positive constant yet to be
determined, but necessarily  1. From (3.06) we then have

Integrate with respect to u and then v. We have

the last from (3.08). Since a2 + b2 ~ 2ab,
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Now dividing both sides of the inequality by c2 and extracting the
square root, we have the desired result, (3.11).

C. Next, we shall show the existence of a constant g &#x3E; 0 such

that H  2gilfiK + 1 2D/k for any k-admissible q and all k &#x3E; o.

We start with

1
Recall that D k(q) = k ’dx; also, let us integrate (3.12) with

respect to x’ in the interval 20131 to 20131 + c, and then with

respect to x" over the interval 20131 -p c to 20131 + 2c, where c is
the constant referred to in section B, P. 131.

We return to (3.12 ) and integrate twice again, first with respect
to x’ over the interval 1 2013c to 1, and then with respect to x" over
the interval 1 - 2c to 1 - c. We have

Add (3.13) and (3.14); then add q2 dx to both sides. Then

or
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Now from (1.05), if P2 &#x3E; Pl, the maximum value, 2p2, of /(.r)
in the interval 2013 1 ~ x ~ 1 is attained when x = 1; if P2  Pl,
the maximum value is 2p1 and occurs when x = 2013 1. From

(1.01), Hk(q) = 1 21-1 f(x)q2(x)dx, so that H ~ 1 2 max f(x) 1-1 q2dx.
Denoting by N the greatest of Pl, P2, and 1, we may now write

Using (3.15) and then (3.11), we obtain

Now we choose c = (8N)-lls. Therefore, finally,

where g = 3(2N)5/4 and is therefore a positive constant, greater
than 1, and depending only upon the constants involved in the
boundary conditions.
From (3.18) and (1.06) we deduce

whieh implies
LEMMA 3.1: For k-admissible functions q, Wk(q) has a lower

bound, - g2, independent o f k.
From (3.19) we obtain the following inequalities:

Consider now a set of k-admissible functions q (with k not ne-
cessarily f ixed ) for which W k has an upper bound M. We conclude
from (3.20)
LEMMA 3.2: A n upper bound lyI for W k implies upper bounds

for Dk/k, Hk, Kk which depend upon M but not upon k.
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We now prove the basic

LEMMA 3.3 : For a f ixed k, let qm be a sequence o f k-admissible
functions for which W k(qm ) is botinded. Then there exists a subse-
quence qb converging uniformly to a k-admissible f unction q such that

A bound for W implies, by Lemma 3.2, bounds for Dm, Hm, .Km;

i.e., the sequences (qm)2xdx and 1 2 1-1 fq2mdx are bounded. In the
interval considered, f(x) is always &#x3E; 0 whenever pi and P2 are (as
they are in the present Case I), and is clearly bounded. Hence we
may explicitly assume

A and B representing positive constants. Now

Hence the sequence qm(x) is equicontinuous. Moreover, all q. are
bounded, for, as above,

Integrate with respect to  between 2013 1 and 1. We have

. ’ . |qm(x ) 12 ~ A + 4B, whence qm is uniformly bounded. Thus the
sequence qm satisfies tlie conditions of Ascoli’s Theorem ([3], P.
336). Thus we have the existence of a continuous limit functioii.
To establish our inequalities, we must also show that this limit
function possesses a quadratically integrable derivative. To this
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end, we assume for (qm)x the Fourier expansion 03A3a(m)rur(x). Then
i

a(m)r = 1-1 (qm)xur(x)dx (aside from constant factors) 
= 2013 1-1 (qm)[ur(x)]xdx+qm(x) · ur(x)] |1-1 by product integration.

Ascoli’s Theorem showed that there is a subsequence of qm(x)
converging uniformly to the continuous limit function q(x); but
if in an interval a séquence of functions Fn tends uniformly to the

limit function F(x), then F(x)dx = lim Fn(x)dx. Hence a(m)r
approaches a limit, which we dénote by are Then clearly

1

From (3.25) 1-1(qm)2xdx ~ B; then Bessel’s inequality ([4], V. I,
P. 451) gives uns [a(m)4]2 ~ B. Then all the more  (a(m)r] 2 ~ B,
where R is arbitrary; whence S [ar]2 ~ B, the convergence cer-

i

tainly being true for a finite number. Since R is arbitrary, how-

ever, we have  [ar]2 ~ B. This inequality permits us to apply
i

the Riesz-Fischer Theorem ([5], V. II, P. 577). Thus there exists
a unique function h(x) for which ar are the Fourier constants and
which is quadratically integrable. We now proceed to demonstrate
that h(x) = qx(x). Let us consider an arbitrary function g(x) =

brur(x), with  br  oo. Again from the Riesz-Fischer Theorem,
i i

g(x) is also L2-integrable. Since both h(x) and (qm)x are L2-inte-
grable, we may apply Parseval’s Theorem to obtain

We claim that as m ~ oo the first of these expressions approaches
the second. yve have
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The absolute value of this last expression, by Schwarz-Cauchy, is

Since b2r  oo, we can choose R so large that b24 ~ e ; and
1 R+l

because of the convergence of the a(n) to the ar, we can then choose
in so large that |a(m)r - ar| ~ e. Hence our previous expression is

R 
_ _ _

~ 03A3|br|.e + ilfie [B + B], which clearly can be made arbi-

trarily small.
Now let g(x) = 1 for 2013 1 ~ x ~ z

= 0 for z ~ x ~ 1.
Then from the result just obtained,

But we already know that qm(x) ~ q(x); hence q(z) 2013q(20131) =

f -1 h(x)dx; that is, h(x) = qx(x).

The inequalities of our Lemma now follow almost immediately.

Indeed, the relation a2r ~ B is essentially (3.21). For (3.22) we
i

write

Since, as already remarked, f(x) remains bounded, and qb tends
to q uniformly, the right side -)- 0 as b ~ oo; i.e.,

To prove (3.23), we derive the identity

from the definitions of H, Px, and f in § 1. Hence, as before, the
right side ~ 0, so that Pb. ~ px uniformly as b ~ oo. Therefore,

p2bx ~ p2x. B ut K(qb) 2013 K(q) = 1-1 [p2bx 2013 p2x]dx. Hence, we hav e
(3.23).

In view of (3.21-3), q is k-admissible, and, moreover, (3.24)
holds. Thus Lemma 3.3 is proved.



137

We are now in a position to prove Theorem 3.1. We turn, there-
fore, to the problem of minimizing Wk(q) by a k-admissible func-
tion q. From Lemma 3.1 we know that the g.l.b. zeo of Wk(q) is
finite; hence there exists a minimizing sequence, i.e., a sequence
of k-admissible functions qm for which Wk(qm) has as limit wk. We
now apply Lemma 3.3; it yields the existence of a subsequence qb
and a k-admissible ,function q =  for which [cf. (3.24)]

Since the right member here is the g.l.b. zvk of Wk, the equality
must hold. Hence q solves the minimum problem Mk. This proves
Theorem 3.1.

§ 4. Asymptotic solutions : uniqueness, existence, and con-
vergence.

In the preceding sections we have discussed the existence and
uniqueness of solutions of our problem for a fixed value, not zero,
of the parameter À;. In order to detetmine the asymptotic behavior
of the solutions, it is necessary to formulate a limit boundary
value problem. A simple and rather natural procedure would be
by a passage to the limit in the original differential equations and
boundary conditions. If we let k ~ 0 in the equations, they take
the form

The only solution of these equations satisfying the boundary con-
ditions is q ~ 0, p = a linear function, with the constants in this
function fixed by the values of p at the boundaries. However, the
results of numerical calculations in [1] which are applicable here
indicate that wrong results are obtained by this procedure. In the
interior of the circular plate, the study of which gives rise to our
problem, the above procedure seems valid, but the constants
cannot be determined by using the values of p at the edge. The
constants can be fixed only by an investigation of the transition
phenomena from tension in the interior to the prescribed com-
pression at the edges-phenomena which occur in a narrow strip,
the breadth of which decreases as k ~ 0. These boundary layer
phenomena are related to the fact that the order of the system of
differential equations has been reduced in q, although remaining
the same in p. The above discussion indicates that the lost bound-

ary conditions are at the edge.
A treatment of such an edge effect requires that the scale be
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stretched with decreasing k in such a manner that the width of the
edge strip, or boundary layer, as measured in the new scale, does
not shrink to zero. This will be accomplished by introducing new
variables, first one that stretches the right hand edge off to in-
f inity, and then one that does the same for the left hand edge.
Because of the syrnmetry of the problem, only one such stretching
need be studied in detail.

Accordiiig’ly, we make the transformation of independent and
dependent variables

Thèse transform our original equations into

with the corresponding new boundary conditions

with t defined in the interval 0  t  a, and where, as a conve-
nient abbreviation, we have set

We note that le ~ 0 implies a - oo, and conversely; we shall use
these statements interchangeably. We observe also that the new
equations do not contain the parameter explicitly, but that it is
involved in the right end point, as well as the interval of variation.

These new equations have the trivial solution

also, if there is another solution ( P, Q ), with Q fl 0, then (P, -- Q )
is aiso a solution, so that the sign of Q is arbitrary. We shall there-
fore assume Q as positive whenever it is not identically zero.

In this section we wish to prove the existence of the solutions of
the minimum problem 34Ik as restated for the new variable t, in-
cluding the asymptotic case M0, and to establish the convergence
of the solutions for k &#x3E; 0 to thc asymptotic solution (k = 0) as
k tends to 0. As before, we apply direct methods similar to those
used for linear boundary value problems.
We shall now îormulate simultaneously the stretched problems

for k &#x3E; 0 and for k = 0, the asymptotic case.
We require first functionals sintilar to those in § 1:
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where Pt(t) is a functional in Q through

The functional to be minimized is

By admissible litnctions we mean functions Q(t) continuous in

0 ~ t ~ a 0 ~ t ~ ~ with L2-integrable denvatives in 0 ~ t ~ a  ~ 0 ~ t ~ ~ and

(4.0520137) finite for all k &#x3E; 0, Pktfor which thé intégrais in (4.050-70) are finite, Pl

being defined by (4.08) The minimum problem Mk (MO) is that
of minimizing Wk[Qk] (W0[Q0]); the problem Sk (SO) is that of

making Wk (WO) stationary, in each case with respect to admissible
functions Q. The boundary value problem Bk (BO) requires the de-
termination of an admissible function Q possessing a continuous
second derivative and satisfying the equation

and the boundary condition(s)
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where Pkt (11) is given by (4.08) ((4.08°)). The function P there-
fore satisfies the differential équation

and the boundary condition(s)

The condition at t = 0 is obvious from (4.13) ; that at t = a

follows from substituting (4.08) in (4.13).
The asymptotic problem as here formulated is identical with

the asymptotic problem treated in [1]; accordingly there is no

need to repeat that work here. We consequently take as proven
that the asymptotic problem has a solution and that, apart from
the sign of Q, the solution is unique.

Moreover, tlie theorems of §§ 1, 2, establishing the connection
between the minimum problem and the solution of the differential
equations, with the accompanying boundary conditions, and prov-
ing the uniqueness of the solution, are equally true for the func-
tions P and Q in the stretched variable t and the corresponding new
functionals in (4.052013620137); their proofs require merely the ap-

. propriate change in notation. Theorem 3.1 is similarly true in
terms of the stretched variable and functions for the case k &#x3E; 0;
for k = 0, we have its truth from [1 ], as mentioned in the preced-
ing paragraph. However, for convenience we restate the theorem
in these new terms:

THEOREM 4.1: For every k &#x3E; 0 there exists at least one k-ad-

missible function Q(t) for which Wk[Q] attains its minimum.

Here, as before, functions Q admissible with respect to the
problem Mk in the sense given above (P. 139) are referred to as
k-admissible functions. Such a minimizing function as mentioned
in the theorem will be denoted henceforth by Qk(t); it is uniquely
determined once the condition Qk(0) ~ 0 has been imposed
(Th. 2.1 and preceding remarks here).
Our real concern in this section, then, is the existence of solu-

tions for k tending to zero, and the convergence of these solutions
to the asymptotic solution. Since much preparation is necessary
in order to prove our principal theorem (4.2) in this section, its
statement will be deferred until we are ready for it.
Our subsequent results are based on a number of preliminary

inequalities and lemmas, which we now give. Since most of these
relations are identical with or analogous to those derived in § 3,
we merely list the results here.



141

In these

whence

Relation (4.20) results from (4.19) and the integral

of the equation Ptt = 1 2Q2, with the constants of integration deter-
mined by the boundary conditions (4.03).
We note for future reference that Y(0) = Y(a) = 0; and that,

as before, Kk[Q] = 1 4a0Y2t(t)dt. Also, here c = (8N)_1/1, where N
is the greater of 1 and the ratio P2/Pl, and so is positive; and
g = 3(2N)"li, i.e., again a positive constant &#x3E; 1 and depending
only upon the constants involved in the boundary conditions.
As before, from (4.18) and (4.10) we deduce

which implies
LElB’IMA 4.1: For k-admissible functions Q, Wk[Q] has a lower

bound, g2, independent of k.
From this Lemma, we obtain inequalities corresponding to

(3.20), except that the divisor k of Dk(q) is dropped here. These
lead as before to
LEMMA 4.2: An upper bound M for Wk[Q] implies upper bounds

for Dk, Hk, Kk which depend upon lvl but not upon k.
In what follows we shall make frequent use of the following

well-known lemmas :
LEMMA A : Il fs(t) is a sequence of non-negative continuous

functions defined for 0  t  oo which converge uni f ormly in every



142

finite interval to a limit function fo(t), then fo(t) is continuou.s, non-
negative, and 

LEMMA B: I f, in addition, for every e &#x3E; 0, there exists a quan-

tity T = T(e) such that aT fs(t)dt ~ e for all a, then,

Now in the integrals of the functions P and Q taken from 0 to
oo, the contribution of the boundary layer at the stretched end has
disappeared as the curve was smoothed out. Hence we cannot
expect that the contribution of such integrals over the left bound-
ary layer and of those ovcr the right boundary layer can be ob-
tained from the intégral taken over the entire present infinité
domain. Therefore it is impossible further to investigate the pro-
b1 em without an additional transformation. We require one which
splits our interval in two, bringing the boundary layer of the
stretched end back to the finite portion of the interval; although
at the same time, the central region in the vicinity of the split
will then be carried off to infinity, its resulting inaccessability is
not troublesome, since this region is of no interest to us, and can
be studied, if desired, before this splitting. Accordingly, to apply
these lemmas and inequalities and continue our treatment we now
make the further transformation

The functionals in (4.052013620137) then become

respectively, where Q’(R) ~ Q(t) for 0 ~ t ~ 1 2 a, ==0 for 1 2 a  t ~ a;
Q"(a - 5) ~ 0 for 0 ~ t 1 2a, ~ Q(t) for 1 2a ~ t ~ a;

Y’(R) 1 and Y"(a2013S) are similarly defined;
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F’(R) = 1 + R(p2-p1)/ap1, F"(S) = 1 + (a- S)(p2-P1)/ap1.
We note that Q’(!a) = Q"(ia) and that Y’(1 2a) = Y"(ia). Also,
in (4.28)

We now require the basic 
LEMMA 4.3 : Let km be a sequence of values of k tending to 0, and

let Qm be a sequence of km-admissible functions for which Wkm[Qm]
is bounded. Then there exists a subsequence Q’(R) of Q’m(R) and a
subsequence Q " (a 2013 S) of Q"m (a 2013 S) converging uniformly in
every finite interval 0 ~ R ~ Ro  oo and 0 ~ S ~ So  oo,

respectively, to an L2-integrable limit f unction Q¿(R) and Q"0(S),
respectively, for which

By Lemma 4.2, a bound for Wkm implies bounds for the se-
quences D[Qm], H[QmJ, K[Qm]. In particular,

and B are positive constants independent of k. From the second
inequality we have at once that

In Case I, with pl &#x3E; 0, P2 &#x3E; 0, both F’ and F" are also &#x3E; 0, so
that the first inequality above yields immediately

If p2 ~ pl, both F’ and F" are &#x3E; 1, so that (4.33) remains true
zvhen the Fi are deleted; if, however, P2  pl, we have somewhat
weaker forms. We have then the final results

where 8 = 1 when p2 ~ pi, and = Pl/P2 otherwise.



144

Since D[Qm], H[Q’m], K[Qm] are bounded, we may apply the
results of Lemma 3.3 for fixed k. Therefore there exists a sub-

sequence Qb(R) converging uniformly in every finite interval
0 S R ~ R0  ao to an L 2-integrable limit function Qô(R) for
which [cf. (3.21)]

Clearly we can choose a k so small that la &#x3E; Ro.

The left side is independent of Ro, which is arbitrary; hence we

have finally that lim [Q’b]2R dR &#x3E; [Q’0]2RdR. The treatment
of the functional involving Q" is exactly the same, so that we have

For the H’s, we begin with F’Qb2dR ~ N Qb2dR, with N
as defined on P. 141, and c necessarily  1 2a. Then a2013c ~ 1 2a,
so that Q’2b dR ~ a-cc Q’2b dR ~ 22K/c, the latter from (4.17).
Thus a/2c F’Q’2b dR ~ 2N ,,12KIc. Since KI’ [Q’ ] is bounded by the

hypothesis on Wk[Qm], then for a given e and co, both &#x3E; 0, we

can choose a c &#x3E; c0 such that 2N2K/c ~ e, and a k so small that

c1 2.We further choose k such that c0 F’Q’2bdR 2013 c0 Q’20 dR ~ e.

This is possible because we have already proven the existence of
subsequences of Qm converging uniformly in every finite interval
to a continuous limit function Q’0.
From thé last two inequalities we hâve f |a/20F’Q’2bdR2013c0Q’20dR|~2e.

This result, in conj unction with (4.33), gives us Q’20 dR ~ A + 2e,

so that all the more Q’20 dR ~ A + 2e. However, co is as et

arbitrary. Hence, Q’20 dR  ~, so that a fortiori Q’20 dR C ~.
We now choose co such that ~0 Q’20 dR ~ e, whence ~c Q’20 dR ~ e.
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Combining this with the preceding inequality, we have

The treatment of Q" is virtually identical with that of Q’ above,
so that we have then

To establish the desired relations for the K’s, we employ the
identity (for t s la)

Since we have already proven that Q’b converges uniformly to Q’0
in every finite interval, the integral with limits 0 to R clearly
tends to zero as k ~ 0. On the preceding page we showed that

a/2c Q’2bdR ~ e, so that Q’2b satisfies the requirements of Lemma B;
similarly, so does Q"2b. Hence this Lemma and (4.36) used in
the identity above yield the uniform convergence of YkR[Q’b]
to Y0R[Q’0] as k - 0. Now applying Lemma A to Kk[Q’b] =

i F [Y’b]2RdR, we have lim Kk[Q’b] ~ K0[Q’0]. Again, the treat-
ment of the right side (t &#x3E; la), involving Y[Q"], is essentially the
same as the case detailed above. Thus we have the result

From its definition,

From this identity and (4.35-6-7), (4.31) now follows. Also,
from the same three relations, we see that Q’ and Q"0 are 0-admis-
sible.

Before stating our next Lemma, it will be simpler to develop
the notation required in its statement. We recall that Q’(R)=Q(t)
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for 0  t ~ 1 2a, while Q"(a - S) = Q(t) for 1 2a ~ t ~ a. From
Theorem 4.1, we have the existence of the function Q0(t), a solution
of the asymptotic minimum problem. Then by Q0’(R) and Q°"(S )
we shall designate the solutions of the similar asymptotic minimum
problems set up for each half of the split interval. We now con-
struct the k-admissible function Q*(t) as follows:

First we define Q*’(R) = Q°’(R) for 0 ~ R  a/4
= L’(R) for a/4  R îa,

where L’(R) is the linear function joining the points [1 2a, 0] and

[a 4, Q0’(a 4)]; similarly, we define
where again L"(S) is the

linear function joining the points [èa, 0] and [ 4 ’ Q0,,( a 4 )]. We
note for later use that the absolute values of the slopes L’ and

L" are 4 aQ0’ (a) and 4 a Q0" (a) respectivelv. Finally, we now

define

We are now ready for
LEMMA 4.4:

We have

Since Q0’ and Q0" are 0-admissible, ~0Q0’2R dR  ~, ~0 Q0"2S dS  ~;
also Q°’ and Q°" must remain bounded as k ~ 0. Hence, as A
does - 0, the last term - 0, while the f irst two approach

~0 Q0’2R dR and ~0 Qr’2dS, respectively. Hence
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Now since ~0 Q0’2dR  ~, ~0 RQ0’2 RdR  ~. Hence RQ0’2 cannot

remain above a positive bound. Therefore, there exists a subse-
quence of R’s, with R ~ ~, such that RQ°’2 ~ 0; in particular,

then, for this subsequence, aQ0’2(a 4) ~ 0 as a ~ oo. Then

(where we have used the definition of F’(R) on P. 143), Le.,

lim a/2a/4 F’L’2dR = 0. Similarly, lim a/2a/4 F"L"2dS = 0. As shown
in the dérivation of (4.36), fa/2 a/2a/4 F"L"2dR = Q0’2dR; also,

lim a/20F"Q0"2dS = p2 p2 ~0 Q0"DS. Therefore

Lastly, for K we have Kk[Q*(t)] = Y2t[Q*(t)] dt = a/20 Y’2R dR +
a/20Y"2SdS, where Ykt[Q*(t)], Y’R, and 0 are as given in (4.21),

(4.29), and (4.30), respectively.
For each half of the split interval we must consider two cases,

according as the variable R (or S) is  or ~ a 4. We give the de-
tails for the left side only. Thus, if R ~ a 4,
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while for this case, Y’0R = J: QO/2dR.. Now (omitting the various
indices on Rand Q for simplicity) we may write

1 a a/40 RQ2dR ~ b a Q2dR + 1 4 Jal4 Q2dR, (b arbitrary), which in

turn ~ b a ~0 Q2dR + 1 4 ~0 Q2dR. Since Q is here a 0-admissiblea o 4 b

function, J o Q2dR  00. Hence, given an e &#x3E; 0, we may first choose

b such that 1 4 Q2dR  1 2e, and then choose an a large enough so that
(b/a) ~0 Q2dR  1 2e. Thus we have that as a ~ ~, a/40  awQ0’2d ~0.
Hence, as k ~ 0, the first and third integrals in YR above clearly
tend to zéro ; while from the argument on P. 33, the second, fourth,
and sixth integrals likewise tend to zero. Hence YR ~ YR as
k ~ 0. When R ~ a/4, the expression for Y’kR is the same as for-

merly, except that the single term a/2R L’2d replaces the last two
intégrais of the first case, while Y’0R becomes ~R L’2d. It is at once
clear, then, that again Y’kR ~ YR as k ~ 0. Having the converg-
ence of the Y’kR,S to the Y’0R,S, we can apply Lemma A to Ii as
before; this gives us that

Combining the results for D, H, and K, we have (4.38).
We now prove our principal theorem,
THEOREM 4.2: Given the minimizing litnetion Qk(t) and its

associated ittnctions Q’k(R) and Q"k(a - 5), with Q’k(0) ~ 0,
Q"k(O) ~ 0. 1BS k ~ 0, Q’k(R) and Q"k(a - S) tend uniformly in
every finite interval 0  R ~ Ro  oo, 0  S ~ 50  oo, re-

spectively, to the miniinizing functions QO’(R) and QO"(S), respectively,
with Q0’(0) &#x3E; 0 and Q0"(0) ~ 0. These limit funetions are unique,
and, moreover, Wk[Q’k(R)] ~ W0[Q0’] and fVk[Q"k(a - 5)] ~
W0~Q"0~.
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We now take any sequence of positive values of k tending to
zero, and solutions Qk(t) of the corresponding minimum problems
Mk 2013 solutions which exist according to Theorem 4.1. The values
of the minima, wk, of Wk[Qk] have the common upper bound zero,
i.e., wk ~ 0. This follows immediately from Wk[0] = 0, since

Q ~ 0 is an admissible function. We can therefore apply Lemma
4.3 to the sequence Qk with k - 0. This Lemma assures the exist-
ence of the subsequences Q’(R) and Q"(a - S) converging in
the sense of the Lemma to 0-admissible limit functions Q’0(R) and
Q"0(S), respectively. From now on, Qk refers to such a sequence.
From (4.31),

We proceed to show that Q’ and Qô’ solve the corresponding mini-
mum problems M0.
The minimum problem M0, according to Theorem 4.1, has a

solution Q*(t) for which, by Lemma 4.4,

As a consequence of the minimum properties of Q*(t) and Qk(t),

This last gives

Successive consideration of (4.43), (4.40), (4.41), and (4.39)
yields

Since lim Wk[Qk] = lim Wk[Qk], this implies the equality

This, in turn, implies

for otherwise either W0[Q0’] &#x3E; W0[Q’0],
or

However, each of these alternatives is impossible, since Q°’ an
Q°" are solutions of the minimum problems. Hence (4.46) hold
Since W0[Q0’] is the g.l.b. of W° for the left hand stretched asymp
totic problem, and W0[Q0"] the same for the right, it follows tha
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the functions Q = Q’0(R) and Q = Q"0(S) are the solutions of the
two minimum problems ilfk for k = 0, with Q’0(0) &#x3E; 0 and

Q"0(0) ~ 0.
From Theorem 4.1 and the results of [1] (Th. 8.1) for the asymp-

totic problem, we know that each minimum problem .J1° has at
most one solution Q with Q(0) ~ 0. Therefore Q°’ - Q’ 0 and
Q°" -- Q" 0 ; i.e., all convergent sequences Q’k(R) and Q"k(a S)
converge to the same limit functions Q0’(R) and Q0"(S), respec-
tively. If a sequence has the property that every subsequence
contains a convergent subsequence with limit L, and if L is the
same for all such convergent subsequences, then the original
sequence itself converges to L. Therefore we can conclude in our

case that tlie solutions Q’k(R) and Q"k(a 2013 S ), with Q’k(0) ~ 0
and Q"k(0) ~ 0, of the minimum problems Mk converge, as k ~ 0,
to the unique solutions Q0’(R) and Q0"(S), respectively, [with
Q0’(0) ~ 0 and Q0"(0) ~ 0] of the minimum problems M0. This
completes the proof of Theorem 4.2.
We conclude this section with
THEOREM 4.3: For a fixed t, Pk(t) ~ PO’(R) if 0  t  ja

and P°"(S ) i f 1 2a ~ t  a, as k - 0.
In the proof of Lemma 4.3, we showed the uniform convergence

of Y’kR to Y0’R and Y"kS to Y0"S as k ~ 0 [P. 145]. Since both Y’k(0) =
Y0’(0) = 0 and Y"k(O) = Y0"(0) = 0, the foregoing gives us the
uniform convergence of Y’k(R) to Y0’(R) and of Y"k(a 2013 S) to
Y0"(S). From the définition of Y(t) in (4.19) this implies that

Since a ~ oo as k ~ 0, for a fixed t, tla ~ 0 with k. Hence, for a
fixed t, Pk(t) ~ P0’(R) if 0 ~ t ~ 1 2a, and - P0"(S) if 1 2 a ~ t ~ a
as k ~ 0.

§ 5. Expansion in series.

Before we can discuss the limit procédure in the interior, it is
necessary to have some numerical details concerning the asympto-
tic solution of the stretched problem. The reader will recall that
this asymptotic prohlem was precisely formulated at the beginning
of § 4 [cf. Pp. 138-9).

Accordingly, we introduce new variables x, y, z (not to be con-
fused with the space variables used earlier) as follows:
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where i and 03C9 are numbers to be determined. The interval for
x is ja ~ x ~ j, where i. = je-wa, and tends to zero as a becomes
infinite. In these new variables, the differential equations (4.02)
become

The introduction of the new variable x has the effect that the

resulting differential equations (5.02) possess solutions expressible
as power series in x:

Substituting these series into (5.02), we find the following formulas
for yk and Zm:

From the second équation, m = 0 yields zo = y0z0. Assuming for
the moment that z0 ~ 0, this coefficient is then arbitrary; we
assign to it the numerical value zo = 4, for the reason given below.
Obviously then yo = 1. We may now rewrite (5.05a) as a proper
recursion formula:

It is found amply sufficient to calculate ten terms in each series.
We turn now to consideration of the boundary condition associa-

ted with (5.02). The right hand end values, now taken off to infini-
ty, are alltoulatically satisfied in view of (5.02) and the assumed
development into the power series (5.03). The boundary conditions
(4.03) for t = 0 become

The second is a transcendental equation in j, to be solved for its
lowest root, which is found to be j = .98618. (The reason for
assuming zo = 4 was to make j ~ 1). This value inserted in the
first equation determines w, which is found to be w = .68754.

Once j and w are determined, the limit boundary value problem
is solved in principle. The function P(t) begins with the prescribed
value P(o) = 1, decreases monotonically, assumes the value zero
at t = .941, and approaches the value P( oo ) = 2013 w2 = -.47271
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as t ~ oo, the latter value resulting from (5.01). The function Q(t)
decreases monotonically and approaches zero as t tends to in-

finity. 1)
The results just obtained were predicated on the assumption

that z0 ~ 0. We must now consider the alternate possibility. If
zo does equal zero, then it is yo that is arbitrary. In this case it is
not difficult to show that if yo is not chosen in the form (2m + 1 )2,
all remaining coefficients in both series are zero. Thus this choice
of yo leaves us with the limit solution of the trivial case, y = yo,
z ~0 (cf. § 4, P. 138). If on the other hand, yo is chosen = (2m+1)2,
in any integer, then the only non-vanishing coefficients are yo,
Y2m+l’ y2(2m+1),... and zm, z3m+l’ z5m+l’ .... This gives us, then, an
infinitude of solutions, depending upon the value of rn. However,
each of these solutions may be reduced to (5.03) by a transforma-
tion which simultaneously carries the original differential equa-
tions into formally identical equations in the new variables. Hence
this choice of yo does not lead to an essentially new solution. Con-
sequently, taking z. = 0 lcads to results which are either not new
or of no interest.

We turn now to a proof of the convergence of the solutions
(5.03). For this purpose we first establish the inequality

VVe remark at once that the pairs of terms of the sum equally
distant from either end are identical. Next, we assert that

This is true if (i + 1)(k - i + 1) &#x3E; i(k-i + 2),

i.e., if 1 2 (k + 1 ) &#x3E; i.
Hence the terms of our sum decrease after the first, (k q- 1 ) -2,
until we reach either the two equal - and minimum 2013 central
temus (when k + 1 is even), or else the single minimum middle
term (when k + 1 is odd), and then begin increasing until we
reach the last term, again (k + 1)-2. This follows from the in-
equality just demonstrated and the fact that, for positive integers,

1) The numerical results in the foregoing paragraph are taken directly, with
only partial vérification, from the Friedrichs-Stoker paper referred to previously.
This is another point where the two papers are identical in form.
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a &#x3E; b implies a2 &#x3E; b2. Hence we have

our desired result.

Referring now to ,the coefficients (5.04) and (5.05) of the ex-
pansion in series, we shall prove by induction

and

Using the recursion formulas (5.04-5) we calculate
and

except that zo, being arbitrary, was assumed as 4, as discussed
earlier in this section. We observe that these values verify (5.09)
and (5.10) for n = 1, 2, 3, and 4.

For our double induction, we assume that (5.09-10) hold for
all n from n = 4 to n = k, the earlier cases having been verified
directly. Then (5.04) gives

Since our induction started with k = 4, we have that when (5.09)
and (5.10) are true for n = k, (5.10) is true for n = k -I- 1. What
about (5.09) then? We have

which, by hypothesis,

[adding an extra term
on the right]

[from (5.08)]
: zk ~ 25/k (k + 1)2, which is ~ 23/(k + 1)2 whenever

k ~ 4. Again, since the induction started with k = 4, we have
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slown that when (5.09) and (5.10) are true for n == k, (5.09) is
also true for n = k + 1. With this result, (5.09) and (5.10) are
established for all n.

We are now able to prove the convergence of (5.03). For the
first series, ykx2k ~ 24ae2k/(k + 1)2 = uk, say. Using the Cauchy
Ratio Test for the ii-series, we have

Thus the zc-series converges at least for 2013 1 C a  1. However,
tlie range of ,z is 0 ~ ja ~ x ~ j = .98618  1 [cf. Pp. 15020131].
Hence the u-series is convergent for all values of x under consider-
ation, and therefore, by comparison, so is the series for y. The solu-
tion z is seen to be convergent in exactly the same manner. Thus
both power series expansions in (5.03) are convergent. Moreover,
thèse series converge uniformly ([4], V. I, P. 392).
The information just obtained about the asymptotic solutions

PO, QO of the stretched problem enables us to derive some inequa-
lities involving p, q, our original unstretched functions. These
inequalities will be of great use in our study of the limit procedure
in the interior, to be discussed in the next section. We also desire
some numerical properties of the limit functions as expanded in
the power series, as well as two theorems identifying these func-
tions with the limit functions of § 4.

Since the alternating series z = Xl (20131)mzmx2m+1, with

zn-1 ~ 8/n2, is uniformly convergent for all x’s considered, we
may write z  z0x 2013 z1x3, or, using the calculated values of

zi, z  4x 2x3. ’rransforming back to our stretched variables
by (5.01), we have

where

Moreover, because of the uniform convergence, we may differen-
tiate term by term, and the result is also uniformly convergent
Similarly, Q2 and Qt may be integrated term by term. Hence we
also have

Since the lim e-rt = 0 as t ~ oo, with r any positive constant, and
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and

is finite, i.e., exists;

is finite, i.e., exists.

Using the series for y, we find

Hence

We are now prepared for our theorems. First,
THEOREM 5.1: The function Q(t) defined by the infinite series

(5.03) is identical, for 0  t  la, with the unique limit function
Q0’(R) referred to in Theorem 4.2.
From (5.12-3-4), we see that the admissibility conditions are

all satisfied by the power series function Q(t). It is also a solution
of our differential equations and satisfies the boundary conditions
at the finite end - these were used, we recall, in the calculation
of the constants i and w. From Theorem 4.2, the limit solution
Q0’(R), for 0  t ~ 1 2a, is unique, apart from sign and once the
restriction QO"(0) &#x3E; 0 is imposed. Hence Q(t) is identical, for
0  t  la, with Q0’(R).
THEOREM 5.2: The function P(t) defined by the infinite series

(5.03) is identical, for 0  t  la, with the unique limit function
P0’(R) 1"eferred to in Theorem 4.3.

Writing the series for z in terms of Q and t, we ha-v,-e

while the expressions for P(t) and Pt(t) were given above.
Elementary calculations show that for the power series functions,

Pt(t) = 20131 2~t Q2()d. This is the same relation [cf. 4.08°), P. 139]
satisfied by Pt of the minimum problem. Hence the derivatives of
the two functions are identical, so that the functions themselves
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can diffcr at most by a constant. However, both functions satisfy
tlic boundary conditions at thc finitc end. Consequently, tlicy arc
identical.
We claini hère tliat tlie restriction on the values of t to thc inter-

wa,l 0 ~ t, :5: -la is not a serious one, for, givcii any numerical value
of t, howevcr large, we shall ultimatcly come to a h so small that
t is ~ 1 2a. ’rhc inner significance of this will be made clear very
shortly, whcn we shall a.lso answer a question which naturally
arises here - what roles do Q0"(S) and P°"(S) play?
Wc conclude this section with the development of thc inequa-

lities rcfcrrcd to on P. 154, and the interprétation just promiscd.
W’e return to thc discussion of P. 151. Since the limit

funetion 1’°(t) is a monotonically decreasing function with its

zero a.t t = .941, we can select a value of t, say t = l, &#x3E; .941,
such tliat ¡)O(l)  0; moreover, because of thc uniform converg-
ence of Pk(t) to P0’(R) - now established identical with P0(t) for
0 ~ t ~ 1 2a. - with t eixed but  za, (cf. Th. 4.3), wc can find a
value of’ J;, k k!, such that for all lv  k’ all t’s under considera-

tion will be ~ 1 2a and Pk(l)  0. Specifically, wc shall choose our
2 so that 

Sinec P0 is a known function and 1 a definitc quantity, P°(l) is a
definite quantity indcpcndent of lz.

Now Ptt = 1 2Q2, so that P is cvcrywhcrc concave upward. For
lL j 0, Pk(O) - 1, 1"’ (a ) - P2/PI’ where the latter value is positive
whenever pl, p2 havc thc same signs. Consequently, for 0  k ~ !L’,
Pk starts out at + 1, crosses the axis somewhcre to thé left of l,
rcmains négative for a wliile, and thcn rccrosses the axis to be-
comc positive again before t = a. Hence our k’ can bc determined
such that 1"’ rcmains négative for l ~ t ~ za and for IL ~ k’.

Retnrning now to the original variables and functions of §§ 1, 2,
aiid 3 by means of thé inverse of (4.01),

we hâve from (5.15) that

(5.17) pk(x)  0 for tfz ~ x ~ 0,

where xi is the transform of 1; i.e., t(z - 2l/a 2013 1. Wc note that
tr’z ~ 2013 1 as k ~ 0.

It Bvas remarked in the introduction to § 4 that because of the

symmctry. a dctaitcd study or the stretching procédure was nec-
cssary for one sicic only. Ilowcvcr, at this point wc find it required
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to examine briefly the stretching off to infinity of the other side;
this will provide us with another inequality analogous to (5.17),
as weil as a full insight into tlie dual limit situation.

Accordingly, we subject our original variables and functions
to the transformation

This gives us the new equations

and the ne,v boundary conditions

with 0  T  A, where A = 2VP2/k.
We note that this variable T is essentially the S of § 4. There

S = a 2013 t = a 2013 1 2a(x + 1) = 1 2a(1 2013 x), while here directly
T = 1 2A(12013x). The only difference is in the constant factors p1,
P2 involved in a and A. Actually a = VPl/P2A, so that precisely
S = p1/p2T. This relationship affords the insight promised on
P. 156.

For x’s on the left side of the original interval, i.e., for 2013 1 
x  0, (4.01) carries us into the stretched variable t in the range
0 ç t ç 1 2a. Theorems 4.2 and 4.3 demonstratcd that for this

range Qk(t) and Pk(t) approa.ched unique limit functions (apart
from sign) Q°’ ( R ) and P°’ ( R ), respectively, which the theorems of
this section in turn idcntified with the power series expansions of
Q and P with the right sidc carricd off to infinity. In this discus-
sion, if t is bivcn in tcrms of a, it must bc held ~ 1 2a, to bc a trans-
form of an x from the left side; but if t is given merely as an arith-
mctical quantity, it may always bc regarded as a transform of such
an x, for ’’le can always consider k’s sufficiently close to 0 that la
is larger than any prcassigned numerical value. Hence, as remarked,
the restrictiom on t in Thcorems 5.1 and 5.2 is not a serious onc.
Whcn «’c arc concerned with k’s on the right or positive sidc

of thc original range, wc employ thc transformation (5.18) wliieli
carries us ovcr into the strctchccl variable T, now hcld in o ç T ~
1 2A. Wc observe that thc new équations in 7’ arc identical with
those 11) t, as arc tlie boundary conditions, cxccpt for those at A
and a, rcspcci,ivciy. Ilowevcr, in tlic expansion giving P°(t) it is
precisely the boundary condition at thc nom-zcro end which can
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no tonner be satisfied. Hence tlie power séries expansion of thc
function P0(T) is formally idcntical with that for P0(t). Becausc
of this formal idcntity with tlle expressions in the variable t, § 4
demonstratcs a.lso tllc existence of unique limit functions allalo-
gous to Q0’(R) and Q0"(S) -- let us teniporarilv refer to them as
Q1 and Q2, respectively. As in Theorem 5.1, wc should find tlie
Q(T) of tllc poByer séries expansion identical, for 0 ~ T ~ 1 2A,
with Q1, and wc should ignore thé Q2, as we did here. But thc
relationslilp between .S aiid T referred to above makes it clear

that this QI is really our old Qû"(S), apart from a constant factor
involving 7)1 and p2; whence by a second reflection, Q2 is thé same
as Q0’(R). Thus, finally, thé truc natmrc of thc limit situation is
made apparent.
For x’s on thé left.. our strctched function Qk(t) approaches uni-

fornuv thé limit function Q0’(R), while for x’s on tlic right, ive
employ the stretched funetioi Qk(T), which approaches uniformly
its limit function, pi, csscritia,llv Q0"(S). Thus there arc oniy 2 2013
and not 4 2013 distinct limit functions to bc found for the strctched

variable. Specifie propcrties of thèse functions can bc found by
use of the power séries expansions, which also afford a proof of
tlie convergence of tlie limit functions as t ~ oo.

Whon w-c consider thc interior, tllc appropriate transformations
and tlie liumerical results obtained here elable us to give explicit
l’orm to thc limit functions approached non-uniformiy by tlie

original unstretched functions p and q. 
Wc rcturn to our iiunicrical work. Sincc P°(T ) is formally iden-

tical with P°(t), then licrc again l’°(T ) bénins with the value + 1
at T = 0, beconlcs 0 at 1"’ = .D41, and decrcases monotonically
to 2013.47271 as T -&#x3E; oo. Hence, as bcforc, we can choose a value
of T, say T = r, &#x3E; .941, sueh that P0(r)  0, and choose a k, k",
such that for all A’ ~ k", T will remaim ~ 1 2A and

Numerically, wc may take l = r, whence P0(l) = P0(r), bccause
of thc formai idcutity. Aise, as before, our k" can bc determined
such that Pk(T) rcmains négative for o ~ T ~ 1 2A, for k ~ kIf.
Thcrcforc. similarly,

where xr = 2013 2r/A + 1. Again ,vc note that aer ~ + 1 as k ~ 0.
1"hus wc hâve

pk(xi) = p1Pk(l) ~ 1 2p1P0(l), a constant indepcndcnt or /c; and

pk(xr) = p2Pk(r) ~ 1 2p2P0(r), a constant aiso indcpcndent of A’.
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Now in our cquation pxx = iq2, q * 0 for non-trivial solutions.
Hcncc p is aiways concave upward. Thercfore, for all x between xl
and trr, aud for k ~ k*, thc smaatllcr of k’ and k", pk(x) ~ thc larger
of 12 p1P0(l) and 1 2p2P0(r). If wc dénote thc absolutc vaktc of thc

large!’ of these two values by thc constant c, Bve can thcn conclude
LEMMA 5.1: There exists a constant c, positive anrl independent

o f h, and a value k*, such that for all k ~ k*

for xi ~ x ~ xr, the end points beinl described above.
We now give some rcsults for q(x), also needed in the ncxt

section. First, since im the intcrval of Lemma 5.1, pk(x)  0 for

lv ç k*, tlie differential cquation kq xx + pq = 0, with q taken as
&#x3E; 0 (sincc its sign is arbitrary), shows tliat q is concave upward
herc; it lias points of infection at the zcros of pk(x). Thus thcrc
exists a minimum value of q betwccn these zeros, say at x = m.

Ncxt, from Theorem 4.2, Qll(t) ~ Q0’(R) for a fixed t( la) as
lî ~ o. Therefore there exists a value of k, say k’, and a positive
constant d’ such that

Similarly, we have a k" and a d" such that

Returiiing to our original variables, we have
LEMMA 5.2: There exisis a positive constant d and a le = k*

such that f or all le ~ k*

Here d is the snialler of d’, d", and k* the smaller of k’, h".

We now turn, iii § 6, to a study of the interior.

§ 6. Limit state in the interior.

While the limit procedure in § 4 concerns the boundary layer,
we deal in this section with the limit procedure in the interior of
the plate as le ~ 0. For this study, we return to the original equa-
tions in the unstretched variables. These equations were, we recall,

whiic tlie boundary conditions were
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An intégral of A may be written in the form

In calculating the constants c’ and c", we employ the value x = m,
the abscissa of the minimum of qk(x), whosc existence was shown
at the close of § 5. These constants are

and

LTsing thèse values, we have the representation

whcncc

Our subsequent discussion will be based on the folloiving for-
mulas, Bvhich hold for all k &#x3E; 0:

We are now preparcd to prove
THEOREM 6.1: As k ~ 0, k-1 2qk(x) - 0 uniformly in every in-

terior intertal x_ ~ x ~ x+.
We recall the quantities x, and introduccd in § 5, Pp. 156 and

158. They were the transforms of certain values of the stretched
variables and hence dépendent upon k. We noted that thcy ap-
proached - 1 and il 1, respectively, as k ~ 0.
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To prove our theorem we consider two possibilities regarding
the position of m - it is either to the left of x,. or to the right of xi.
Assuming first the latter, we have

whence

and

Hence in (6.05) wc decrease the right member when we replace
2013p by c [by (5.23)], q() by q(x"), and omit the second term. We
have then

Considering that qk(x) &#x3E; 0, and that qk(x) ~ d/VA-, the left

member of this inequality is  d/k.

or

If m  Xr, ive consider the interval m ~ r 1 xr. Herc qkx(x) ~ 0,
whence qk(x’) ~ qk(x") for m  x’  x" ~ xr; as before, qk(x) 
d/k. Hence, in (6.06) wc decrease the right member when wc
replace 2013p by c, q() by q(x’), and omit the second term. Now-
we have

Again, the left member is  d/k.

In (6.07) let us set ir’ = xi, and lct x" = x, ranging ovcr the inter-
val xi  x ~ m ; in (6.08) set x" - xr and lct x’ = x, ranging over
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tlie interval m ~ x  ,l’r. We have then thé two relations, valid
for every ,v considered :

Hence we hâve for xi  .il  Il’,

Let us now take any intcrval in tlie interior: - 1  x- ~ i, ~
x+  + 1. Silice and ll’,. dépend upon k, then corresponding to
any ii &#x3E; 0, with x- 2013 ti &#x3E; 2013 1 aiid x+ + ti  + 1, wc can find

a kn such that, for nU k ~ À,,, xi  x- 2013 n and xr &#x3E; x+ + ii. Then

from (6.11) we ha ye that for -ill k ~ kn,

’fhis inequality proves Theorem 6.1.
Our other tlieorein in this section is

THEOREM 6.2: ..-18 k ~ 0, p""(il’) ~ p0(x) uniformly in l’vcry
ititei-ioi- itittt-val x-  LV  x+, where p0(x) is the linear function

In (6.03) we had

1. Suppose xi ~ lV’  ll’" ~ Ill.
Thé right side of the equation above may be rcwritteu as

;r (-x’)q2d + 1 2 mx" (q2a. Here enell integral is ~ 0.

New an immédiate consequence of (5.2320134), i.e., of pk(x0 ~ 2013 c
and 0  qk(x) ~ d/k for ll’l ~ x ~ xr, is that q2 ~ [d/cV A’] [-pq].
Since the right side of (6.03) as rewritten above is 2 0 for the
assumed positions of x’ and x", ,ve increase the right side when
we replace q2 bv [d/ck][2013pa]. Thus
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2. Suppose next that xi ~ x’  III  x" ~ ,l’,.
In this case the intégrais on thé right side of (6.03) may be

written in the form t) (-x’)q2d-1 2 (x"-)q2d. Since
2’ m

here both intégrais are positive, we increase the right side when
we drop the second term, and replace q2 by [d/ck][2013pq], as
before. Then

3. Finally, suppose iii ~ x’ ,.t," ~ xr.

Again our integrals on the right are , x’m (x’2013)q2d 2013
1 2 x"m (x"2013)q2d 2013 both positive, so that we may once more drop
the second terni and make thé replacement for q 2. Then as before

Since lit is tlie minimum point for q, qk( ln)  qk(..t,II) for any a".
Hence W’C iiiay’ use (6.13) for all three cases, i.e., we have (6.13)
for (l’l Ç a’’  x"  il’,.

Froiii (6.13) we prove 1’heorenl 6.2. Scyeral steps are necessary.
1. Let us choose x’ = xi and x" = J’,. We have

Since xi ~ 20131 and xr ~ 1 as k ~ 0, the quantities in the last
braeket approach Pl and P2’ rcspcctivcly; from (6.0720138), the
quantifies in tlie first braeket are bounded; finally, xr 2013 xi re-

mains bonnded as k ~ 0. Hence pkx(m) also remains bounded as
k ~ O. Therefore wc ean choose some convergent subsequence of
k’s so that pkx(m) ~ M, a fixed nUll1ber, as k ~ 0.

2. In (6.13), now set x’ = xi and Ir" = x*, a fixcd x. Then
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From (6.0720138), kqk(xi) and kqk(m) both ~ 0 with k. For the
sequence of k’s being considered, pkx(m) ~ àf, a fixed quantity;
x* 2013 xi is bounded; and pk(xi) is fixed by definition, lying be-
tween 1 2p1P0(l) and 2p1P0(l) [cf. P. 156, (5.15)]. Hence pk(x*) is
bounded for any fixed x*. Therefore we can now select a sub-sub-

sequence of k’s such that pk(x*) converges to a limit U.
3. Finally, set x’ = x, x" = x*, both fixed values of x. Then

(6.13) becomes

For fixed interior x’s, (6.12) shows that the right side ~ 0 as
À ~ o. We have already shown that pk(x*) and pkx(m) approach
limits U and M, respectively. Also, ae* x is bounded. Hence

pk(x) converges to a limit, say pO(x), as k - 0, for interior x’s.
More specifically, we have

or

so that p0(x) is a linear function. To determine its precise form,
we return again to (6.13). Recalling that pk(x) = p1Pk(t) and that

p1Qk(t) = kqk(x), we have

where t’ &#x3E; 1, but is a fixed value, and, x is a fixed interior x. Then
in the limit, as k ~ 0, we have

from Theorem 4.3, and the results of the preceding paragraphs.
Now let t’ ~ cc. From (5.11), we know the right side goes to 0.
Hence

To calculate the other end point, we use the transformation T
[cf. Pp. 1571. We have
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where T’ &#x3E; r = 1, but is fixed, and x is a fixed interior a. In the
limit, 

Again, we let T’ ~ oo. We have

Thus p°(x) is a linear function whose values at x = - 1 and
x = + 1 are -. 47271pi and 2013.47271p2, respectively. These
values enable us to calculate M explicitly; for, using x = - 1 in
the last limit relation (or x = + 1 in the first), we obtain

1,e.,

Hence

Therefore, finally,

This statement completes the proof of Theorem 6.2, and, indeed,
our study of the problem for the case where both boundary values
are positive. We consider the remaining two possibilities, referred
to in the introduction, in the following, and concludi.ng, section.

§ 7. Cases II and III : one or both boundary values negative.
In discussing the solution of our problem with one or both

boundary values negative, we find we are able to utilize many of
the results obtained in our study of Case I. Only slight modifi-
cations are required to give us the desired solution. We shall find
that there is no boundary layer phenomenon at an end where the
boundary value is negative.

Case II:

We start with the same equations
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and the boundary conditions

Since we have already studied a stretching of the positive end,
here we shall make a transformation taking the right -- and
négative - end off to infinity. We require the same transforma-
tion as iii § 4:

These transform our original équations into

and tlie boundary conditions into

where a has tlie same meaning as before, in (4.04). These equations
are identical with the ones used in § 4, except that the ratio P2/Pl
is now negative. The remainder of § 4 follows precisely as before.

Similarly, the material of § 5 through P. 156 is also valid here; at
this point, however, an important simplification enters the dis-
cussion. As before, P°(t) is a monotonically decreasing function
with its zero at t = .941. Hence we can choose a value of t, say
t = l, &#x3E; .941, such that P0(l)  0; again because of the uniform
convergence of Pk(t) to 1’°’(R)[= P0(t) for 0 ~ t ~ 1 2a] for t

fixed and  ja, as k ~ 0, we can find a value of k = k’ such that
for all k  k’ all t’s under consideration will be ~ 1 2a and Pk(l)  0.

Since Ptt = 1 2Q2, P is still everywhere concave upward, and for
k ~ 0, Pk(0) = 1, Pk(a) == P2!Pl  0. Hence for 0  k ~ k’, Pk
starts out at + 1, crosses the axis somewhere to the left of t = l,
and becomes and remains negative, assuming the negative value
p2/p1 at t = a. Accordingly, we have here (5.17) with the interval
of validity extending on the right to + 1 instead of to 0. This leads
us then to

LEMMA 7.1: Thel’e exists a constant c, positive and independent
of k, and a value k*, s2cch that for all k  k*, pk(x) ~ 2013 c for
xi ~ x C + 1, xl being the tra’nsfor1n of t = l.

Since in the interval of this Lemma, pk(x) is negative for

0 C k ~ k*, the differential equation kqxx + pq = 0, with q taken
as &#x3E; 0 (since its sign is arbitrary), shows that qx is an increasing
function throughout this interval. But qx(+ 1) = 0; hence qx
must be negative up to x = 1, and tlie minimum of q is at this
point; i.e., in this case m = 1.
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Lemma 5.2 carries over here, too, except that our interval is
again extended, as in Lemma 5.1. We have
LEMMA 7.2: There exists a positive constant d and a k = k*

such that, for all k  k*, 0  qk(x)  d/k for xi ~ x  + 1.

Turning to § 6, we have substantially the same results here as
through (6.12), but with + 1 replacing rn. Theorem 6.1 still holds,
but here p0 (x) is a àifferent linear function. Instead, we have
THEOREM 7.1: As k ~ 0, pk(x) ~ p0(x) uni f orrrtly in every

interior interval 20131  x - ~ x  + 1, where pO(x) is the linear

function

As on Pp. 162-163, we can show here that

with xi ~ x’  x"  1. Now as in step 1 on P. 163, if we choose
x’ = xi and x" = 1, we can show that pkx(1) remains bounded as
k - 0, so that we can choose a convergent subsequence of k’s so that
pkx(1) ~ M, a fixed number, as k - 0. Then, taking x’ = xi and
x" = x*, some fixed x, we obtain the result that pk(x*) is bounded
for any fixed x*, and that we can accordingly select a subsequence
of k’s such that pk(x*) converges to a limit, U, as k - 0. Next, as
in step 3 on P. 164, we set x’ = x and x" = x*, both fixed values of
x, and similarly deduce the existence of our linear limit function

To determine which linear function we have, we return to (7.01),
recalling that pk(x) = plPk(t), and that plqk(t) = kqk(x). We
have

When k ~ 0, we have

Now let t ~ oo. Then
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We return now to (7.02) and substitute + 1 for x. At this stage
in Case I we could not do this, since our inequalities were valid
only up to aer, so that we could use the end point values only after
the limiting process had been effected. Here, then, we have

Now we let k ~ 0. Siiice x = 2t/a 2013 1, then for a fixed t, say t’,
x’ - - 1 as k ~ 0. Hence we have

Fiiially we let t’ ~ oo. Then

whence

Therefore pO(x) = p1P0(~) + 1 2(x) + 1)[p2-p1P0(~)], or, using
tlie value of P0(~) = 2013 .4727Y,

the limit function for Case II.

, Since in this case it is our conjecture that there is no boundary
layer phenomenon, we should expect to find the stretching proce-
dure unnecessary. This is indeed the situation.
We begin with the formulation of the problem in terms of the

functionals Hk(q), Dk(q), K k(q), and Wk(q) = D 2013 H + K,
exactly as given, in § 1. We establish the same theorems in precisely
the same manner. Instead of the theorems of § 2, however, we
have here
THEOREM 7.2: The only solqttion o f the proble1n B k is q ~ 0.
From the differential equation pxx = 1 2q2 and the boundary

conditions p (2013 1) = p1, p(1) = P2, we have the
COROLLARY: In case III, pk(x) is the linear function

pk(x) = 1 2[(p2 - p1)x + (P2 + p1)].

To prove Theorem 7.2, wre observe that the functional H is

always négative when both pi and’p2 are negative. This may be
more readily seen if one writes the coefficient of q2 in the integrand
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in the form Pl(l - x) + P2(l + x). Hence the functional W is
non-negative. We have already shown(P. 125) that in this event,
q ~ 0 is the only solution of the minimum problem Mk. Theorem
7.2 then follows from Theorem 1.2.
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