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Sphere-geometrical Unitary Field Theories
by

Tsurusaburo Takasu

Sendai

In this paper I will give proofs of the conclusions 1, 2, 3
and 4 1) stated below as well as in my previous paper [21] 2).
1 and 2 correspond respectively to the Kaluza-Klein’s

unitary field theory [1], [2] and the Einstein-Mayer’s [3],
3 and 4 respectively to the Hoffmann’s generalization of the
Kaluza-Klein’s [4] and Einstein-Mayer’s [5]. Then I add six
further sphere-geometrical unitary field theories 5, 6, 7, 8,
9 and 10 stated below, of which 5, 7 and 9 correspond to the
unitary field theories of P. G. Bergmann [19], B. Hoffmann
[17] and B. Hoffmann [18] respectively, while 6, 8 and 10
are new. To each of these ten theories there corresponds a new
sphere-geometrical connection-geometry, of which the Laguerre
connection-geometry finds its origin in the work of Y. Tomonaga
[13], [20], [26]. The main purpose of this paper is to indicate the
four-dimensional sphere-geometrical laws for the unitary field
theories, so that the assumptions made therein are f ul f illed automati-
cally and we are able to avoid the fifth or the sixth dimension in our
line o f thought, though the f i f th or the sixth dimension survives in
abstract sense. The principal importance of this paper seems to
lie in the following points: (i) all the figures representing the
generalizations of the "Weltpunkte" are realized within the

Einstein space TT4, so that the question of four-dimensionality
exists no longer; (ii) thus we are lead to the connection geometries
of Laguerre’s carrier instead ofthose of the conformal ones, although
we have long waited for the latter one. (It is to be noticed that the
space of special relativity is the three-dimensional Laguerre space).
(iii) My theories have lead us to new sphere-geometrical con-
nection geometries, which have hitherto been considered to be

1) The heading numbers 1, 2, ..., 10 will be retained throughout.
2) The numbers in the square brackets refer to the bibliography at the end of

this paper.
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rather difficult to develop, since the elements of space are other
things than points.

In all cases the Einstein space V4 as basic space is considered
to be provided with tangent
N.E. ~ Euclidean
space in the sense of the

N.E. II limiting
case of the Veblen’s projective theory (cfr. [16] and [10]. Also
[10], [23]). If we denote the tangential spaces arising in the
theories 1, 2, ..., and 10 by (1), (2), ..., and (10) respecti-
vely, then the tangential spaces, which are realized in the tangent
N.E. il Euclidean
manifold, are situated among them as follows:

(N.E. space) : (Euclidean space) : (N.E. equiform space) : (equi-
form space)
= (1) : (2) : (7) : (8) = (3) : (4) : (9) : (10) = (5) : (6) : (x) : (y),
where

(1) = dual-conformal (i.e. N.E. Laguerre) space,
(2) = Laguerre space,
(3) = Space of Lie’s higher hypersphere geometry,
(4) = "parabolic Lie space" which is new,

(5) = the space which arises from the dual-conformal space by
a kind of expansion of each hypersphere and is new,

(6) = the space which arises from the Laguerre space by a
kind of expansion of each hypersphere and is new,

(7) = "equiform dual-conformal space" which is new,
(8) = "equiform Laguerre space" which is new,

(9) = "equiform Lie space" which is new,

(10) = "equiform parabolic Lie space" which is new.
The existence of (x) and (y) is thus suggested. The reader will

see below what the new ones are.
The corresponding connection geometries (spaces) will be called

respectively:
1. dual-conformal connection geometry (space),
2. Laguerre connection geometry (space),
3. Lie connection geometry (space),
4. parabolic Lie connection geometry (space),
5. B-dual-conformal connection geometry (space),
6. B-Laguerre connection geometry (space),
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7. equiform dual-conformal connection geometry (space),
8. equiform Laguerre connection geometry (space),
9. equiform Lie connection geometry (space),

10. equiform parabolic Lie connection geometry (space),
x. B-equiform Lie connection geometry (space),
y. B-equiform parabolic Lie connection geometry (space)

when the base manifold is a general Riemannian space X4, the
details of which will be developed in a separate paper. 3)

Since all these geometries are substantially Riemannian

geometries, the procedures are comparatively easy as long as
one is concerned with normalized vectors. The techniques of the
Riemannian geometry will help us very much for sphere-geome-
trical interpretations.

§ 1. The Unitary Field Theories of Kaluza-Klein and
Einstein-Mayer as seen from the View Points of the

Sphere-geometries.
In the case of the unitary field theory of

1. Kaluza-Klein [1], [2], Il 2. Einstein-Mayer [3],
the fundamental quadratic differential form was

where q;i = 1 and gij dxl dxj is the fundamental quadratic form of
the Einstein space V4 and

the r being the radius of the hypersphere with the center

in the tangent

N.E. 11 Euclidean

3) There exist a séries of sphere-geometrical connection geometries, based
upon a hyperplane manifold. (In preparation).

4) The k will be expressed in terms of the constant R below in Theorem 2°.
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space as well as the geodesic radius of the corresponding gene-
ralized (i.e. geodesic) hypersphere with center (ggo) in V4. Then the

are the oriented hyperplane coordinates in the four-dimensional

tangential N.E. Il tangential Euclidean
space of V4 as well as the coordinates of the totally geodesic
hypersurfaces enveloping the geodesic hypersphere in V4.
The field equations were

where the latter two are Maxwell’s equations and

The equations of motion were

The space with which we are concerned is a four-dimensional

dual-conformal ! Laguerre
connection space which is special in the sense that the base
manifold is V4 instead of a general four-dimensional Riemannian
manifold. If we interpret the geodesic hyperspheres as points it
is nothing but a special five-dimensional Riemannian space which
will be realized within the Einstein space V4 as a special
dual-conformal Il Laguerre
connection space by means of a minimal projection 5) of the

points of the tangent five-dimensional

N.E. 11 Euclidean
space of V4 as well as by its generalization in the five-dimensional

5) T. Takasu, [24].



99

Riemannian space. This fact is legitimated by the formula (O.
Veblen, [16], p. 46):

as wel as by the following theorems (S. Sasaki-K. Yano, [23]):
THEOREM 1°. If the group of holonomy of a space with a

normal projective connection P 11 is a subgroup of the group of
all projective transformations in P 11 which fix a non-degenerate
hyperquadric Q, the P 11 is a space with a projective normal con-
nection corresponding to the class of affinely connected spaces
with corresponding paths including an Einstein space with non-
vanishing constant scalar curvature. In other words the P 11 is

projective to an Einstein space with non-vanishing scalar cur-
vature. The converse is also true. Correspondingly for the case of
vanishing scalar curvature.
THEOREM 2°. Let the group of holonomy of the space with a

normal projective connection P 11 corresponding to Einstein

space V4 with positive definite fundamental tensor and of non-
vanishing scalar curvature fix a real or imaginary hyperquadric
according as the scalar curvature R is negative or positive. Then
the arc length of a geodesic segment PQ is expressed by

where Y and Z are the points of intersections of PQ with the
invariant hyperquadric in the tangent N.E. space.

Correspondingly for the case of vanishing scalar curvature.
Thus the lengths as well as angles are common to the base manifold

V4 and the tangent N.E. or Euclidean space, so that the so-called
geodesic polar coordinates are also common to them:

It is well known that the Einstein space V4 is totally umbilical
and the oriented hypersphere (as well as the oriented geodesic
hypersphere in V4) with center (~03B1) is given by the equation:

r = const.,
The N.E. Il The
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Laguerre coordinates of the oriented hypersphere (as well as of
the oriented geodesic hypersphere in V4) (03B1, ) are

Laguerre coordinates of the oriented hyperplane (as well as of
the oriented totally geodesic hypersurface in V4) (u03B1) are

so that the equation to the oriented hypersphere (as well as to
the oriented geodesic hypersphere in V4) (03BEA(xa)) is

which forms a hypercomplex (a system of ~4 oriented geodesic
hyperspheres ).

The space o f
Kaluza-Klein Il Einstein-Mayer
may thus be considered to have arisen from the Einsteinean V4 by
expansion o f each point o f V4 to an oriented geodesic sphere o f
constant radius r such that e/m

From this I have concluded as follows:

1. The Kaluza-Klein’s Il 2. The Einstein-Mayer’s
space is equivalent to the Einstein’s space V4 (special-)
dual-conformal I Laguerre
connection geometrically so that the points in V4 correspond to the
geodesic hyperspheres o f equal geodesic radii, whose developments
in the

N.E. Il Euclidean
tangential spaces are hyperspheres o f equal radii.
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[N.B.] According to the new view points in differential

geometry in the large of Shing-Shen Chern [27], the fundamental
orthogonal differential form for da2 is, except for quadratic trans-
formations, expressible in the form

where ccy are Pfaffians. In our case we have

and the part

corresponds to the Einsteinean V4.

§ 2. The Hoffmann’s Generalization of the Unitary Field
Theories of Kaluza-Klein and Einstein-Mayer as seen
from the View Points of the Sphere-geometries.

In the Hoffmann’s generalization of the

3. Kaluza-Klein [4] II 4. Einstein-Mayer [5]

space, the fundamental quadratic differential form was

where gijdxidxj is the fundamental quadratic differential form of
the Einstein space V4, and

’) The subsequent interpretations of (~A, r ) and (03C8A, r’ ) will be made in two
ways exposed on the both sides of |.
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being the radius (generalized in the sense of common tangential
segment) of the oriented linear hypercomplex (of oriented hyper-
spheres with equal radii

r’) ~ r)
with its "center" (oriented hypersphere with radius

in the tangential four-dimensional

N.E. il Euclidean

space as well as the geodesic radius (generalized in the sense of
common geodesic tangential segment) of the corresponding
oriented linear hypercomplex (of oriented geodesic hyperspheres
with equal geodesic radii

with its "center" (oriented geodesic hypersphere with geodesic
radius

r’ r

and center (03C8A)): (~A) | and center (~A)): (03C8A)
realized in the Einstein space V4. Thereby the

are the coordinates of the oriented linear hypercomplex 7) of the
oriented hyperspheres touching properly two oppositely oriented
hyperplanes in the tangential four-dimensional

N.E. il Euclidean
space of V4 as well as the coordinates of the corresponding oriented
generalized totally geodesic linear hypercomplexes (belonging to
the generalized linear hypercomplex of the oriented hyperspheres
under consideration realized in V4).

7) A four-dimensional generalization of the system of oriented spheres touching
properly. a pair of oppositely oriented planes.
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The field equations were

where

The equations of motion were

(i) The space in consideration is a four-dimensional

Lie Il parabolic Lie
connection space which is special in the sense that the basic
manifold is V4 instead of a general four-dimensional Riemannian
space. If we interpret the linear hypercomplexes of geodesic
hyperspheres as points it is nothing but a special six-dimensional
Riemannian space which will be realized in the Einstein space V4
as a special
Lie Il parabolic Lie
connection space by means of two successive minimal projections8)
of the points of the tangent six-dimensional

N.E. Il Euclidean
space of V4 from two different mutually orthogonal directions
upon the four-dimensional

N.E. 11 Euclidean
tangent space of V4 as well as by their generalization in the
six-dimensional Riemannian space.

8) T. Takasu, [24].
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(ii) The space under considération which is a spécial four-
dimensional

Lie Il parabolic Lie
connection space is nothing but a special five-dimensional

dual-conformal 11 Laguerre
connection space if the oriented linear hypercomplexes of oriented
geodesic hyperspheres are interpreted as oriented hyperspheres
and this

dual-conformal II Laguerre
connection space will be realized in the Einstein space V4 by
means of one minimal projection of the points of the tangent
five-dimensional

dual-conformal Il Laguerre
space upon the four-dimensional

N.E. Il Euclidean

tangent space of V4 as well as its generalization in the five-
dimensional 

dual-conformal Il Laguerre
connection space.
These facts are also legitimated by remembering that the

analytical apparatus is common to the tangential space of.V4 and
the space realized in V4 itself, which is stated in § 1, the meaning
of k being the same. The four-dimensional

Lie ~ parabolic Lie
coordinates of the oriented hypersphere (as well as of the oriented
geodesic hypersphere in V4) may be constructed as follows:
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coordinates

of the oriented linear hypercomplex of the oriented hyperspheres
(as well as of oriented geodesic hyperspheres) (eL) are such that 9)

The space of the Hoffmann’s generalization o f the

Kaluza-Klein Il Einstein-Mayer
space may thus be considered to have arisen from the

Kaluza-Klein’s Il Einstein-Mayer’s
by expansion o f each oriented geodesic hyperspheres (e, r) o f V4
to an oriented linear hypercomplex of the constant geodesic generalized
(in the sense o f common tangential geodesic segment) radius r’

such that

From this 1 have concluded as follows:

The Hoffmann’s generalization o f the

Kaluza2013Klein’s Il Einstein-Mayer’s
space is equivalent to the Einstein’s space V4 special
Lie Il parabolic Lie
connection geometrically so that the points in the Einstein space V4
correspond to the special linear hypercomplexes o f generalized
(geodesic) hyperspheres, whose developments in the tangent

N.E. I Euclidean

space are hyperspheres o f equal radii.

9) This equation for the righthand side shows, wéen it is interpreted in a space
of six dimensions, that the point (03BE03B1, 03BE7) lies on the minimal hyperplane (with
coordinates (U03B1, U7, -P, (U03B1U03B1 + U7U7 = 0)) expressed in its Hesse’s normal
form.
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§ 3. The Unitary Field Theory of Jordan-Bergmann as
seen from the View Point of a Sphere-geometry and a New
Allied Theory.

In the case of the

the fundamental quadratic differential form is

leading to the variable

where ~5 = 1 and gijdxidxj is the fundamental quadratic form of
the Einstein space V4, the r being the radius of the hypersphere
with center (~03B1) = (03B303B103B2~03B2) = (0, 0, 0, 0, 1) in the tangential four-
dimensional

N.E. Il Euclidean
hyperspace as weli as the geodesic radius of the corresponding
geodesic hypersphere with center (~A) in V4. Therefore the

are the oriented hyperplane coordinates in the tangential four-
dimensional

N.E. Il Euclidean
space of V4 as well as the coordinates of the totally geodesic
hypersurface enveloping the geodesic hypersphere under con-
sideration in V4.

Putting
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the following results were obtained:

accompanied by the identities:

For arguments for and against the theory we refer to the
original paper of Bergmann [19].
We will refer to the connection geometry corresponding to

for the general Riemannian quadratic form giidxldxl as

B-dual-con f ormal ~ B-Laguerre
geometry and conclude as follows:

The Jordan-Bergmann’s Il The B-Laguerre’s

space is equivalent to the Einstein space V4 special

B-dual-conformal ~ B-Laguerre
connection geometrically, so that the points in V4 corresponds to

the geodesic hyperspheres in the

Jordan-Bergmann’s space, Il B-Laguerre space,
whose developments in the four-dimensional tangential
N.E. Il Euclidean
space are hyperspheres of variable radii r such that

10) For the reason, cfr. the conclusion of § 1.



108

§ 4. The Hoffmann’s Field Theory Unifying the Gra-
vitation and the Vector Meson Fields as seen from the
View Points of a Sphere- Geometry and a New Allied
Theory.

In the case of the

7. Hoffmann [17] space 8. equiform Laguerre space
as will be introduced in the

following lines

for vector meson and gravitation fields, the fundamental
quadratic differential form is

where ~5 = 1 and gijdxi dxj is the fundamental quadratic form of
the Einstein space V4 and G55 = 03A62(xa, aeO) = e2Nx0f(xa) is a

scalar of index N and is

r being the radius of the hypersphere with center (~03B1) = (03B303B103B2~03B2)
= (0, 0, 0, 0, 1) in the tangential four-dimensional
N.E. Il Euclidean

space as well as the geodesic radius of the corresponding geodesic
hypersphere with center (~03B1) in V4. Therefore

are the oriented hyperplane coordinates in the tangential four-
dimensional

N.E. il Euclidean

space of V4 as well as the coordinates of the totally geodesic
hypersurface enveloping the geodesic hypersphere under con-
sideration in V4.
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The f ield équations are

where

Hère (b) is a direct consequence of (a).
The reciprocal of the index N has the significance that except

for a numerical factor, it is the range of the meson force.
x° is the gauge variable:

When the quadratic differential form gij dxi dxj is a general one
we will call the connection space corresponding to

the equi f orm

dual-con f ormal Il Laguerre
connection space and the corresponding geometry the equiform

dual-con f ormal Il Laguerre
connection geometry.
The space under consideration is nothing but a special five-

dimensional Weyl (i.e. equiform connection) space if the geodesic
hyperspheres are interpreted as points and this Weyl space will
be realized within the Einstein space V4 as a special equiform
dual-conformal Il Laguerre
connection space by means of a minimal projection (accompanied
by a kind of tangential dilatation) of the points of the tangential
five-dimensional

equiform N.E. Il equiform
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space upon the four-dimensional

N.E. Il Euclidean
tangential space of V4 as well as by its generalization in the
five-dimensional Weyl space.
From this 11) 1 conclude as follows:

The special equiform du.al- The special equiform Laguerre
conformal connection space o f connection space
Hoffmann

is equivalent to the Einstein space V4 special equiform

dual-conformal Il Laguerre
connection geometrically so that the points in V4 correspond to the
geodesic hyperspheres whose developments in the

N.E. Il Euclidean
tangential spaces o f V4 are hyperspheres of the radii r such that

§ 5. The Hoffmann’s Field Theory unifying the Gra-
vitation, the Electromagnetism and the Vector Meson as
seen from the View Points of a Sphere-geometry and a New
Allied Theory.

In the case of the

9. Hoffmann’s space [18] 10. equiform parabolic Lie
space as will be introduced in
the following lines

for vector meson, gravitation and electromagnetic fields, the
fundamental quadratic differential form is

11) Cfr. also the conclusion of § 1.
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where gijdxidxj is the fundamental quadratic differential form of
the Einstein space V4 and

k being the same as in § 1 and

being the radius (generalized in the sense of common tangential
segment) of the oriented hypercomplex (of oriented hyperspheres
with radii

with its "center" (oriented hypersphere with radius

r and center (SAB03C8B) = (03C8A)  r’ and center (SAB~B ) = (~A)
= (0, 0, 0, 0, 0, 1)): (99A) = (0, 0, 0, 0, 1, 0)): (03C8A)
in the tangential four-dimensional 

N.E. 1 Euclidean
space as well as the geodesic radii (generalized in the sense of
common geodesic tangential segment) of the corresponding
oriented linear hypercomplex (of oriented geodesic hyperspheres
with geodesic radii

with its "center" )oriented geodesic hyperspheres with geodesic
radius

and center (03C8A)): (~A)  and center (~A)): (03C8A)
realized in the Einstein space V4. Therefore
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are the coordinates of the oriented linear hypercomplex of the
oriented hyperspheres touching properly two oppositely oriented
hyperplanes in the tangential four-dimensional
N.E. 11 Euclidean
space of V4 as well as the coordinates of the corresponding
oriented generalized totally geodesic linear hypercomplexes 12)
(belonging to the generalized linear hypercomplex of the oriented
geodesic hyperspheres under consideration realized in V4).
The transformations are of the type:

so that

The field equations are

Maxwell’s equations:
Vector meson field equations:

where

so that

where

12) See 7).
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When the quadratic form gijdxidxj is a general one we will
call the connection space corresponding to

the equiform
Lie parabolie Lie
connection space and the corresponding geometry the equiform
Lie ~ parabolic Lie
connection geometry.

(A) The space under consideration is nothing but a special
five-dimensional equiform
dual-conformal il Laguerre
connection space if the linear hypercomplexes of the geodesic
hyperspheres are interpreted as geodesic hyperspheres and this
space will be realized within the Einstein space V4 as a special
equiform
Lie Il parabolic Lie
connection space by means of a minimal projection (accompanied
by a kind of tangential dilatation) of the tangential five-dimen-
sional equiform
dual-conformal Il Laguerre
connection space upon the four-dimensional

N.E. Il Euclidean
tangent space of V4 as well as by its generalization in the five-
dimensional equiform
dual-conformal Il Laguerre
connection space.

(B ) The space under consideration is also nothing but a special
six-dimensional Weyl (i.e. equiform connection) space if the

geodesic hyperspheres are interpreted as points and this Weyl
space will be realized within the Einstein space V4 as a special
equiform 
Lie Il parabolic Lie
connection space by means of a succession of two minimal pro-
jections from two mutually orthogonal direction (accompanied
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by a kind of tangential dilatation) of the points of the tangential
six-dimensional

N.E. equiform Il equiform
space upon the four-dimensional

N.E. Il Euclidean
tangent space of V4 as well as by its generalization in the six-
dimensional Weyl space.
From this I conclude as follows:

The special equiform Lie con- The special equiform, para-
nection space of Hof fmann bolic Lie connection space

is equivalent to the Einstein space V4 special equifor1n

Lie ~ parabolic Lie
connection geometrically so that the points in V4 correspond to the
linear hypercomplexes of the geodesic hyperspheres whose develop-
menfs in the equiform

N.E. Il Euclidean
tangent spaces are linear hypercomplexes of the generalized radii
r’ such that

consisting of hyperspheres of the radii r such that

This paper was read at the annual meeting of the Japanese
Mathematical Society in Tokyo at the beginning of May 1950.
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