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Integral transformations and their resolvents in
Orlicz and Lebesgue spaces

by

A. C. Zaanen

Delft.

§ 1. Introduction.

Suppose that L1 is a bounded or unbounded interval in real
m-dimensional Euclidian space Rm. It is therefore permitted that
L1 = Rm. By L1 X L1 we mean the set of all points (x, y) in the
product spaca Rm X Rm for which x ~ 0394, y ~ 0394.

Lp(0394) (1 ~ p  (0) is the Lebesgue space of all measurable

complex-valued functions f(x) for which ~f~p = ( f |f|p dx)1/p
11

 oc (all integrals are Lebesgue integrals). If no confusion is pos-
sible we write shortly Lp. L~(0394) is the Lebesgue space of all
measurable f(x) for which Il f Il ex) = ess. u. b. |f(x)1  oo. Every
Lp(0394) (1 ~ p ~ ~) is a complete Banach space provided f + g
and oef (a a complex number) are defined in the natural way.
The spaces Lp(0394 X 0394), having functions T(x, y) on L1 X d as

elements, are introduced similarly.
Let 1 ~ p ~ co, 1/p + i /q = 1 (hence q = oo for p = 1 and

q = 1 for p = oo ). It is well-known that f(x) ~ Lp if and only if
fg is summable over L1 for every g(x) e Lq, and that

For 1 ~ p  oo we may even replace l.u.b. by max. Consider
now L2(d X J). Then similarly T(x, y) ~ L2(0394 X 0394), that is

if and only if T(x, y)S(x, y) is summable over d X 0394 for every

S(x, y) ~ L2(d X 0394). In particular, if T(x, y) E L2(d x 0394) and
f, g ~ L2(0394), then T(x, y)f(y)g(x) is summable over 0394 X 0394. The

inverse of this last statement is not true however. T(x, y) =
|x-y|-03B1 with 1/2 ~ oc  1 is a counter example. The class
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L22(d X 0394) of all T(x, y) such that T(x, y)f(y)g(x) is summable
over L1 X d for f, g e L2(0394) is therefore larger than L2(d X L1).
Defining the norm ~ T 1122 by

we shall prove that L22 is a Banach space with this norm. An easy
application of Schwarz’s inequality shows that Il T 1122 ~  T 2.
Extending these remarks to spaces Lp (1 ~ p ~ ~ ), L22 has

its analog in the class Lf)q of all T(x, y ) such that T(x, y)f(y)g(x)
is summable over L1 X L1 for all f ~ Lp, g E L,,. We shall prove
that L pq is a complete Banach space with norm

Using Hôlder’s inequality it is easily seen that
where

Hence,

We make two remarks. Firstly it follows already from the simple
inequality Il T ~pq ~ Tp that it is natural to introduce III Tp
into the theory and not the ordinary norm (f 1 T(x, y ) |p dxdy)1/p

4 x4

as one might think at first by comparison with the L2-case.
Another and even stronger reason for doing so will be mentioned
below. Secondly we observe that we have used the measurability
of t(x) = ~ Tx(y) ~q. For 1  p  oo this measurability is a

conséquence of Fubini’s Theorem and for p = 1 it is implied by

where,d,. is the common part of A and the interval [2013r, r ;... ; 2013r, r],
and where m(0394r) is the measure of 0394r.

It follows from the definition of Lpq(0394 X J) that T(x, y ) E Lpq
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if and only if  |T(x, y)f(y) | dy ~ Lp(0394) whenever f ~ Lp(0394).

We shall prove that in this case the linear integraltransformation
T with domain Lp, defined by Tf = T(x, y)f(y)dy, has its range
in Lp and is bounded. Concisely expressed, if T(x, y) E L’Pa then T
with kernel T(x, y) is bounded on LD into Lp (compare Banach
[1], p. 87). If moreover 1  p  oo and 111 T p  oo than T

is even completely continuous (that is, T transforms bounded
sets in LD into compact sets). This was proved by Hille and
Taniarkin in 1934 [2]; the case p = 2 was known earlier. On
account of the importance of completely continuous integral
transformations for the theory of integral equations, this is the
other and stronger reason to introduce 111 T III ’P. For p = 1 the
inequality 111 T "’1  oo does not necessarily imply the complete
continuity of T (cf. the example of von Neumann in [2]). In 1940
however Dunford and Pettis [3] and Phillips [4] proved indepen-
dently of each other that in this case the iterated transformation
T 2 = TT is completely continuous. For p = oo it is possible, that
although 111 T ~  ao, neither T itself nor any of its iterates

Tn (n = 2, 3, ... ) is completely continuous. An example (cf. [2])
on the linear interval L1 = [0, 1] is furnished by

Then and for

we find

This shows that all values 03BB = 03BC-1 (0  03BB ~ 1) belong to the
pointspectrum of Tn where n is a positive integer. Then, by a
well-known theorem, Tn is not completely continuous.

It is our object to extend all these results to a class of function
spaces which contains the Lebesgue spaces Lp(0394) as special cases.
We want to include e.g. the space of all f(x) for which 03A6|f|dx  oo,

LI

where 03A6(u), u ~ 0, is roughly a non-negative convex function
with 03A6(0) = 0 which behaves for large u like u log u or, more
generally, like up log ru (p &#x3E; 1, r &#x3E; 0). For this purpose it will
be useful to work in Orlicz spaces. These spaces, introduced by
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Orlicz in 1932 [5], were also considered by Zygmund [6]. Their
original definition was such that all spaces Lp(0394), 1  p  oo,

were included but not L1(0394) and L~(0394). A somewhat more
general definition which remedied this defect was given by
Zaanen [7]. Recently Morse and Transue [8] have considered a
generalization into a different direction.
We shortly give the definition of the Orlicz space L03A6(0394). Let

v = ~(u), u ~ 0, satisfying ~(0)=0, be non-decreasing. We sup-
pose furthermore that ~(u) is left-continuous (hence cp(u) = ~(u2013)
for u &#x3E; 0) and not vanishing identically. The function q(u) = 1
for u &#x3E; 0 is an example. u = y(v) is the left-continuous inverse,
suitably defined for those v for which v = ~(u) has an interval
of constancy. If limu~~ ~(u) = l  oo, then y(v) = oo for

v &#x3E; l. In the example above 1p(v) = 0 for 0  v ~ 1 and 1p(v) = oo

for v &#x3E; 1. Writing 0(u) = u~(u’)du’, W(v) = fV’(v’)dv’, we have
o 0

Young’s inequality uv  0(u) + 03A8(v), u ~ 0, v &#x3E; 0. The class

L*03A6(0394) is now the class of all measurable f(x) for which

 03A6|f| dx  ~. The class L*03A8(0394) is defined similarly. In the
L1

example above 0(u) = u, 03A8(v) = 0 for 0  v  1 and 03A8(v) = oo
for v &#x3E; 1; the class L*03A6(0394) is therefore identical with L1(0394) and

L)(4 ) is the class of all f(x) satisfying ~f~~ ~ 1. This shows

already (03A6 and W are interchangeable) that L*03A6 and L*03A8 are not
necessarily linear classes. For this reason linear classes L03A6 and L,,
are defined containing L*03A6 and L) as subclasses. If f(x) is mea-
surable on L1 we write

The Orlicz space L03A6(0394) is now the class of all f(x) satisfying
Il f 1 j,»  oo and similarly L03A8(0394) is the class of all f(x) for which
~f~03A8  ~. Choosing 0 (u) = uP/p (1  p  ~) the corresponding
Orlicz space L03A6 contains the same functions as L1) and Il f 1I(p =
q1/q ~ f ~p (q’Iq = 1 for p = 1). The complementary space con-
tains the same functions as Lq(4 ) and ~ f 11u+ = p1/p ~ f 11(1. It has
been proved that Lrp and L., are complete Banach spaces with
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norms ~ f ~03A6 and ~ f ~03A8, and that f(x) ~ L03A6 if and only if fg
is summable over L1 for every g e L*03A8.
The class L03A603A8 is introduced as the class of all T(x, y), mea-

surable on L1 X d, such that T(x, y)f(y)g(x) is summable over
L1 xd for all f e L03A6, g e LV’. We shall prove that L03A603A8 is a com-
plete Banach space with norm

for

In analogy with the Lp-case we should await ~ T ~03A603A8  III T 03A6,
where

111 T 03A6 = ~ t(x) ~03A6, t(x) = ~ T(x, y) ~03A8 = ~ Tx(y) ~03A8.
Here however a difficulty arises, because it is not à priori evident
that t(x) is a measurable function of x. If t(x) should not be
measurable, t(x) 11(1) is not defined. To overcome this difficulty
we denote by tmaj (x) an arbitrary measurable majorant of t(x),
hence tmaj (x) ~ t(x) almost everywhere in J. III T 03A6 is now
defined as g.l.b. Il tmaj (x) 110 over all majorants. Evidently, for
4)(u) = up/p (1 ~ p  ~),  T 1114) is except for a constant

factor equal to III T 1112).
We shall prove that it follows from T(x, y) e L4)’If that the

integral transformation T with kernel T(x, y) is bounded on L(l)
into L4). If moreover there exists a constant M such that 03A6(203C5) ~
M03A6(u), 03A8(2v) ~ M03A8(v) for all u ~ 0, v ~ 0 and if III T 03A6  ~,
then T is completely continuous (cf. Zaanen [9]). This is a state-
ment which covers the case Lp (1  p  ~) mentioned above.
In the case LI we have already seen that 111 T 1111  co implies
the complete continuity of T2. There remains a gap to bridge.
e.g. for those spaces L4) with 0(u) behaving like u log u for
large u. We shall prove:
THEOREM A. Il there exists a constant M such that 03A6(2u) ~ M03A6(u)

for all u &#x3E; 0 and if  T 1114)  oo, then T2 is completely continuous
(on L4) into L4)).

Let T(x, y) e L03A603A8 and consider the integral equation Tf201303BBf=g
in the space Lo. If Â =1= 0 is in the resolvent set of T, that is if
T - AI (I is the identical transformation) has a bounded inverse
R03BB = (T - 03BBI)-1 with domain LO, then
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The set of transformations R03BB where runs through the resolvent
set of T is called the resolvent of T. In most of the classical

treatises on integral equations a somewhat different terminology
may be found. Writing first T f 2013 03BBf = g for Â e 0 as

f 2013 03BB-1 Tf = 2013 03BB-1 g and then putting 03BB-1 = 03BC and 2013 03BB-1 g =
2013 03BCg = gl, we find f 2013 03BCTf = gl. The transformation H03BB is

now introduced by R03BB = 2013 03BB-1 I 2013 03BB-2H03BB = 2013 03BCI 2013 03BC2H03BB so

that f = R03BBg = 2013 03BCg 2013 03BC2H03BBg = gi + 03BCH03BBg1. Hence

It may be asked now whether it follows from T(x, y) e L03A603A8 that
H03BB is also an integral transformation with kernel H03BB(x, y) ~ L03A603A8.
Should this be so, we could call H03BB(x, y) in accordance with the
classical custom the resolvent kernel of the integral equation.
The answer however is still rather unsatisfactory. Roughly stated
we can prove only that H03BB(x, y) E L03A603A8 for large values of 1 A 1-
If however 111 T" 03A6  ~ for a positive integer n we can show
the following statement to hold:
THEOREM B. Let 03A6(2u) ~ M03A6(u) for all u &#x3E; 0, T(x, y) E L03A603A8

and III Tn 03A6  ~ for an integer n &#x3E; 1. Then, if Â =F 0 is not
in the pointspectrum of T, HÂ is an integral transformation with
kernel H03BB(x, y) E L4)1p and

H ;.,(ae, y) = T(x, y) + 03BCT2(x, y) + ... + 03BCn-2Tn-1(x, y) + 03BCn-1K03BB(x, y)

where 111 K03BB 03A6  oo. The functions Tp(x, y), p = 1, 2, ..., are
here the kernels of TP. In particular III T 1110  oo implies
 H03BB 03A6  oo.

The next question to be answered is what conditions are suf-
ficient to ensure that H03BB(x, y) be the quotient of two power series
in Il = 03BB-1, the coefficients of these series being the well-known
Fredholm determinant expressions. For the L2-ease Carleman
proved in 1921 [10] that 111 T ’"2  oo is sufficient. Smithies in
1944 [11] gave a considerably simpler proof. For the L1J-case
(1  p  oo) Nikovic in 1948 [12] announced the result that

 T p  oo together with [ (|T(x, y)|p dx)q/p dy]1/q  ~ is

L1 L1

sufficient. All methods of proof are based on the approximation
of T(x, y) by continuous or degenerate kernels. We shall state,
and prove, a result which includes all these cases. For this pur-
pose it is necessary to introduce for a measurable T(x, y) besides
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the number

Then we have:

THEOREM C. Let 0(2u)  M03A6(u) for all u &#x3E; 0, III T 03A6  o0

and 111 T inv03A6  00. Then, if 03BB ~ 0 is not in the pointspectrum
of T, we have H03BB(x, y) = H’03BB(x, y)/03B4(03BC) where H’03BB(x, y)=03A3~0 Hn(x, y)p,n
and 03B4(03BC) = 1 + 03A3~1 03B4n03BCn. The coefficients 03B4n and Hn(x, y) are the
(modified) Fredholm expressions. Both series converge for all 03BC,
the series for H’03BB(x, y) almost everywhere in d X L1. This last series
even converges relative to the norm  . 03A6.
Our proof will be free of approximation methods. That this is

possible is probably due to our first proving Theorem B.

The reader will have observed the importance of III T Ill,» for
the problems in question. An integral transformation T in L2(L1)
satisfying 111 T 2  ~ was called of "finite norm" by Stone
([13], p. 66) and Smithies [11]. By considering the L.-case for
p ~ 2 it is seen however that 111 T p is essentially a double norm.
We shall therefore call 111 T III(/) the double-norm of T relative to
L03A6, and an integral transformation T with  T 03A6  ~ will

be said to be of finite double-norm relative to Lo. This has the
additional advantage of avoiding confusion with the ordinary
norm T il of T. A transformation T for which III T 03A6  oo,

III T inv03A6  ~ will be called completely of finite double-norm

relative to L03A6. Note that for L(/) == L 2 we have  Till(/) = III T inv03A6
so that in this case any transformation of finite double-norm is
also completely of finite double-norm.

In § 2 we shall list some properties of Orlicz spaces and prove
Theorem A. In § 3 kernels belonging to L ow are considered, and
in § 4 we introduce the Banach space of all kernels of finite
double-norm. Theorem B will be proved in § 5. In § 6 the main
properties of an abstract completely continuous linear transfor-
mation are listed, and this makes it possible to prove our principal
theorem, Theorem C, in § 7. Finally, in § 8, we show that under
somewhat stronger hypotheses the expansions for the resolvent
kernel converge uniformly.

§ 2. Properties of Orlicz spaces and the proof of Theorem A.

We suppose that 0(u) and 03A8(v) are complementary in the sense
described in the introduction and that L03A6(0394), Ly+(4 ) are the
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corresponding complementary Orlicz spaces. We list here some
properties of these spaces. For the proofs we refer to [7] and [6].

1°. Lo and L1p are complete Banach spaces with norms

Il f 11, and ~ f ~03A8 respectively.
2°. If f E L*03A6, then f ~ Lo and Il f 110 ~  03A6 1 f 1 dx + 1. Fur-

Li

thermore ~ f 11(1) == 0 if and only if f(x) = 0 almost everywhere
in d. Similarly for Ly.

Similarly for Lw. d

4°. There exists a positive p such that 03A8(p) ~ 1.
5°. f 1 fg | dx ~ ~ f~03A6 ~ g ~03A8 for measurable f and g.

11

6°. If f is measurable on L1 and fg is summable over L1 for

every g ~ L*03A8, then f e L03A6. In the same way g ~ Lw if fg is sum-
mable over L1 for every f e L*03A6.

In case 03A6(u) satisfies the additional condition that there

exists a constant M such that 03A6(2u) ~ M03A6(u) for all u ~ 0,
the following extra properties hold (proofs in [7] and [9]):

7°. L03A6 and L*03A6 (but not necessarily L03A8 and L*03A8) contain
the same functions.

8°. If there exists a non-negative integer l such that

then In particular, if

lim then lim

9°. Lo is separable. More precisely, the set of all rational

simple functions is dense in L03A6. A rational simple function is
a finite linear combination with rational complex coefficients of
functions g,(x), each gi(x) being the characteristic function of a
rational bounded interval.

10°. Every bounded linear functional g* ( f ) in L03A6 is of the form

with g(x) ~ L03A8 and Il g(x) ~03A8/2 ~ ~ g* ~ ~ ~ g(x) ~03A8. It follows

that g*~g(x) is a one-to-one correspondence between (L03A6)*
and L03A8 which preserves addition and multiplication by complex
numbers.
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The measure of the measurable set X C Rm will be denoted
by m(X).

DEFINITION. If f(x) is defined on d and X  0394, then the

function fx = f(x)X is defined by

LEMMA 1. Il p &#x3E; 0 is such that "tJf(p)  1 (such a p exists by
4°) and X is a measurable bounded subset of 0394, then

PROOF. Using 5° and 20 we find

A

LEMMA 2. Let 0(2u)  MO(u) for all u &#x3E; 0, and let all f(x)
of the set {f} belong to L03A6, and hence to L*03A6 by 7°. We f urtherrnore
suppose that to each q &#x3E; 0 there is assigned a number 03C4(~) &#x3E; 0

such that for all f E {f} ze;e have  03A6 1 f dx  ~ i f only m(X)  i.

x

Moreover, in the case that 0394 is unbounded, we assume that f or each
~ &#x3E; 0 there exists a bounded subinterval E~ C d such that

 03A6 1 f 1 dx  ~ for all f ~ {f}. The set functions f 03A6 |f| dx are
0394-E~
therefore uniformly absolutely continuous.

Then, i f e &#x3E; 0 is given, there ex·i.st.s a number 03B4(03B5) and (il L1 is

unbounded) there also exists a bounded subinterval 039403B5 G A such

that for all f ~ {f} we have ~ fX ~03A6  e i f o nly m(X)  c5, and also

Il f0394-039403B5 ~03A6  s. Furtherrnore there is a constant A s2cch that

Il f Ilp  A for all f E {f}.
PROOF. If e &#x3E; 0 is given we choose the positive integer l such

that 2/21  e. Then take ~ = M-1 and determine 03C4(~). This
may be chosen as 03B4(03B5). Indeed, if m(X)  03B4(03B5) = 03C4(~) then

03A6|f| dx  ~ = M-1, hence Il f x Ilp  2/21  e by 80. Similarly
x

the interval E~ may bc taken as 039403B5.
Now take ~ = 1 in the hypothesis. Then there exists a bounded

set El C 0394 such that 03A6 |f| dx  1 for all f E {f}, Now deter-
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mine N such that El may be covered by N sets of measure smaller
than -r(l). Then 0 | f | dx  N for all /,E {f}. This yields

03A6|f| dx  N + 1; hence ~f~03A6  N + 2 = A for all f ~ {f}

by 2°.
The proof of Theorem A rests essentially upon the theorem

which follows now.

THEOREM 1. Let 0(2u)  M03A6(u) for all u &#x3E; 0, and let the set

{f} of functions f(x) e Lo have the property that the set functions

 03A6 |f 1 dx are uniformly absolutely continuous as defined above.
x

Then this set {f} is sequentially weakly compact, that is, it contains
a sequence f n converging weakly to a f unction 10,E L03A6; expressed as
a formula

f or every g E L03A8.
PROOF. Let A, 03B4(03B5), 039403B5 have the same meaning as in Lemma 2,

and consider the set of all bounded linear functionals f*(g) =

f g dx in L’If where f runs through {f}. Obviously 1 I*(g) | 
L1

. ~ f ~03A6 ~ g ~03A8 ~ A Il g ~03A8 for all f* in this set.

We now let g(x) run through the characteristic functions of
all bounded rational intervals 0394r ~ 0394; the set of these g(x) is

countable and each g(x) E Ltp. Then, on account of the diagonal
process, there exists a sequence fn ~ {f} such that fn g dx =

L1

fn dx converges for every 0394r. This implies that fn dx converges
for every 27 which is a finite sum of non-overlapping 0394r.

It follows that f*n(g) = fng dx converges for every g(x) which is a rational

L1

simple function. If now 03A8(2v) ~ M103A8(v) for all v ~ 0, the set of all rational simple
functions is dense in Ltp by 9°, hence f*n(g) convergent for every g E L03A8. The limit

f*0(g) is again a bounded linear functional in Lw so that f*0(g) = fg dx with
L1

f0 ~ Lep by 10°. This complètes the proof for this spécial case. Observe that the
uniform absolute continuity has not been used but only ~f~03A6 ~ A.

Let the set 0 C LI be open and bounded, and let s &#x3E; 0 be given.
Then there exists a set 27 C 0 of the kind above with m(0 - 03A3) 
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6(e). Hence, using Lemma 1,

which shows that  fn dx converges. In a similar way we find that
f tdx converges for every bounded measurable X C A.
x

Assume now that the measurable set Ai C 4 is bounded.

For X C A1 we define F(X) = lim f f"dx. Then F(03A3n1 Xi)
x

1’,»F(X,) for sets Xi no two of which have common points. Fur-
thermore m(X)  03B4(03B5) implies 1 fn dx| ~ p-1(03B4 + 1) il (fn)X 110 

x

p-1(03B4 + 1)03B5, hence lim F(X) = 0 for lim m(X) = 0. It follows
that the set function F(X) on Al is additive and absolutely con-
tinuous, so that, by the Radon-Nikodym Theorem (cf. [14],
Ch. 1, § 14),

where fo is summable over A1. Since d = 03A3~1An where all An
are measurable, bounded and non-overlapping, we may extend

/0 (x) on the whole set 0394 in such a way that lim f fn dx = f fodx for
x x

every bounded measurable set X C A. Then also lim f (fn - 1.)gdx = 0
for every simple function g(x) (a simple function assumes only
a finite set of values and vanishes outside a bounded interval).

Next, let g(x) be measurable, essentially bounded (hence
~g ~~  ~) and vanishing outside a bounded interval 03941 CA.
We may assume g(x) &#x3E; 0 without loss of generality. There exists
a sequence of simple functions g(x) with g(x) &#x3E; gn(x) &#x3E; 0,
g(x) = lim gn(x) and all g.(x) vanishing outside 03941. Furthermore,
if e &#x3E; 0 is given, there exists a positive 03B4’(03B5) such that f 1 /0 |dx  e

x

if only m(X)  03B4’(03B5), X C dl. Take Ô" = min [ô(e), 03B4’(03B5)]. Then
Egoroff’s Theorem guarantees the existence of an index N (e) and
a set Q C 41 with m(Q)  ô" and 1 g.(x) - g(x) 1  e for n &#x3E; N,
x ~ 03941 2013 Q. Hence
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and this shows that lim

By L1 n we shall denote the interval [- n, n; - n, n; ... ; 2013n, n]
(n = 1, 2, ...) in Rm. Supposing that g (x) ~ L03A8 we define

g(x) (n = 1, 2, ...) by

Then gn(x)f0(x) = |gn(x)f0(x)|, lim|gn(x)| 1 = |g(x)| and ~gn~03A8 ~
~g~03A8 on account of |gn(x)| ~ |g(x) 1. Furthermore, since gn(x)
is bounded and vanishing outside 0394n, gn f0 dx = limi gnfidx

with 1 f gnfidx | ~ Il fi ~03A6 Il gn ~03A8 S A Il g ~03A8, hence gnf0dx ~
A ~ g ~03A8 for all n. It follows by Fatou’s Theorem that

f 1 gfo | dx ~ lim inf f |gn f0| dx = lim inf f gn f0 dx ~ A Il g ~03A8,

which shows on account of 6° that fo e L03A6.
It remains to prove that lim (fi - f0) g dx = 0 for every

g e L1J’. Let first g(x) = 0 outside a bounded interval 03941, and
define gn(x) (n = 1, 2, ...) by

Then |gn(x)1 ~ |g(x) 1, g(x) = lim g.(x) and ~ gn ~03A8 ~ Il g ~03A8.
If 8 &#x3E; 0 is given, there exists a positive 03B41(03B5) such that Il (f0)X 110  e

if only m(X)  03B41(03B5), X C 03941. Take 03B42 = min lâ(B), 61(e)]. Then
Egoroff’s Theorem guarantees the existence- of a set Q C Al and
an index N(e) such that m(Q)  03B42 and 1 gn(x) -g(x) 1  e

for n &#x3E; N, x ~ L11 - Q. Hence
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which shows that lim for this g(x).

Let now g e Ltp without any restriction. If 8 &#x3E; 0 is given there
exists a bounded interval 0394*03B5 such that 1/ (f0)0394-0394*03B5 ~03A6  8. Let

Q be a bounded interval which contains 039403B5 and 0394*03B5. Then

Il (fi2013f0)0394-Q ~03A6  2e for all fi, hence 1 f (fi2013f0)g dx |  203B5 ~ g ~03A8.
Since lim f (fi2013f0)g dx = 0 we finally find

This completes the proof. Observe that the existence of the inter-
val L1 e has only been used in the last lines.

THEOREM A. Il 03A6(2u)  M03A6(u) for all u &#x3E; 0 and if the linear
integral transformation T with kernel T(x, y) satisfies III T 03A6  oo,
then T2 is completely continuous on Lep into Lep; that is, if {f} is a
bounded set of functions f(x) ~ Lep, then {T2f} is sequentially com-
pact. This means that {T2f} contains a sequence converging according
to the Lo-norm.
PROOF. Let Il f ~03A6  B for all 1,E {f}. For any f E L(/J and for

almost every x ~ 0394 we have

hence h ~03A6 ~  T 03A6 ~ f ~03A6. This shows already that T is a
bounded transformation. Note in particular that ~ T f ~03A6 ~
B  T 111(1) for all f ~ {f}. Let now tmaj(x) be a measurable majorant
of ~ Tx(y) ~03A8 such that ~tmaj ~03A6  00. A majorant of this kind
exists since III T III(p  00. Then, on account of 70, also

03A6|1 B tmaj (x) | dx  co. It follows that to each ~ &#x3E; 0 there are

assigned a number 03C4(~) &#x3E; 0 and a bounded subinterval E~ C 4
such that f 0 1 BLmaj | dx  ~ if only m(X)  T and such that

x

03A6 | Btmaj | dx  q. But, since for any h = Tf, f ~ {f}, we have



69

this implies 03A6|h| dx  ~ and j OE |h|dx  ~ for m(X)  T.

Theorem 1 is therefore applicable on the set {h}; there exists a
sequence h"(x) = Tfn(x) and there exists a function ho(x) e Lo
such that

for every g c Lqr. Since T(x, y) E Lyr as a function of y for almost
every x e d we may take g(y) = T(x, y) for these values of x,
hence

lim kn(x) = lim T(x, y)h.(y)dy = f T(x, y)ho(y)dy = ko(x)
Li Li

or lim | kn(x)-k0(x)| 1 = 0 almost everywhere in d. Then, 0(u)
being continuous, also

almost everywhere in L1. Furthermore 1 kn(x) - ko(x) 1 
Il hn - h0 Ilp Il T.(y) IIW ~ (B III T 03A6 + ~ h0 ~03A6) tmaj (x) = q(x),
where q(r) ~ Lo. This implies

In view of (1) and (2) Lebesgue’s well-known theorem yields now

lim f 0 | kn - ko 1 dx = 0, hence by 80
A

But kn = Thn = T2fn, so that the sequence T2fn, fn ~ {f}, con-
verges in Lo to a function ko E LOI This was to be proved.

If 03A8(2v) ~ M103C8(v) for all v ~ 0, the set {f} itself already contains a weakly
converging sequence fn, so that in this case the sequence Tf" converges. This
shows that now T itself is completely continuous (cf. [9]).

§ 3. Integral transformations with kernels belonging to
Lq,V’ and their resolvents.

We repeat the definitions of Lq,.p and il T ~03A603A8.
DEFINITION. Lpw is the class o f all T(x, y), measurable on

J X d, having the property that T(x, y)f(y)g(x) is summable over
d X d f or all f E Lo, g E Lp.

DEFINITION. Il T(x, y) is measurable on L1  0394, then Il T ~03A603A8 =
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THEOREM 2. T(x, y) ~ L03A603A8 if and only il fiT (x, y)f(y) | dy ~ Lp
f or every f ~ L03A6.

PROOF. Follows immediately from 60 and 5°.
THEOREM 8. Il T(x, y) E Low, then the integral trans f ornzation

T with kernel T(x, y) is bounded on Lo into Lo. Similarly Ta with
kernel 1 T(ae, y) 1 is bounded on Lo into Lo. We have

PROOF. Since T(x, y)f(y)g(x) is summable over 0394 X 0394 for all

f e L03A6, g e Lp, it follows from 6° that f T(x, y)f(y)dy e L03A6. The
LI

integral transformation T with domain L03A6 has therefore its range
in Lo as well. Similarly f T(x, y)g(x)dx e L’P for g e L’P.
We shall prove now that T is closed, that is, supposing that

lim ~fn2013f 110 = 0, lim Il Tfn - k ~03A6 = 0, we shall prove that
k = Tf. Indeed, for every g e Ltp we have

hence k = Tf. But a closed linear transformation, having a com-
plete Banach space as its domain is bounded (cf. [1], p. 41 or
[15], p. 30). Hence T is bounded. Similarly, since T(x, y) e L03A603A8
if and only if | T(x, y) | ~ Lçpyf, the transformation Ta with
kernel 1 T(x, y) 1 is bounded.
For f e Lo we write h(x) = Tf(x), k(x) = Ta 1 f(ae) |. In view

of | T(x, y)f(y)dy| ~|T(x,y)|.|f(y)| dy we find |h(x)| ~ k(x),
L1 L1

hence Tf ~03A6 ~ Il Ta |f| 111f/J. Observing that f and 1 f | have the
same L03A6-norm, we obtain JI T ~ ~ ~ Ta il.

If 03B5 &#x3E; 0 is given there exist two functions f ~ Lo and g E Lp,

satisfying ~ f ~03A6 = 1 and f 03A8| g | dx ~ 1 such that
L1
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But Il / 110 = 1 implies f 0 1 / | dy ~ 1 by 310, hence
A

On the other hand, if we have

hence T ~03A603A8 ~ 2 ~ Ta Il. Collecting our results we have ~ T ~ S
11 Ta ~ ~ ~ T ~03A603A8 ~ 2 ~ Ta ~.
COROLLARY. T(x, v) E Lww if and only if ~ T ~03A603A8  00.

REMARKS. 1°. In the Lp-case (1 ~ p  oo, 1/p + 1/q = 1),
defining ~ T ~pq by
11 T ~pq = l.u.b.  |T(x, y)f(y)g(x) | dxdy for 11 f 11, ~ 1, 11 g llq  1,

L1xL1
we find similarly ~ T Il ~ Il Ta T IIf)q.

2°. If T(x, y) ~ L03A603A8, the kernels T*(x, y) = T(y, x) and

1 T*(x, y) 1 correspond with linear integral transformations T*
and T*a which are bounded on L03A8 into L03A8, and for which

THEOREM 4. Il T ~03A603A8 = 0, Il Ta ~ = 0, Il T il = 0 and T(x, y) = 0
almost everywhere in 0394 X 0394 are four equivalent statements.

PROOF. T(x, y) = 0 trivially implies T ~03A603A8 = 0. But

11 T lI(1)yr = 0 implies Il Ta 11 = 0 and this in its turn implies
~ T ~ = 0. It remains to prove that ~ T Il = 0 implies T(x, y) = 0.

Obviously ~ T Il = 0 gives f T(x, y) f (y)g(x)dxdy = 0 for all f ~ Lo,
g e L03A8, hence f T (x, y) dx dy = 0 where Lt1 and 42 are arbitrary
bounded subintervals of 4. Then however T(x, y) dx dy = 0

s

for every bounded measurable set 5 C LI X L1, which implies
T(x, y) = o.
THEOREM 5. 1 f addition and multiplication by complex numbers

are defined in the natural way, the class L03A603A8 is a complete Banach
space with norm 11 T ~03A603A8.
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PROOF. We have only to prove that L03A603A8 is complete. Let
therefore the sequence Tn(x, y) E Lyy (n = 1, 2, ...) with
lim Il Tf1 - Tm ~03A603A8 = 0 be given. We suppose first that 4 is

bounded. Then there exist positive numbers p and q such that
m(0394)03A6(p) ~ 1 and m(0394)03A8(q) ~ 1, so that, taking f(y) = p and

g(x) = q, we have 03A6 |f| dy ~ 1 and f!p1 | g | dx ~ 1. It follows
that 

lim

for m, n - co, from which we infer by a well-known argument
that a subsequence Tx(x, y) (k = nl, n2, ... ) converges pointwise
to a measurable function T(x, y). Letting now in

holding for m, n &#x3E; N(03B5), the index m run through the subsequence
k = nl, n2, ..., Fatou’s Theorem yields

for n ~ N(03B5). Hence lim il T n - T ~03A603A8 = 0. If L1 is an unbounded
interval, it is necessary to introduce an extra diagonalprocess
in order to,obtain the subsequence Tk(x, y).
THEOREM 6. Il T1 (x, y) and T2(x,y), corresponding with the trans-

f ormations T1 and T 2, both belong to L03A603A8, then T 3 = Ti T2 has the
kernel T3(x, y) = T1(x,z)T2(z, y) dz belonging to Loyf.

PROOF. It follows from our hypothesis that

for every f e Lo, hence

for arbitrary f e L.t/), g E L’P. For 03941 an arbitrary bounded subset
of LI this gives T1(x, z)T2(z, y) | dx dy dz  oo, hence
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where T3(x, y) = T1(x, z)T2(z, y) dz is measurable in 03B41  03941,
L1

and therefore in d X 4. It is now easily seen that T3 = Tl T2
has T3(x, y) as its kernel and that

hence T3 (XI y) E L03A603A8.
COROLLARY. Il T has the kernel T(x, y) ~ L03A603A8, all transforma-

tions Tn(n = 2, 3, ... ) are integral transformations with the iterated
kernels T ,,(ae, y) = f Tn-1(x, z) T(z, y)dz E LOW.
THEOREM 7. If Tl and T2 have kernels Tl(x, y) e Low and

T2 (XI y) e L03A603A8, and T1a, T2a are the transformations with kernels
| T1(x, y)| and 1 T2(ae, y) l, then ~ (T1T2)a ~ ~ ~ T1a T2a Il ~
~ T1a Il - Il T2a Il. In particular ~ (Tn)a ~ S ~ Ta lin (n = 2, 3, ...)
for T(x, y) ~ L03A603A8, a-nd hence ~ T" ~03A603A8 ~ 2 Il T ~n03A603A8.

PROOF. We have only to prove that Il (TIT2)a ~  ~ TiaT2a ~.
The transformation (Tl T 2)a has the kernel I f T1(x, z) T2(z, y )dz ) 
f | Tl(x, z)T2(z, y) 1 dz which is the kernel of T1a T Zao The rest

of the proof is similar to that of Il T Il ~ Il Ta Il in Theorem 3.

THEOREM 8. Suppose that 03A6(2u)  M03A6(u) for all u &#x3E; 0 and
that T(x, y) ~ L03A603A8 is the kernel of T. Then, if g* e (L03A6)* is represen-
ted by g(x) e L03A8 according to 10°, and T* is the adjoint of T (hence
(T*g*)(f) = g*(Tf) for all f E L03A6, g* E (L03A6)*), the functional
k* = T*g* is represented by

U

Hence T* corresponds with the kernel T*(x,y) = T(y, x ) o f a
bounded transformation on L1p into L1Jf. Il T1 and T2 have the
kernels T1(x, y) E L03A603A8 and T2(x, y) ~ Lrp1Jf and il T3 = TIT2, then
T*3 corresponds with T3* (x, y) = T 3(Y’ X) = Tl(y, z) T2(z, x) dz.
PROOF. We have 

hence, since k(x) is uniquely determined,
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The statement on T*3 - (T1T2)* follows now immediately from
what we proved in Theorem 6 on T3 = T1T2.

Let E be an abstract complete Banach space and T a bounded
linear transformation on E into E. By I we denote the identical
transformation and, provided the complex number A belongs to
the resolvent set of T, the bounded linear transformation

(T - ÀI)-1 is denoted by RA. The following two statements are
well-known:

If |03BB| 1 &#x3E; ~T ~, then 03BB belongs to the resolvent set of T and

where this series converges uniformly (that is, if S n is its n-th
partial sum, then limn~~ ~ R03BB 2013 Sn Il = 0).

If 03BB0 (either &#x3E; ~ T ~ or ~ ~ T ~ in absolute value) belongs
to the resolvent set of T, then all A in a sufficiently small neigh-
bourhood of 03BB0 also belong to the resolvent set of T and, writing
Ro = ( T a.ol )-1, R03BB = (T - 03BBI)-1, we have

where this series converges uniformly, certainly for |03BB - Âo 1 
~ R0 11-1.
Both formulas are easily proved on multiplying by T 2013 il =
(T 03BB0I) 2013 (03BB 2013 03BB0)I.
As in the introduction we define HA for any A =1= 0 in thé

resolvent set of T by RA = 2013 Â-1 I - Â-2HÂ’ hence H -
AI - Â2RÂ, and H03BB = T + 03BB-1T2 + 03BB-2T3 + ... for 1 ÀI &#x3E; ~ T Il.
Writing 03BC = 03BB-1 we have already seen in the introduction that
I + IÀHÂ = (I 2013 03BCT)-1.
THEOREM 9. Il À =1= 0 belongs to the resolvent set of T, then

01’

Il T n is completely continuous for an integer n &#x3E; 1, the same holds

f or (H03BB)n.
Il Ao =1= 0 belongs ta the resolvent set of T and we write Ho = H03BB0,

03BC0 = AÕI, 03BC = 03BB-1, then
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uniformly f or all A in a sufficiently small neighbourhood o f 03BB0,
certainly for 1 ju - Po 1  ~ Ho 11-1.
PROOF. The first statement follows immediately from the

definition of HA. The second statement follows from (Hl)n =
(- Â)nR1Tn.
For 1 03BC 2013 03BC0 1  Il Ho 11-1 the series Xl = Ho + (03BC 2013 03BC0)H20 + ...

obviously converges uniformly. Since (03BCT - I)H03BB = - T, we
find

or XA = HZ.

We return to the space Loqf.
THEOREM 10. Il T has the kernel T(x, y) ~ Low and 1 03BB 1 &#x3E; Il Ta Il

(so that Â belongs to the resolvent set o f T on account of ~ Ta ~ ~ Il T ~),
then H03BB is an integral transformation with kernel H03BB(x, y) E Loyf.
The series

(Neumann series) converges pointwise to H03BB(x, y) almost every-
where in 0394 X LI.
PROOF. Since 1 03BB 1 &#x3E; ~ Ta ~ ~ ~ T Il, we have HA = T + 03BB-1 T2

+ Â-2 T3 + ... uniformly, and the partial sums of this series are
integral transformations with kernels belonging to L03A603A8. The series
11 | Â |-n ~ Ta ~n+1 also converges. From

(cf. Theorem 3 and Theorem 7) follows then that the series for
H03BB converges in L03A603A8. The completeness of the space L03A603A8 guaran-
tees now that H03BB has a kernel H03BB(x, y) E L03A603A8.
The convergence of 03A3~0 ~ 03BB-n Tn+1 Il., implies that

X f 1 Tn+1(x, y) 03BB-n | dx dy  oo for every bounded interval

W
03941  0394, hence 03A3 | Tn+1(x, y)03BB-n | 1  oo almost everywhere in

03941  03941. It follows that 03A3~0 03BB-nTn+1(x, y) converges almost every -
where in J X d . That its sum function is H03BB(x, y ) may be seen
by applying Fatou’s Theorem as in Theorem 5.
REMARK. If 03A6(2u) ~ M03A6(u) for all u ~ 0, so that the adjoint

transformation T* corresponds by Theorem 8 with the kernel
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T(y, x), the transformation H*03BB in (L03A6)*, defined by (T* - 03BBI)-1 =
2013 03BB-1I - Â-2H!, corresponds with the kernel HA ( y, x). We have
used here that A is in the resolvent set of T* if and only if 03BB is

in the resolvent set of T.

THEOREM il. Il T has the kernel T(x, y) ~ L03A603A8 and i f 03BB0, belonging
to the resolvent set of T, has the property that Ho = H Âo is an

integral transformation with kernel H0(x, y) ~ L03A603A8, then H03BB is

an integral transformation with kernel H03BB(x, y) E L03A603A8 for all A

satisfying 1 03BB-1 2013 03BB-10 |  ~ (H0)a ~-1.
PROOF. For | 03BB-1 2013 03BB-10 1  ~ (Ho)a 11-1 we have

03A3| 03BB-1 2013 03BB-10 k ~ (H0)a ~k+1  ~ and H03BB = lô (03BB-1 2013 03BB-10)k Hô+i
uniformly by Theorem 9. The desired result follows now in a

similar way as in the preceding theorem.
REMARK. The series 03A3~0(03BB-1 2013 03BB-10)kH0,k+1(x, y) converges almost

everywhere in 0394 X 0394 to H03BB(x, y). Proof as in the preceding
theorem.

It seems difficult to say more about the character of the trans-

formation HA without making additional hypotheses. Our next
theorem will show that under certain conditions HAis an integral
transformation with kernel H03BB(x, y) for every 03BB =1= 0 in the resol-
vent set of T. It will not follow from our proof however that this
H03BB(x, y), as a function on 0394 X LI, is measurable and hence even
less that H03BB(x, y) E L03A603A8.
THEOREM 12. Let 03A6(2u)  M03A6(u) for all u &#x3E; 0 and T(x, y) ~ L03A603A8.

Let furthermore T(x, y) = Tx(y) ~ L1J’ for almost every x ~ 0394. Then,
if 03BB ~ 0 belongs to the resolvent set o f T, there exists a function
H03BB(x, y), belonging to L1J’ as a function of y for almost every x E d,
such that g = HAI is given by

PROOF. Note first that T(x, y) ~ L03A603A8 does not always imply
Tx(y) E LW. If Lo is the Lebesgue space L2 we have an example
in T(x, y) = | x - y |-03B1, 1/2 ~ 03B1  1.
By hypothesis T(x, y) = Tx(y) E Lp for all x ~ 0394 2013 E. where

Eo is of measure zero. Using now the one-to-one correspondence
between all functionals g* E (L03A6)* and all functions g(x) E L03A8 we
apply the transformation 2013 03BBR*03BB to Tx(y) E L03A8, and we obtain
a function H03BB(x, y) = H03BB,x(y) E L03A8 for all x E d Eo. Hence

(- ÂR!) Tx(y) = H03BB,x (y). Then, if f E Lo is arbitrary, we have for
x E d Eo 
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where we have written h = - 03BBR03BBf. But evidently h e Lt/J, so
that g(x) = T(x, y) h(y) dy ~ L03A6 as well. Since g(x) and

H03BB(x, y)f(y) dy are identical for x ~ 0394 2013 E0 we may say there-
L1

fore that

H03BB(x,y)f(y)dy=g(x)=Th=T(-03BBR03BBf)=-03BBTR03BBf = H03BBf.
L1

This complètes the proof.
REMARK. If in particular 1 Â | &#x3E; Il Ta Il it is to be expected

that the function HÂ(ae, y) in the présent theorem is identical

almost everywhere in L1 X L1 with the function H03BB(x, y) found
in Theorem 10. To show that this is true dénote for a moment

the H03BB(x, y) of the présent theorem by K03BB(x, y). Then

for all f E Lo, g E L03A8. Note that it is not permitted to replace
this repeated integral by a double integral because we do not
know that HI(x, y ) is measurable. It follows that for arbitrary
bounded subintervals 03941 and L12 of d

Keeping first L12 fixed this implies {H03BB 2013 K03BB} dy = 0 for almost
every x ~ d . The set of exceptional x however may depend on ’d 2-
Nevertheless, observing that the set of all rational J 2 is countable,
we may say that for almost every x E LI

for all rational d2 simultaneously, and this is sufficient for

drawing the conclusion that H03BB 2013 K03BB = 0 almost everywhere in
0394  0394.
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§ 4. The space Do of all kernels of finite double-norm.

Suppose that T(x, y) is measurable in LI X d. For the definition
of the double-norm 111 T 03A6 of T(x, y) relative to the Orlicz space
Lo we refer to the introduction.
THEOREM 13. If T(x, y) is measurable, then ~ T ~03A603A8  III T 1110.

Hence, i f T(x, y) is of finite double-norm (III T 03A6  ~), then

T(x, y) e L03A603A8.
PROOF. For f 0 I f | dy ~ 1 we have

d

where tmaj (ae) is an arbitrary measurable majorant of t(x) =

Il Txy) ~03A8. Hence, provided also f 03A8 1 g | dx ~ 1,

Since this holds for all tmaj (X), we find ~ T ~03A603A8  III T 03A6.
DEFINITION. The class Do is the class of all measurable T(x, y)

satisfying III T 1110  00.

THEOREM 14. For elements T, Tl, T2 of D03A6 zve have

 T 1110 = 0 if and only if T(x, y) = 0 almost everywhere in 0394 X LI.

PROOF. Trivial.

TIIEOREM 15. The class D03A6 is a complete Banach space with norm
 T 03A6.
PROOF. We have only to prove that Do is complete. For this

purpose let the sequence Tn(x, y) EDO (n = 1, 2, ...) with

lim 11 T n - Tm 03A6 = 0 be given. Since this implies Tn(x, y ) e L03A603A8
and lim ~ Tn - Tm ~03A603A8 = 0, there exists a subsequence Tk(x, y)
(k = nl, n2, ... ) converging almost everywhere in d X d to a
measurable T(x, y) (cf. the proof of Theorem 5). Hence for n
fixed, by Fatou’s Theorem,

for almost every x ~ 0394, where k runs through nl, n2, ... and
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f e Lo. If in particular  03A6 1 f dy ~ 1, the integral on the right
A

does not exceed ~ Tk(x, y) - Tn(x, y) ~03A8, hence

~ lim inf B1 Tk(x, y) - T n(ae, y) ~03A8 = lim inf dk(x).
Let now mk(x) be a measurable majorant of dk(x) (k = nl,
n2, ...). Then m(x) = lim inf mk(x) is a measurable majorant
of d(x). The majorants mk(x) may be chosen so that

Il mk(x) ~03A6 ~ 2  Tk2013Tn 03A6. For f 03A8 1 g | dx ~ 1 we have now
L1

m(x)|g(x)|dx=lim inf mk(x)|g(x)|dx ~ lim inf  mk(x)|g(x)|dx
L1 L1 L1

 lim inf ~ mk ~03A6 ~ lim inf 2 III Tx - T 11 03A6,
hence ~ m ~03A6 ~ lim inf 2 III Tx - T n 03A6, so that certainly

III T - T 11 03A6 ~ lim inf 2 III Tk - T. 03A6.
This shows that III T - T" 03A6 tends to zero as n - oo.
THEOREM 16. Il T(x, y) e D03A6, S(x, y) e L03A603A8 and V = TS, then

V(x, y) E Do and

In particular, if Tl and T2 E" Do, then TlT2 e Do and III T1T2 03A6 
 T1 03A6  T2 03A6. Il T e D03A6, then III Tn 03A6 ~  T n03A6 (n = 1, 2, ...).
PROOF. We observe first that the transformation with kernel

S(y, x) is bounded on Lyf into L03A8 by Theorem 6, Remark, and
that its bound does not exceed 115 ~03A603A8. Since both T(x, y) and
S(x, y) belong to L03A603A8, the transformation V = TS is an integral
transformation with kernel V(x, y) = j T(x, z) S(z, y)dz e Lyy
by Theorem 6. Then Vx(y) = V(x, y) = f S(z, y) Tx(z) dz for

almost every xe4. Hence, by what we have observed,
il vy2J) IItp S ~ S ~03A603A8 Il TOy) 11, for these values of x. This im-

plies 111 V 03A6 ~ Ill T 03A6 ~ S ~03A603A8.

Before proceeding we recall the definition of III T inv03A6. We
have 11B T inv03A6 = III T* 111, where T*(x, y) = T(y, x). We shall
say that T(x, y) is inversely of finite double-norm if III T inv03A6  00.

In this case T*(x, y) e L03A803A6, hence T(x, y) e Low.
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THEOREM 17. Suppose that Tl e Do and that T2 is inversely of
finite double-norm. Then, defining the trace r(TlT2) of TlT2 by

we have

PROOF. We have

where m1(x) and m2(x) are measurable majorants. Hence

for all ml, m2’ which implies 1 T(TIT2) | ~ III Tl 1110 III T2 III:v.
COROLLARY. Il S ~ Do and T is inversely of f inite double-norm,

then V = ST ~ Do (cf. Theorem 16) has a finite trace r(V) and
the kernel V(x, z) = f S(x, y)T(y, z)dy satis f ies

Il moreover S = S. where all Si belong to Do and i f the series
converges in double-norm (that is, lim  S 2013 03A3n1 Si 03A6 = 0 for
n ~ ~), then -r(ST) = 03A3~1 03C4(SiT).

§ 5. The proof of Theorem B.

In the present paragraph we shall have to deal with a bounded
linear transformation T on a Banach space E into the same

space E. This transformation T will have the property that one
of its iterates T" (n = 1, 2, ... ) is completely continuous. The
spectral properties of a transformation T of this kind will be listed
more extensively in the next paragraph but for our present
purpose it will be sufficient to know that every complex number
Â =1= 0 is either in the point spectrum or in the resolvent set of T,
and that the point spectrum is either empty, finite or countable.
In this latter case the points of the point spectrum tend to 03BB = 0.
We recall that Â is in the resolvent set of the adjoint transfor-
mation T* if and only if 03BB is in the resolvent set of T.
THEOREM B. Let 0(2u)  M03A6(u) for all u &#x3E; 0, T(x, y),E L03A603A8

and III Tn 03A6  00 for an integer n &#x3E; 1. Then, if Â =1= 0 is not
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in the point spectrum o f T, the transformation Hl (defined as
before) is an integral transformation with kernel H03BB(x, y) e L03A603A8, and

where III K03BB 03A6  00. The functions Tp(x, y) (p = 2, 3, ...) are
here the kernels of Tf1. In particular III T 1110  00 implies
 H03BB 03A6  co-

PROOF. Since 111 T" 03A6  oo and 0(2u)  M03A6(u) for all

u ~ 0 it follows from Theorem A that T2" is completely con-
tinuous on L03A6 into Lo. The transformation T has therefore
the spectral properties described above. In particular any 03BB ~ 0
not in the point spectrum of T is in the resolvent set of T so that
H03BB may be defined again by (T - 03BBI)-1 = - Â-1 I - ).,-2HA.
Writing H03BB = T + A-1 T 2 + ... + 03BB-(n-2) Tn-1 + 03BB-(n-1) Ka, a
direct computation shows immediately that

The rest of the proof will be divided into three parts.
1°. Suppose that we know already that HA is an integral trans-

formation with kernel H03BB(x,y) ~ L03A603A8. Then, since T(x, y) and
all iterates Tj(x, y) ~ L03A603A8, the transformation KA has also a

kernel K;.(ae, y ) E Lf1J1J1. The relation K03BB(T 2013 03BB1) = 2013 03BBTn then
implies

almost everywhere in L1 X L1. But this shows that, for almost
every z e L1, the function f(x) = K).,(z, x) is a solution of

Observing that the adjoint transformation T* in (L03A6)* corresponds
by Theorem 8 with the kernel T(y, x), and that - 03BBTn(z, x) =
g(x)~ L03A8 so that g(x) corresponds with an element g* ~ (L03A6)*, our last
equation is seen to be equivalent with the equation (T*- 03BBI)f* = g*
in (L03A6)*. Hence, A being in the resolvent set of T*, we have

this implies

or
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It follows that

2°. Since Il K03BB ~03A603A8 ~ 111 K03BB 03A6 we find under the same extra
hypothesis as in 1° that

We furthermore recall that ~(H03BB)a Il ~ ~ H03BB ~03A603A8 by Theorem 3,
where (HA). is the transformation with kernel | H03BB(x, y)|.

3°. Suppose that 03BB1 ~ 0 is an arbitrary point in the resolvent
set of T. On account of the first part of the present proof we have
only to show that H03BB1 is an integral transformation with kernel
H1(x, y ) E L03A603A8. By Theorem 10 we know already that for 1 03BB* | 1 &#x3E;

Il Ta Il the transformation HA. has a kernel H03BB*(x, y) E L(f)qT.
Since there are at most a finite number of points 03BB in the point
spectrum of T for which | 03BB | 1 ~ |03BB1 |, we may join 03BB1 by a straight
linesegment with a point 03BB* in |03BB*| &#x3E; ~ T. Il in such a way that
every point on this linesegment is in the revolvent set of T.
The expression F(03BB) in the second part of the present proof is
continuous on this linesegment (cf. the formula for RÂ in § 3);
it has therefore a finite non-negative maximum B on the segment.
If 03BB0 is an arbitrary point on the segment we consider the open
set 1 Â-1 - Âo 1 1  B-1 in the 03BB-plane. Obviously we may cover
the closed segment from 03BB* to 03BB1 by a finite number of these sets
in such a way that 03BB* is the centre of the first set, and that each
centre is in the interior of the preceding set. Suppose now that
03BB0 is the centre of one of these sets and that we know already that
Ho = HA. is an integral transformation with kernel Ho(x, y) E L(f)1Jf
Then ~ (H0)a ~ ~ ~ H0 ~03A603A8 ~ B by the second part of the present
proof and the definition of B. It follows now from Theorem 11
that HZ is an integral transformation with kernel HÂ(x, y ) E L03A603A8
for all 03BB satisfying | 03BB-1 2013 03BB-10|  /1 (Ho)a /1-1; hence, since

B-1 £ Il (Ho)a ~-1, certainly for all 03BB satisfying A-i 2013 03BB-10|  B-1,
that is, for all 03BB in the particular set around 03BB0 which we consider.
Since we know that H03BB*(x, y ) E L(l)1Jf, a successive application of
this argument shows that H03BB1 is an integral transformation with
kernel H1(x, y ) E L(l)1Jf.
REMARK. Observe the curious twist in the above proof. As we

already remarked in the introduction it is probably due to our
first establishing Theorem B that the proof of Theorem C may
be kept free of approximation methods.
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§ 6. Properties of a bounded linear transformation one of
whose iterates is completely continuous.

We consider an abstract complete Banach space E. By E* we
denote its adjoint space. Let T be a bounded linear transformation
on E into E with the property that T P is completely continuous
for a certain integer p &#x3E; 1. It will be useful for what follows to
list here the most important spectral properties of a transfor-
mgtion of this kind. For the proofs we refer to Riesz [16], Schau-
der [17], Banach [1], Ch. X. § 2 and Zaanen [18].
We observe in the first place that the adjoint transformation

T* (on E* into E*) has the property that (T*)P = (Tp)* is also
completely continuous. The complex number 03BB is a characteristic

value of T whenever there exists an element f ~ 0 satisfying
T f = 03BBf or, equivalently, (T - 03BBI)f = 0. The set of all f (with
f = 0 included) for which (T - M)f = 0 is a linear subspace of
E, the nullspace of T - ÂI, also called the characteristic space
of Â. The dimension of this space is called the geometric multi-
plicity of Z for T. The set of all characteristic values of T is the
point spectrum of T. The set of all À such that T - ÀI has a
bounded inverse RA = (T - ÀI)-1 with domain E is the resolvent
set of T.

a) Every 03BB ~ 0 belongs either to the resolvent set of T (and
of T*) or to the point spectrum of T (and of T*). The point
spectrum is empty, finite or countable, and in this latter case
the points of the point spectrum tend to Â = 0. Every charac-
teristic value 03BB ~ 0 has the same finite geometric multiplicity
Ml for T as for T*.

b) For any Â e 0 the dimensions mn of the null spaces of
(T - ÂI)n (n = 0, 1, 2, ...) form a non-decreasing sequence with
mo = 0 and ml = 0 or m1 &#x3E; 0 according as Â is in the resolvent
set or in the point spectrum of T. This sequence does not tend
to infinity because there exists an index v = v(Â) such that
Mn  mn+1 for n  v whereas mn = mv  00 for n &#x3E; v. The
dimension mv is called the algebraic multiplicity of 03BB for T. The
differences mn+1 2013 mn (n = 0, 1, 2, ... ) are non-increasing.
Denoting by mn the corresponding dimensions for T*, we have
m*n = m. for all n. Every Â:f=. 0 has therefore the same finite
algebraic multiplicity mv for T as for T*, and also the same finite
index.

c) For any characteristic value Âo e 0 there exists a base

{f1, ..., fmv} of the null space M’II of (T - Âol)" which may be
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arranged into the following pattern

The total number of elements in the last n rows (n = 1, ..., v)
is mn, and the elements in these rows form a base of the null

space of (T 2013 03BB0I)n. If f i and fi+1 are in the same column, then
fi+1 = (T 2013 03BB0I)fi. In the same way there exists a base (g§’, ...,
gfà) of the null space M£ of (T* 2013 03BB0I)v which may be arranged
into an exactly congruent pattern and which has the same pro-
perties relative to the null spaces of (T* 2013 03BB0I)n (n = 1...., v).
Numbering these g* thus that the first column contains g*1, 9v
from bottom to top, the second column g*v+1, ... (also from
bottom to top) and so on, the g * may be chosen thus that

g*i-1 = (T* 2013 03BB0I) g* for g * and g*i-1 in the same column, and

Here 03B4ij = 1 for i = j and 03B4ij = 0 for i ~ j.
d) Denoting for any 03BB0 ~ 0 with index v the null space of

(T 2013 03BB0I)v by M’V and the linear set of all g = (T 2013 03BB0I)vf by
Lv, this set Lv is a linear subspace and the whole space E is the
direct sum of Mv and Ly, that is, any f E E has a unique decom-
position f = g + h, g E Lv, h ~ Mv. Writing g = PL f , h = Pm/,
we have PL + PM = I, PL = PL, P2M = PM . The transfor-

mations PL and PM are therefore projections. Since they are
closed they are bounded. PL is called the projection on L’V along
My and PM in the projection on My along Lv . We have 9*i(PLf) = 0
for all g* (i = 1, ..., mv). Writing TM = TPM, TL = T PL ,
T M Âol is nilpotent on M’V into M’V (because ( T M 03BB0I)nf = 0
for all f E Mv provided n &#x3E; v), whereas TL 2013 03BB0I (on Lv into Lv)
has a bounded inverse Ro (note that Ro is only defined on Lv).
For 03BB ~ 03BB0 but in a sufficiently small neighbourhood of 03BB0, we
have

where
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Using the above notations we prove two theorems.
THEOREM 18. Assume that each column of the diagram in c) is

completed by an in f inite sequence of zeros below. Then the transfor-
mations Bk = (T - 03BB0 I)kPM (k = 0, 1, ..., v - 1) satisfy

where hi is the element in the diagram which is in the sarne column
as fi z but k rows below. In particular Bol = PM f = 03A3mvi=1 g:(f)fi
and Bv-1f = ( T 2013 03BB0I)v-1PMf = 03A3mv-mv-1i=1e*(f)ei where ei and

ei are the elements in the last rows of the {f}-diagram and the {g*}-
diagram respectively, ordered from left to right.

PROOF. It is easily seen that Bo f = PM f = Il’ g*i(f)fi. Indeed,
sillce this is true for every f E Lv on account of g*i(PLf) = 0
and also for every f = fi (i = 1, ..., mv), it holds for every

f E E. Consider now Bk = (T 2013 03BB0I)kPM. Observing that (T 2013 03BB0I)k
transforms every fi of the diagram into the element hi in the same
column but k rows below, we obtain the desired result. Note that

mV-mV-l is the number of terms in the upper row of the diagram.
THEOREM 19. Denote by BÂ the sum o f all terms with negative

powers o f 03BB 2013 03BB0 in the expression for RÂ in d) above. Define
again HA by R03BB = 2013 03BB-1 I 2013 03BB-2H03BB and write SA = T 2013 H03BB.
Then, for A =1= 03BB0 but 1 03BB 2013 03BB01 sufficiently small,

where T 2013 HZPL may be expanded in terms of non-negative powers
o f 03BB-1 2013 Âil.

PROOF. Observing that PL PM = 0 (the null transformation)
we conclude from the expression for RÂ that

hence

In order to find the expansion for T - HÂ PL we consider
T L = T PL . We have

For 1 03BB 2013 03BB01 sufficiently small (Â. = Âo included ) T 2013 03BBI has a
bounded inverse on Ly. For ). ~ Ao this inverse is R03BB and for
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A = Ao it is the transformation Ro introduced in d) above. Hence

For 03BB ~ 03BB0 this implies

Furthermore, since 03BB0 is in the resolvent set of TL, the transfor-
mation (HL);, may be expanded in terms of non-negative powers
of 03BB-1 2013 03BB-10 by Theorem 9. Denoting (HL)03BB for 03BB = 03BB0 by (HL)0,
we find then

This is the desired result. We shall however write the series ob-
tained in a slightly different form. From H03BB = - 03BBR03BBT (ef.
Theorem 9) we conclude

hence with T replaced by

Furthermore, keeping in mind the general relation
2013 03BB-1H03BBT, we find

The final result is therefore that

§ 7. The proof of Theorem C.

We suppose that the Banach space E of § 6 is the space L03A6(0394),
where 03A6(2u) ~ M03A6(u) for a constant M and all u ~ 0. If T is
an integral transformation with kernel T (x, y) satisfying
111 T 03A6  ~ the transformation T2 is completely continuous by
Theorem A, so that T has all properties mentioned in § 6. The
elements f l, ..., f., in the diagram are now functions f1(x), ...,
fmv(x), all belonging to Lo, and the linear functionals g*, ..., g*mv
such that g*i(fi) = 03B4ij are represented by functions gl(x), ...,

gm, (x) belonging to Lw and such that j gi (x) fl (x) dx = 03B4ij. Theorem
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18 shows that the transformations Bk= (T 2013 03BB0I)kPM (k = 0,
1, ..., v-1) are integral transformations with kernels Bx(x, y) =
03A3mvi=1gi(y)hi(x) where h,(x) is in the same (extended) column as

fi(x) but k rows below. Note that f BO(x, x) dx = m,, and

Bk(x, x) dx = 0 for k = 1, ..., v - 1.
THEOREM 20. Suppose that 0(2u)  M03A6(u) for all u ~ 0, and

that T is completely of finite double-norm, hence 111 T 1110  oo,

III T inv03A6  00. Then, if Âo =1= 0 is a characteristic value of T with
algebraic multiplicity m,,, Â =1= 03BB0 and 1 Â - 03BB01 sufficiently small,
the transformation SIX = T - Hl has a finite trace 03C4(S03BB) zvhich

satis f ies

If Âo =1= 0 is in the resolvent set of T the first term in the ex-
pansion vanishes.

PROOF. Suppose first that 03BB0 ~ 0 is a characteristic value of T
with index v and algebraic multiplicity m,,. Observing that
PM = Bo is an integral transformation with kernel BO(x, y) =
= 03A3mv1 fi(x)gi(y), we see that TL = TPL = T - TPM has the
kernel T(x, y) - ZJ7’ gi(y) Tfi(ae), so that TL is completely of

finite double-norm. It follows now from Theorem B that (HL)03BB
is of finite double-norm for all A in the resolvent set of TL, in
particular for A = 03BB0 and all 03BB in a sufficiently small neighbour-
hood of Ao. Hence III (HL)o 03A6  00, and, by Theorem 16,

(HL)n0 03A6  111 (HL)o III;. It follows that for 1 p,- p,o |  III (HL)o -103A6
the series 03A3~1(03BC201303BC0)k(HL)k0 and 03A3~0(03BC - 03BC0)k(HL)k+10 converge in
double-norm. These series are exactly those between the square
brackets in the expansion for T - HAPL in Theorem 19. Noting
that T PM has a finite trace, we find therefore by Theorem 17,
Corollary, that

By Theorem 19 we have S03BB = 03BB2B03BB + ÂPm + (T 2013 H03BBPL), and
we know already that Â2BÂ + )..PM is an integral transformation
with kernel

hence
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This leads to the final result that

If Ao ~ 0 is no characteristic value of T a similar but easier
argument (it is not necessary to introduce TL now) shows that
in this case the term with (03BC - po)-l vanishes.
THEOREM 21. Under the same conditions for 0(u) and T(x, y)

zoe have, for |03BB 1 sufficiently large,

where an = 03C4(Tn) (n = 2, 3, ...) and 03BC = 03BB-1.
PROOF. For small |03BC| we have H03BB = T + 03BCT2 + 03BC2T3 -t- ...

(cf. the proof of Theorem 10). This series converges in double-
norm four 1 p, |  III T -103A6. Hence, since S03BB = 2013 03BCH03BBT,

THEOREM 22. Under the same conditions for 0(u) and T(x, y)
there exist8 a power series 03B4(03BC) = 1 + 03A3~1 03B4n03BCn, converging for all
complex 03BC and having the property that its logarithmic derivative
03B4’(03BC)/03B4(03BC) satisfies

03B4’(03BC)/03B4(03BC) = T(S Â)
for all 03BC = A-1 for which A is in the resolvent set o f T. The sum
03B4(03BC) o f this power series, the Fredholm determinant o f T, kas a zero
o f multiplicity m, in po = 03BB-10 i f and only i f Zo is a characteristic
value o f T with algebraic multiplicity m,. The coefficients
03B4n(n = 1, 2, .. ) o f this series satisfy 03B4n = (-1)nQn/n! where

(compare Smithies [11], Theorem 4.4).
PROOF. The existence of 03B4(03BC) and the statement concerning its

zeros follow by a well-known function theoretic argument from
the properties of T(SA) proved in Theorems 20 and 21.
Write 03B40 = 1. For small |03BC1 we have by Theorem 21

hence

or
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Write d0 = 1, dn = (-1)nQn/n! (n = 1, 2, ...). Then it is

easily seen that

Hence 03B4n = d’fi (n = 0, 1, 2, ...).
THEOREM C. Let 03A6(2u)  M03A6(u) for all u ~ 0, and let T be

completely of finite double-norm. Then, if 03BB ~ 0 is not in the point
spectrum of T and 03BB = 03BC-1, we have H03BB(x, y) = H’(x, y)/ô(y)
where 

The coefficients 03B4n and Hn(x, y) are the (modified) Fredholm ex.-
pressions. Both series converge for all Il, the series for H’(x, y)
almost everywhere in L1 x L1. This series even converges in double-
norm.

PROOF. Let ). = 03BC-1 =1= 0 run through the resolvent set of T,
and let 03B4(03BC) = 1 + 03A3~1 03B4n03BCn be the power series introduced in
Theorem 22. Consider now the transformation HÁ defined by
H’03BB = 03B4(03BC)H03BB. If 1 y 1 is small,

Since ôo = 1, 03B41 = 0, we find Ho = T, Hl = T2. Generally, for
n ~ 1,

It follows that all H 11 are integral transformatibns with kernels
Hn(x, y) of f inite double-norm. Furthermore, from Hn bnT =
03B4n-1T2 + ... + 03B40Tn+1 for n &#x3E; 1,

This formula also holds for n = 0, hence for all n.
One may prove now exactly as in Smithies [11], Theorem 5.8

that the recurrence formulas

imply

where Nn is the n  n determinant with elements T(zi, zi)
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(i, j = 1, ..., n ) but with the elements T(z;, zi) on the main
diagonal replaced by zeros, and where N*n(x, y ) is the determinant

It remains only to prove the statements concerning the conver-
gence of 03A3~0Hn03BCn. Evidently all partial sums are of finite double-
norm. Let 03BB0 = 03BC-10 ~ 0 be a characteristic value of T with index
Y and algebraic multiplicity mv. Then it follows easily from what
we have proved in Theorem 19 that HA has for small | 03BB - 03BB01
an expansion in terms of powers of 03BC 2013 03BC0 with exponents
~ 2013 v, the expansion converging in double-norm. Hence, since
03B4(03BC) has a zero of multiplicity mv &#x3E; v in IÀ = 03BC0, the transfor-
mation H’03BB = 03B4(03BC)H03BB has an expansion in terms of non-negative
powers of , - 03BC0. The same is trivially true whenever Âo ~ 0
is in the resolvent set of T. These facts imply that the radius
of convergence of 03A3Hn03BCn (which represents Hi for small |03BC|) is

infinite, since the theorem that the sum of a power series with
a finite radius of convergence has a singularity on the circle of
convergence remains true in the case that the coefficients are
elements of a Banach space (here the space Do of all kernels of
finite double-norm). The proof of this theorem as it is reproduced
e.g. in Hurwitz-Courant [19], Part 1, Ch. 3, § 5, may be taken
over practically without modifications. Hence Hl = 03A3~0Hn03BCn in
double-norm for all ,u. The proof that H’03BB(x, y) = 03A3~0 Hn(x, y)03BCn
pointwise almost everywhere in L1 X d is similar to that in
Theorem 10.

REMARK. It hardly needs observing that for any = 03BC-1 in
the resolvent set of T the equation f 2013 03BCTf = g, gc LO, has the
solution.

where this series converges according to the L03A6-norm, and also
pointwise almost everywhere in d.

The proof of Theorem C rests essentially upon the existence
and convergence everywhere of the power series ô(p) = 03A3~0 03B4n03BCn.
In order to establish these properties of 03B4(03BC) we had to use an
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argument derived from the theory of complex functions. Smithies,
in the L2-case (cf. [11]), could avoid this argument because he
could find bounds for the coefficients ô. by using Hadamard’s
determinant inequality. It would be interesting to know whether
Smithies’ method may be extended to the Lo-case or at least
to the Lp-case (1 S p  oo).

§ 8. Uniform convergence of the expansions.

Under somewhat stronger hypotheses we may prove that the
expansions for HZ(x, y) (cf. Theorem 10 and il, Remark) and
H’03BB(x, y) (cf. Theorem C) converge uniformly. For this purpose
we define:

CLASS B. The kernel T (x, y) E L03A603A8 belongs to the class B whenever
there exists a constant c such that, for all x ~ 0394 and all y ~ 0394,

t(x) = ~ T(x, y)~03A8 ~ c, s(y) = ~ T(x, y) ~03A6 ~ c.
CLASS Cm. In case the interval L1 is bounded and closed, the

measurable kernel T(x, y) belongs to the class Cm whenever, for all
XI, x2 e L1 and all yi, y2 e A,

Whenever T(x, y) E Cm we shall also say that T(x, y) is continuous
in mean (relative to L03A6).

Obvioiisly, if L1 Ïs bounded and T(x, y) E B, then  T 03A6  oo
and III T inv03A6  oo. Furthermore, if T(x, y) ~ Cm, the mean

continuity is uniform on L1 since 11 is supposed to be bounded
and closed in this case. It follows that t(x) = T(x, y) ~03A8 and
s(y) = Il T(x, y) 110 are continuous on 11, and therefore bounded.
Then T(x, y) ~ B so that, by what we already observed,
 T 1110  oo and III T inv03A6  00.

THEOREM 23. 1 f T has the kernel T(x, y) ~ B and 1 03BB 1 &#x3E; Il Ta ~
(so that 03BB belongs to the resolvent set of T on account of ~ Ta Il &#x3E;

Il T 1/), then the Neumann series

converges uniformly in L1 X L1 to H03BB(x, y). We have H03BB(x, y) ~ B,
and S03BB(x, y) = T(x, y) - H03BB(x, y) is bounded on L1 x L1.

If T(x, y) ~ Cm, then H03BB(x, y) e Cna and all iterated kernels

TD(x, y) (p = 2, 3, ...) are continuous on L1 x Li, so that S03BB(x, y)
is continuous as well.
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PROOF. Since T2(x, y) may be defined now by

for all (x, y ) E d X L1 (not, as before, only for almost all (x, y ) ~ L1 X 0394),
we have, as in the proof of Theorem 16,

Generally

In the same way

It follows that

The uniform convergence of the Neumann series for 1 03BB1 &#x3E; il Ta ~
is proved now by a similar argument as in Theorem 10. In

the same way it is seen that E; A |-n ~ T.+,(x, y) ~03A8 and
Z’oe 1 Â " Il T"+i (x, y) ~03A6 converge uniformly in L1. Hence

H03BB(x, y) E B and S03BB(x, y) bounded.
If T(x, y) e Cm, then T2(XI y) is a continuous function of x

uniformly in y and a continuous function of y uniformly in x.
This shows that T2(x, y) is continuous in L1 X d. The same holds
for Tp(x, y) (p = 3, 4, ...). It follows that S03BB(x, y) is continuous
for | 03BB 1 &#x3E; il Ta Il, so that H03BB(x, y) ~ Cm.
REMARK. If 03BB0 is in the resolvent set of T(x, y) e B, and we

know that Ho(x, y) = H03BB0(x, y) ~ B and that T(x, y) 2013 H0(x, y)is bounded, then it may be proved similarly that for 1 03BB-1 2013 03BB-10| 
il (Ho)a 11-1 the series

converges uniformly in d X A, and that all H0,p(x, y) (p = 2, 3, ...)
are bounded. Hence H03BB(x, y) ~ B and T(x, y) 2013 H03BB(x, y) bounded
for these values of Â.

In the same way, if T(x, y) e Cm, Ho(x, y) e Cm and T(x, y) -

HO(x, y) continuous, then H03BB(x, y) ~ Cm and T(x, y) - H03BB(x, y)
continuous for 1 Â-I- 03BB-10 |  ~ (H0)a ~-1.
THEOREM 24. Il 0(2u)  M03A6(u) for all u ~ 0, T(x, y) ~ B and
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111 T 1110  oo, then H03BB(x, y) ~ B and T(x, y) - H03BB(x, y) bounded
for all 03BB in the resolvent set of T. If T(x, y) E Cm, then H03BB(x, y) ~ Cm
and T(x, y) 2013 H03BB(x, y) continuous f or all 03BB in the resolvent set o f T.
PROOF. Follows from the preceding theorem by observing that,

starting from a point Â* in 1 Â* 1 &#x3E; Il Ta ~, any Â, in the resolvent
set of T may be reached in a finite number of steps of the kind
described in the remark above (cf. the proof of Theorem B).
THEOREM 25. Let 03A6(2u) ~ M03A6(u) for all u ~ 0, and let T(x, y)

be completely of finite double-norni. Let moreover T(x, y) ~ B. Then,
it Â =1= 0 is in the resolvent set of T and Z = 03BC-1, me have, with the
notations o f Theorem C,

uniformly in L1 x L1. Furthermore Hn(x, y) - 03B4nT(x, y) is bounded
f or n = 0, 1, 2, ... I f T(x, y) £ Cm, then Hn(x, y) - 03B4nT(x, y) is
continuous f or n = 0, 1, 2, ...
PROOF. In view of Ho = T, Hn = 03B4nT + 03B4n-1T2 ;- ... +

03B40Tn+1 = 03B4nT + Hn-1T(n ~ 1) we find

hn(x) = Il H n(ae, y) 1 1 03B4n | . Il T (x, y) ~03A8 + Il Hn-1 ~03A603A8~T(x, y) ~03A8

hence

Since 03A3 | 03B4n03BCn | 1  oo and 03A3  Hn 03A6 1 pn 1  oo, it follows that

03A3~0 1 Hn(ae, y) - 03B4nT(x, y) | . 1 y ln converges uniformly in L1 X L1.
The same holds then for

H03BB(x, y) - T(x, y) = {03B4(03BC)}-1 Er [Hn(x, y) - 03B4nT(x, y)] 03BCn.
The remaining statements are now evident.
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Note (added 24-1-52). The results in this paper are connected with those

of Dr A. F. Ruston in his recent paper "On the Fredholm theory of integral
equations for operators belonging to the trace class of a general Banach space",
Proc. London math. Soc., II Ser. 53 (1951), 109-124. Dr Ruston shows that
for transformations in the trace class the classical methods (Hadamard’s in-

equality) yield the analogs of the classical results.

(Oblatum 21-4-51).


