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On a conjecture of Nelder
by
J. M. Hammersley

In a statistical problem connected with the Poisson distribution,
J. A. Nelder came to consider the determinant of the information

matrix
f w(; 52) e—=dF () (1)
0

in which F is a distribution function of a non-negative variable,
that is to say a non-decreasing function continuous on the right
and satisfying
F(z) =0, < 0; lim F(z) = 1.
—>w
To solve his problem he had to determine what function (or
functions) F would maximise this determinant. He conjectured
(a) that a maximum occurred when
0, <0
Fz)y=47 $, 0=52<?, (2)
1, 2 =2

and (b) that (2) was the unique solution. In this note I shall prove
conjecture (a) together with a weaker form of (b), namely that (2)
is unique amongst the class of distribution functions having com-
mensurable saltuses.

The determinant of (1) is equal to

3 f ”f“"(w_y)ze-deF(w)dF(y). (8)
0 0

To relate this expression to familiar inequalities, suppose tempo-
rarily that F is a step function with saltuses of magnitude F; at a,
for : =1, 2, ... Writing

a; = (#; — x;)? exp(— z; — ;)
we have to prove a best possible inequality of the type
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subject to X, F; = 1. Inequalities of the type
204F G, =M

subject to the conditions X, F? = 1, X,G? = 1 are known as in-
equalities of the space [p, ¢]. The inequality theory of the space
[2, 2], known as Hilbert space, is well-developed, and other spaces
in which p or ¢ exceed unity have received some attention. How-
ever, results in the space [1, 1] seem pretty scarce.

To prove conjecture (a) we note that the integrand in (3) is a
bounded continuous function, and hence the integral exists as a
Cauchy-Stieltjes integral. Consequently if C, denotes the class of
functions

1 2 0, 2z <0
E.(z)= ;EIE(w——w,-), 2, =20, E)= { L z>0
there exists a sequence of functions E,(z) belonging to C, such
that
lim E, (z) = F(z)

n—>
is a solution which maximises (3).
When F belongs to C,, (with n = 2) we can write Q/n? for (8)
where
Q=0(@, gy + .., ,)=SS,—S7=142 El(wi—w,.)ﬂ’ exp(—a;—a;), (4)
i=14=
Sp=Su(xs, gy ..., z,) =L alexp(—ax;), m=0, 1, 2. (3)
i=1
Let us maximise Q subject to 0 < 2, < oo. It is easy to see that
Q is not a maximum if z;, = oo for any value of ¢. So hereafter
we confine our attention to finite values of z,, We take care of the
restriction 0 < #; by writing z; = & and maximising Q with
respect to the ;. Consider solutions of
9Q/0t, = — 2£, exp(— &) L(§) = 0, (6)

where

L(fi) = 50‘5:_ 2(S, + 51)5;? + (25, + Sq). (7)
For a graetest maximum (or peak) of Q either &, = 0 or £ is a
solution of L(£2) = 0. So far everything is straightforward; but
now we have to dispose of an unwanted root of L = 0, and the

way of doing this is by no means obvious. Suppose that at any
particular peak exactly » of the &s are zero. Then

%25, + Sa) = X exp(— EL(E)
— SgS3—2(So+ S1)S1+ (25, + S,)So = 20 =16n2/9¢2, (8)
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since, when z; =2 for 1 < ¢ < 4n and o, =0 for n <1 =,

(9)

| n¥le? for n even
Q= (n?—1)/e? for n odd °

Next, because (22 + 22)e~* < 2(1 + 1/2)e~ V2, we get
2v(n — »)(1 + 4/2)e~ V2= 16n?/9¢?

and hence

v 32
w = %{1_ V[l— 9(1 + \/2)e2~«/2] } =0.287. {19)

Now z%~* is an increasing function for 0 < 2 < 2: so at any peak
of Q at least one of the roots of L(z,) = 0 must satisfy =, = 2
for at least one value of k; for otherwise we could increase Q by
multiplying each z; by some constant greater than unity. When
the greater root of (7) satisfies &2 = 2, we have

V(S5 + ST — S6S2) = So— Si (11)

We now derive a contradiction by supposing that at any peak of
Q there is at least one value of k, say k=1, such that x; is strictly
positive and is the lesser root of L(z;) = 0. We have

Sot, = So + S1— V(S + 5§ — SoSa) (12)
9%Q/08} = — 8&lexp(— &) {So&; — (So + S1) + exp(— &)} (18)

At a maximum the right-hand side of (18) cannot be positive.
Also (1 —z)e * = —e2 and ze* < e 1. By (11) and (12)

0 = Sox,— (So+ Sy) + exp(—=,) = exp(—a,) — v/ (Sg+ ST—S¢5s)
< exp(— ) — (So— S1) < exp(—2,) — exp (— ) +
+ 2, exp(—a,)—7» + (n —v—1)?

Sel—rv4+(n—rv—1)2= 6—7:{1 + %(e——d)——%(e?—l—l)}
gg{l+;(e—1)—%(e2+1)}=%{%(e+1>—%(e2+1)}-

Hence

< 0.252

which contradicts (10). Hence at any peak any non-zero value of
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@, is equal to the greater root of L(z,) = 0, say z, = x,. Then
Q = v(n — »)aj exp(— ,)
and Q attains its maximum for

. R if n is even
TW=2 v_{}(n:i:l) if n is odd

and then Q satisfies (9). This completes the proof and shows that
the least upper bound of (8) is 1/e%.

(Oblatum 24-8-52)



