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The group of motions of a two dimensional
elliptic geometry
by
Reinhold Baer

Urbana, Illinois

If @ is the group of motions of a two dimensional elliptic geo-
metry, then it is possible to reconstruct within @ by purely group
theoretical means the original geometry. This phenomenon, not
uncommon in geometry in general, makes it possible and con-
venient to use as postulates for such a geometry group theoretical
properties of its motion group @. This has been done with great
success. An extremely neat and straightforward set of postulates
for plane elliptic geometry has been obtained in just this fashion
by A. Schmidt [1] where further references may be found.

One of the tools used in the development of plane elliptic geo-
metry from its group theoretical basis is Reidemeister’s construc-
tion of the motion space [Reidemeister—Podehl [1], § 5—8].
This may be applied to any abstract group G in the following
fashion: The derived geometrical structure D(G) of G has for its
points as well as for its hyperplanes just the elements in G; and
incidence is defined in D(G) by the rule that the point p is on
the hyperplane 4 if, and only if, the product ph is an element
of order 2 in G. The question arises to find criteria for D(G) to
be a projective space, a question that has a rather surprising
answer: The derived geometrical structure D(G) of the group G
is a projective space of dimension greater than one if, and only
if, G is isomorphic to the motion group of a plane elliptic geometry.

The motion group of a plane elliptic geometry may be con-
sidered as an abstract group, as a group of linear transformations,
as a group of planar auto-projectivities or we may consider its
derived geometrical structure. Each of these points of view leads
to a definite characterization of our class of groups; and the proof
of the equivalence of these four characterizations is the principal
objective of this investigation. We shall arrange the argument
as follows. In § 1.C we consider a group G whose derived geo-
metrical structure is a projective space of dimension greater than
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one; and we construct in a natural way a representation of G
as a group /A of linear transformations with the following two
properties: (L.1). If » # 1 is a linear transformation in A, then
its space of fixed elements has rank 1. (L.2) To every subspace
Q of rank 1 there exists an involution ¢ in 4 with Q for its space
of fixed elements. In § 2,8 we prove that a group A of linear
transformations has these properties (L) if, and only if, it is the
motion group of an elliptic plane; and that A induces isomor-
phically a group of planar auto-projectivities satisfying three
conditions (E) on its reflections. In § 4 we show that every group
of planar auto-projectivities with these properties (E) meets a
set of four abstract group theoretical requirements (G) which
deal almost exclusively with the involutions in the group; and
in § 6 we close the circle by proving that D(G) is a three dimen-
sional projective space whenever G satisfies the conditions (G).
[See § 7, Theorem 1 for a summary of these results.]

It is only to be expected that the representations of groups as
L-groups of linear transformations or as E-groups of planar auto-
projectivities are essentially uniquely determined; and the proofs
of these uniqueness theorems [together with some implications
for the foundations of elliptic geometry] may be found in § 7.
It is clear that groups in our class may be represented in many
different ways as groups of linear transformations; and thus one
may be tempted to ask whether the L-groups are at least the
only groups of linear transformations which induce isomor-
phically an E-group of planar auto-projectivities. Strangely
enough this is not the case; and we discuss in § 8 the class of
motion groups of elliptic planes with this additional uniqueness
property. They may be variously characterized by the ,,Pytha-
gorean’’ character of the underlying elliptic plane, the possibility
of bisecting all right angles, the fact that every group element is
a square and by the transitivity of the induced group of planar
auto-projectivities.

1. Projective group spaces.

The present section has two principal objectives. Firstly we
want to give a survey of the low dimensional projective group
spaces; and secondly we shall show that every higher dimensional
projective group space may be represented in a natural way as
a group of linear transformations.

The definition of a projective group space will be preceded by
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the definition of the derived geometrical structure which may be
attached to every group.

1.A. The derived geometrical structure of a group.

If G is any group whatsoever, then the derived geometrical
structure D(G) is defined as follows. Both the set of points and
the set of hyperplanes in D(G) are equal to the set of elements
in G. The point p is on the hyperplane & [in symbols: p < h] if,
and only if, their product pk in G is an involution [= element
of order 2].

The structure D(G) ts homogeneous. For if g is some fixed
element in the group G, and if we map the point p in D(G) upon
the point pg and at the same time the hyperplane A onto the
hyperplane g—'h, then we obtain an incidence preserving, one to
one and exhaustive transformation of D(G). This family of trans-
formations is a group isomorphic to G; and it is simply transitive
on the points and on the hyperplanes of D(G).

The structure D(G) is self-dual. To prove this fact we construct
the canonical polarity of which use will be made quite often.
This canonical polarity is obtained by interchanging the point g
and the hyperplane g. That this interchange preserves incidence,
follows from the easily verified equivalence of the following four
properties:

i) p<h;

(ii) pk is an involution;

(iii) hAp = h(ph)h—! is an involution;
(iv) kR <p.

Linear dependence in D(G) is defined as follows: If S is a set
of points in D(G), and if the point p is on every hyperplane
which passes through every point in S, then p is said to depend
on S.Inother words: p depends on S if ph is an involution whenever
Sh is a set of involutions.

Point subspaces of D(G) are sets M of points such that p
belongs to M whenever p depends linearly on M. If S is a set of
points in D(G), and if M = M(S) is the totality of points linearly
dependent on S, then it is easily seen that M(S) is a point subspace
of D(G). We shall refer to M(S) as to the point subspace spanned
by S.

Linear dependence and subspaces may be defined for hyper-
planes too [by duality]. We shall make little use of it; and thus
we shall usually sav subspace instead of point subspace



244 Reinhold Baer. [4]

S-groups [or projective group spaces] may now be defined as
groups G whose derived geometrical structure D(G) meets the
following requirements.

(a) If the point p depends on the point g, then p =gq.

(b) If p and ¢ are different points, then there exists a third
point r dependent on the set (p, g) [in other words: lines
carry at least three points].

(e) If the point p depends on the set S, then p depends on a
finite subset of S.

(d) The totality of subspaces of D(G) is a complete, complemen-
ted, modular lattice.

These conditions may be restated shortly as requiring that the
subspaces of D(G) form a projective space whose points are the
points of D(G). As we shall make little use of the above pro-
perties, but only of various well known derived properties, a
further analysis of them is out of place.

1.B. The low dimensional projective group spaces.

Low dimensional means for us dimension less than three.

THEOREM 1: The group G is a projective group space of dimension
1 if, and only if, G contains one and only one involution and is of
order greater than two.

Proor: The group G is a projective group space of dimension
one if, and only if, there exist at least three points and if every
hyperplane carries one and only one point. The first of these
conditions is satisfied if, and only if, the order of G is greater
than two. It follows from the homogeneity of D(G) [see 1.A] that
the second of these conditions is satisfied if, and only if, the
hyperplane 1 carries one and only one point. But a point p is
on the hyperplane 1 if, and only if, p1 = p is an involution; and
so the second condition is equivalent to the requirement that
there exists one and only one involution.

REeMARK 1: The class of groups with the properties of Theorem 1
is extremely large. We mention a few examples only. The quater-
nion group; the direct product of any group with the above
properties and of a group without involutions ete.

Proros1TION 1: Projective group spaces do not have dimension 2.

Proor: Assume by way of contradiction that D(G)is a projective
plane. Then G contains at least seven elements; and the ,,hyper-
planes” are lines with the property that any two different lines
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have one and only one point in common. Consider an element
g # 1in G. Then 1 and g represent different lines; and these have
one and only one common point p. From p <1 we infer that
p is an involution; and from p < g we deduce that pg is an
involution too. Naturally g~'pg and g-1(pg)g = (g~'pg)g are in-
volutions too so that the point g—lpg is likewise on the two lines
1 and g. Hence p = g~!pg or pg = gp. But pg is an involution;
and so it follows that 1 = (pg)? = p?g? = g2

Hence every element, not 1, in G is an involution. If a and &
are different elements, then ab is an involution; and this shows
that every point p is on every line not p. It follows that any
two distinct lines have at least five common points; and this is
the desired contradiction.

ProrosiTioN 2: The following properties of the S-group G are
equivalent.

(i)  The dimension of D(G) is greater than one.

(ii) Every element in G is a product of two involutions.
(iii) The center of G does mot contain involutions.

(iv) The center of G equals 1.

Proor: Assume the validity of (i). Then we deduce from Pro-
position 1 that the dimension of D(G) is at least three. Consider
an element g # 1 in G. Then the points 1 and g span a line which
is on at least one hyperplane. There exists therefore a hyperplane
k such that 1 < h and g < h hold at the same time. But 1 < &
implies that A is an involution; and g < h implies that gh = §
is an involution. Hence g = jh is the product of the two involu-
tions § and h, proving that (i) implies (ii).

Assume next the validity of (ii). Then we infer from G # 1
the existence of at least two different involutions in G; and it
follows from Theorem 1 that the dimension of D(G) is greater
than one. Thus we see the equivalence of (i) and (ii).

Assume now the validity of the equivalent properties (i) and
(ii); and suppose, by way of contradiction, the existence of an
element ¢ # 1 in the center of G. Then ¢ = §’j"" where 4’ and j”’
are different involutions [by (ii)]. Since ¢ belongs to the center
of G, ¢j’ = j'c; and this implies j'j = "'}’ so that ¢ is an in-
volution. It is clear now that 1 < ¢ and §° < ¢. Hence the line
through 1 and ' is on the hyperplane c. This line carries at least
a third point p; and this point is necessarily on ¢ too. Hence
pc is an involution; and this implies that p is an involution
different from ¢, since ¢ is an involution in the center of G. Con-



246 Reinhold Baer. [6]

sequently 7/ <1 and p < 1 so that the two different points p,
7" of the line from 1 to §' are on the hyperplane 1. Hence the
point 1 is on 1, an impossibility since 1 is not an involution. Thus
we have shown that (iv) is a consequence of the equivalent pro-
perties (i), (ii).

It is clear that (iii) is a consequence of (iv). — Assume finally
the validity of (iii). Then it is impossible that G contains just
one involution, since an only involution would be equal to all
its conjugates in G and would therefore belong to the center
of G. Thus it follows from Theorem 1 that the dimension of G
is not one. This shows that (i) is a consequence of (iii); and this
completes the proof.

ReMARK 2. In the presence of the equivalent conditions (i) to
(iv) of Proposition 2 the element 1 is the only element in G which
commutes with every involution, since elements commuting with
every involution belong to the center [by (ii)] and since the center
cquals 1 [by (iv)].

1.C. The canonical representation of G as a group of
linear transformations.

We shall call the group G an S*-group, if D(G) is a projective
space of dimension greater than one. It follows from Proposition
1 [of 1.B] that the dimension of D(G) is at least three; and this
implies among other things that the Theorem of Desargues holds
in D(G) and in all its subspaces.

We denote by J the totality of involutions in G. This is just
the totality of points on the hyperplaie 1 so that the projective
space J has at least dimension 2. We note that the point 1 is
not on this hyperplane J so that the whole space is spannecd
by the hyperplane J and the point 1. Since the Theorem of
Desargues holds in J, it is possible to represent J by means of
»seoordinates” from a [not necessarily commutative] field. But
this ficld and this representation arce only essentially uniquely
determined; and it will be convenient for us to obtain a canonical
representation. It will then be possible to obtain a representation
of G as a group of linear transformation, again in a natural way.
We precede our discussion by the introduction of two svmbols.

1. If ¢ # 1 is an element in the S*-group G, then the points
1 and g determine a line in D(G) which meets the hyperplane J
in one and only one point which we shall denote throughout
by g*. Thus g* is a well determined involution for every g =1
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2. If the element g in the S*-group G is neither 1 nor an
involution, then we infer from the validity of the Theorem of
Desargues in D(G) the existence of one and only one perspectivity
g with axis | and center g* which maps 1 onto g [we recall that
g leaves invariant every point in J and every line through g*].
It will be convenient to let 1 be the identity transformation.

The natural representation of the hyperplane J. We denote by
A the totality of all elements in the S*-group G which do not
belong to J. Then we may introduce an addition in 4 by the
following rule.

(3) a+b=a®

[is the image of a under the perspectivity b].

We note that the null-element for this addition is just the iden-
tity element in the group G; and thus we shall denotate this
element by either of the symbols 0 and 1 according as we discuss
addition in 4 or multiplication in G.

It is easily seen [and well known] that mapping @ in 4 upon
the perspectivity a is an isomorphism of the additive system A
upon the multiplicative group of all the perspectivities with axis
J and center on J. Thus 4 is an additive abelian group, since 4
is a multiplicative abelian group.

If we note that a = 1° for every a in A, then we may restate

(8) as follows.
(8") a+b=1%%for a,b in A.
Consider now a perspectivity f with center 1 and axis J. If a

is any element in .4, then f maps a upon a well determined element
in .4 which we shall denote by fa. One verifies that

(4) fa = faf;
and this implies that
(4 f(a + b) = fa + fb for a,b in A.

It is well known that the ring F of endomorphisms of the additive
group A which is generated by these transformations is a [not
necessarily commutative] field; and that 0 is the only element
in F which is not a perspectivity f with center 1 and axis J.
(5) The subset U of A is an F-admissible subgroup of 4 if,
and only if, the totality U* of all the w* with 4 20 in U is a
subspace of J; and mapping U onto U* constitutes a projectivity
between the partially ordered set of F-subgroups of 4 and the
partially ordered set of subspaces of J.
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This well known theorem asserts that the F-subgroups of 4
constitute a representation of the subspaces of J; and this is the
desired natural representation of the hyperplane J by means of
the subspaces of the linear manifold (F, 4).

The relation between addition in 4 and multiplication in G is
somewhat obscure. We noted already that the null-element 0
in 4 and the identity-element 1 in G are identical. Upon this
result we can improve a little by proving the following useful
statement.

LEMMA 1: —a = a7l for every a in A.

Proor: To prove this we consider the following mapping o
of the derived geometry D(G). If g is a point [hyperplane] in
D(G), then g° is the point [hyperplane] g-1. If the point p is on
the hyperplane &, then ph = § is an involution. Hence A-1p-1 =
7~ =7 is an involution too; and consequently p°h® = p~1h~1 =
h(h~'p~1)h~! is likewise an involution. Consequently p? is on A%;
and thus we see that ¢ is an involutorial auto-projectivity of the
derived geometry D(G). But o leaves invariant the point 1 and
every point on the hyperplane J. Consequently o is an involutorial
perspectivity with center 1 and axis J; and o is therefore an ele-
ment in F which maps @ in 4 upon oca = a! in A. Now o is
involutorial; and the field F contains only one involutorial
element, namely — 1. Hence o in F is just — 1; and we see that’
—a = a™! for every a in A. Since G contains elements which
are different from their inverses, — 1 % 1 in F; and thus we have
shown incidentally the following fact.

CoRrOLLARY 1: The characteristic of F is not 2.

Now we are ready to establish the desired
Natural representation of G as group of linear transformations of
(F, A).

If we map the element g in G upon the inner automorphism
a? = g~lzg, then we obtain an isomorphic mapping of G upon
the group of inner automorphisms of G [by Proposition 2 of 1.B].
If we map the point p upon the point p? and at the same time
the hyperplane & upon the hyperplane k% then we obtain an
auto-projectivity of D(G), since ph is an involution if, and only
if, (ph)’ = p°A? is an involution; and this auto-projectivity g"
preserves the canonical polarity, the point 1 and the hyperplane
J. Mapping the element a in 4 upon the element a’ we obtain
clearly a permutation of the elements in 4 which we denote by
g+; and it is clear that mapping g upon g* constitutes a homomor-
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phism of the group G upon a group Gt of permutations of 4.

Before stating our principal result we introduce some notations.
If v is a linear transformation of the linear manifold (F, 4), then
we denote by P(v) the totality of elements # in A such that
2v = x and by N(») the totality of elements  in 4 such that
av = — z. Clearly P(») and N(») are subspaces of A.

The group @ of linear transformations of the linear manifold
(F, A) will be termed an L-group of linear transformations, if it
has the following two properties.

(L.1) P(») is a point in (F, A) for every v #1 in ®.

(L.2) To every point Q in (F, A) there exists an involution w
in @ such that Q = P(w).

Now we are ready to state the principal result of this section.

THEOREM 2: If G is an S*-group, then mapping g onto g*+constitutes

an isomorphism of G upon the L-group Gt of linear transformations.

The proof of this theorem will be effected in a number of steps.

(6) (xv)* = (2*)Y for x 41 and y in G.

Proor: If z # 1, then there exists one and only one line L
in D(G) which connects the points 1 and x; and L meets the
hyperplane J in the uniquely determined point z*. The inner
automorphism of G which is induced by the element g maps the
line L upon the line L? which connects the points 1 and z? and
which meets in J in the point (z?)*. But our transformation
maps the point z* of intersection of L and J upon the point
(z?)* of intersection of L? and J so that (z?)* = (x*)?, as we
claimed.

(7) The mapping of g upon g+ constitutes an isomorphism of G
upon G*.

Proor: Suppose that gt = 1. If a # 0 is an element in 4,
then we deduce from (6) that

a* — (a"+)* = (a?)* = (a*)".

Hence g commutes with every involution in G. But every element
in G is a product of involutions in G [§ 1.B, Proposition 2] so
that g belongs to the center of G. But the center of G is 1 [by § 1.B,
Proposition 2]; and so g* = 1 implies g = 1.

(8) (a%) = (g*)Yag" for a in A and g i G.

Proor: We note first that (a?) is the uniquely determined
perspectivity with axis J and center (a?)* which maps 1 onto a’.
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Secondly we note that (g®)-lag®™ is the uniquely determined

perspectivity with axis J and center (a*)? which maps 1 upon

1069730 But (a*)? = (a%)* by (6) and 10eM7a0™ — 1a0" 0" — g9,

Thus the two perspectivities under consideration are equal,

proving (8).

(9) (@ + by =a’ +b"" for a and b in 4, g in G.
Proor: This follows from (8), if we note that

a? =" =27 for x in A and g in G,
and that therefore [by (3)!

(a + b)a+ — (IEF)f — 1M aE 150—”

=a' b =a" 4 0.
(10) If j is an involution in G, then j*+ is an involutorial linear
transformation of (F, A) with the following properties.
(a) P(j*)* consists of 7 alone.
(b) N(j*)* is the totality J(j) of involutions u in G such that wj
is an involution.

(¢) - = P(j*) ® N(j*).

Proor: The involution j in G commutes with itself and with
the involutions in J(§) and with no further involution. But J(j)
is clearly the intersection of the hyperplane j and the hyperplane
J [of all involutions]. Since the point j is not on the hyperplane
4, the whole space is spanned by the point § and the points on
the hyperplane j. Since 7 is on the hyperplanc of all involutions,
it follows that J is spanned by the point § and its submanifold
J(J). We deduce from (5) the existence of uniquely determined
subspaces U and V of (F, 4) such that U* = j and V* = J(5);
and it follows from (5) [and the fact that J is spanned by J ()
and the point § not on J(j)] that

(10.1) d=Uev.

Suppose now that @ % 0 is an element in U. Then we deduce
from the definition of U that a* = j. Since G is an S*-group,
there exist involutions a’, a’’ in G such that a = a’a’”’ [by § 1.B,
Proposition 2]. Since aa’ = a’a’’a’ and aa” = a’ are clearly in-
volutions in G, it follows that the point a is on the two different
hyperplanes @’ and a”’. These two hyperplanes carry 1; and so
the whole line from 1 to a is on them. But the point a* = j is
on the line from 1 to a so that § is on the hyperplanes ¢’ and a”’.
Since j, a’, @' and ja’, ja”’ are therefore involutions, it follows
that § commutes with @’ and with a’’. But this implies ja = aj
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ora=a" belongs to the totality P(j*) of fixed elements of j+.
Hence

(10.2) U =< P(j*).

Consider next an element a = 0 in V. Then «¢* is a well deter-
mined element in J(j) so that a* and a*j are involutions. Con-
sequently the points 1 and a* are on the hyperplane j. Since
1, a, a* are collinear points, it follows that @ too is on the hyper-
plane j. Hence aj is an involution; and we deduce from Lemma 1
that

-+ . . .
o =jlaj =jajaa?t = al=—a.

Hence a belongs to the totality N(j*) of clements in A such that
@’ = — a; and we have shown that

(10.8) V < N(*).

It follows from (9) [and (7)] that j* is an involutorial auto-
morphism of the additive group 4. Hence P(j+) and N(j*) are
certainly subgroups of 4. If these subgroups were equal, then
it would follow from (10.1) to (10.8) that they are equal to A
so that j* = 1 which is impossible by (7). But once P(j+) and
N(jt) are different, they have only 0 in common; and now it
follows from (10.1) to (10.8) that

(10.4) U = P(j*) and V = N(j+).

Since U and V are F-admissible subspaces with direct sum A,
it is now an almost immediate consequence of (10.t) that the
involutorial automorphism j+ of the additive group 4 is a lincar
transformation of .4 over F; and this completes the proof of (10).

(11) Every iransformation in G* is lincar.

Proor: If g is in G, then there exist involutions &, k in G such
that g = hk [§ 1.B, Preposition 21. It follows from (10) that A+
and A+ are linear transformations; and consequently g+ =: AtL+
is linear too.

Verification of (L.1): Suppose that g 541 is an element in G.
If g happens to be an involution, then it follows from (5) and
(10) that P(g*) is a point in (F, 4). Assume now that g2 £ 1.
Then g is an element, not 0, in A too. Consider now an element
a # 0 in P(gt). Then a = a’ so that 1, @ and consequently the
line from the point 1 to the point a are left invariant by the auto-
projectivity g™. Since g” leaves also the hyperplane J invariant,
the point a* [in which the line from 1 to a meets J] is a fixed
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point of g%. Hence a*g= ga* or g=g*" so that g is an element, not 0,
in P[(a*)*]. Since P[(a*)*] is a point [by (10)], we have
P[(a*)*] = Fg; and it follows from [(5) and] (10) that (Fg)* =
P[(a*)*] = a*. Thus we sce that a* = g* whenever a 7 0 is in
P(gt). Since g itself certainly belongs to P(gt), it follows now
that P(g+)* = g*; and it follows from (5) that P(gt*) is a point
in (F, A). This shows the validity of (L.1).

Verification of (L.2): If Q is a point in (F, 4), then it follows
from (5) that Q* = 7 is an involution in G. We deduce from (10)
that j+ is a linear transformation in G+, satisfying P(j*)* = j=0Q%*;
and it follows from (5) that P(j+) = Q, showing the validity of
(L.2).

Combining (7), (11) with these last two verifications we see the
validity of Theorem 2.

2. L-groups of linear transformations.

Throughout this section we consider a linear manifold (F, 4)
and an L-group @ of linear transformations of (F, 4) [as defined
in § 1.C]. It is our principal objective in this section to show
that such a group is the group of motions of an elliptic plane.
Thus there will be no danger of confusion, if we abstain from
restating this hypothesis (L) in the course of this section.

ProrositioN 1: The characteristic of F is not 2 and the rank
of (F,A) ts 8.

Proor: Since 4 # 0, there exists a point Q. We infer from
(L.2) the existence of an involution » such that Q = P(»). Since
v#1, Q # A so that the rank of 4 is at least 2.

Assume now by way of contradiction that the characteristic
of F is 2. If a is an element in A4, then a 4 av belongs to P(»)=0,
since v is an involution. If a + av = 0, then av = — a = a,
since the characteristic of F is 2. Hence a + av # 0 for every
a in 4, not in Q; and this implies

Q = F(a + av) for a in A, not in Q.
If a and b are elements, not in Q, then it follows that there exists
a number ¢ % 0 in F such that b + by = ¢(a + av) or
b+ ca)r =b + ca,

since the characteristic of F is 2. Hence b is in Q + Fa; and we
have shown that 4 = Q + Fa is a line.
We infer from (L.2) the existence of an involution o in @ such
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that P(w) is some point different from Q. Hence 4 = P(») & P(w),
since 4 is a line. Since vw belongs to @, and since P(v) # P(w),
v and o are different involutions so that v # 1. It follows from
(L.1) that P(vw) is a point. Hence there exists an element b # 0
in P(»o); and we infer from 4 = P(v) ® P(w) the existence of
elements s and ¢ in P(v) and P(w) respectively such that b=s-1.
Then
s+t=0b=bvowo = svo + rvo = sw + trw.

Remembering that the characteristic of F is supposed to be two
it follows that
(s +sw)+ (v + tvw) =t + tv

is an element in the intersection 0 of P(») and P(w). Hence
t+t=0 or tv =1t so that ¢ belongs to the intersection 0 of
P(v) and P(w). Consequently ¢ = 0; and this implies s + s = 0
or sw = s so that s belongs to the intersection 0 of P(v) and P(w).
Hence s = 0 so that 0 £ b = s + ¢t = 0, the desired contradic-
tion. This shows that the characteristic of F is not 2.

If the linear transformation » of (F, 4) is an involution, then
it follows [as usual] that A = P(») ® N(v). We have already
pointed out that the rank of (F, A) is at least 2. Assume now by
way of contradiction that A4 is a line. Then N(») is @ point, since
P(v) is a point. Thus there exists by (L.2) an involution w such
that P(w) = N(»). Clearly »w 5 1; and it follows from (L.1) that
there exists an element a 7% 0in P(vw). From 4 = P(v) @ N(v) we
deduce the existence of elements p, n in P(v) and N (v) respectively
such that a = p 4+ n. Then

p+n=a=avo=(p+npo=(p—n)o=pw—n,
since N(v) = P(w). Hence 2n = pw — p is in the intersection 0
of P(w) and N(w); and this implies n = 0 and pw = p, since the
characteristic of F is not 2. But then p itself is in the intersection
0 of P(») and N(») so that p =0. Hence 0 Fa=p +n =20
is the desired contradiction which shows that the rank of 4 is
at least 3.

If » is any involution in @, then P(») is a point [by (L.1)] so
that N(») has rank not less than 2. We deduce from (L.2) the

existence of an involution w such that P(w) is some point on
N(»). It is clear that

N(») NN(w) < P(vw).

Since » and « are different involutions, »w % 1; and it follows
from (L.1) that P(vw) is a point. It follows from (L.1) that P(»)
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and P(w) are points; and we have A =P(»)®N(»)=P(w) DN (w),
since the characteristic of F has been shown to be different
from 2. Therank of 4 consequently exceeds the rank of N(») NN (w)
at most by two. But we have shown already that the rank of
N(») NN(w) cannot exceed one; and thus we see that the rank
of 4 cannot exceed three. Since we have shown in the preceding
paragraph of this proof that the rank of A is at least three, it
follows that the rank of A over F is exactly three; and this
completes the proof.

CoRrOLLARY 1: If v is an involution in @, then 4 = P(v) & N(»)
where P(r) is a point and N(v) a line.

This is a fairly obvious consequence of Proposition 1 and (L.1)
and has actually been verified in the course of its proof.

LeumMma 1: If v is an involution in D, and if P(v) is a fixved point
of the transformation t in D, then v = vt.

Proor: Clearly w = t~!»7 is an involution in @; and it follows
from our hypothesis that P(w) = P(v)t = P’(v). The intersection
of the lines N(v) and N(w) has at least rank 1. Since obviously

P(») ® [N(») "\N(w)] < P(ro),

it follows that P(rw) has at least rank two. We deduce from (L.1)
that o = 1l orv = w = 7~l»7 or v = »7, as we intended to show.

LEMMA 2: To every line L in A there exists an involution in
D such that L = N(»).

Proor: We infer from (L.2) the existeiice of an involution
o in @ such that P(«) < L. Then the lines L and N(«) are neces-
sarily different so that they meet in a point Q = L NN (a), since
A is by Proposition 1 a plane. There exists by (L.2) an involution
g in @ such that Q = P(p). Since Q is a fixed point of «, it follows
from Lemma 1 that af = fa to that » = «f = fu is an involution.
From P(x) = P(f~'af) = P(«)p it follows that P(«) is a fixed
point of 8 which is different from P(f) = Q = L NN(«). But all
these fixed points of g are on N(B). From P(x) =< N(f) and
P(B) < N(«) we infer

L = P(a) ® P(f) = N(ap);
and this implies L = N(«f), since N(af) is a line by Corollary 1.

Lemuma 3: The following propertics of the transformation v = 1
in @ are cquivalent.
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(i) N(z)#0.
(ii) < is an involution.
(iii) v possesses at least two fized points.

Proor: If N(r) # 0, then P(r) ® N(r) < P(z?) implies that
P(%) has at least rank 2. It follows from (L.1) that 7% = 1.
Hence (ii) is a consequence of (i).

If (ii) is true, then N(z) is a line [Corollary 1] all of whose
points are fixed points so that v possesses at least three fixed
points. Hence (iii) is a consequence of (ii).

Assume finally' the validity of (iii). Since P(r) is a [fixed]
point by (L.1), it follows that there exists a fixed point Q = P(z).
We deduce from Lemma 2 the existence of an involution » in @
such that N(v) = Q @ P(t). Clearly P(r) < N(wv) so that
N(zv) # 0. We have already verified that (i) implies (ii); and so
it follows that tv is an involution. Clearly Q is a fixed point of
v [as a fixed point of 7 and of »]. Suppose now that Q < N(wv).
Since Q < N(»), this would imply Q < P(rrv) = P(z); and this
is impossible, since Q and P(z) are different points. But the only
fixed point of the involution v which is not on N(tv) is P(zv)
[by Corollary 1]. Hence P(1v) = Q < N(v)sothat Q<N (wvv)=N(7).
Consequently N(7) # 0 so that (i) is a consequence of (iii). This
completes the proof.

CoroLLARY 2: Every transformation in @ is the product of two
tnvolutions in D.

Proor: Suppose that 7 £ 1 is a transformation in @. Then
P(z) is a point [by (L.1)]; and we infer from Lemma 2 the
existence of an involution » in @ such that P(r) < N(v). Then
P(r) =< N(wv) so that N(tv) = 0. It follows from Lemma 3 that
™ = o is an involution and T = wv is the product of two in-
volutions.

ProrosITION 2: A4 polarity is defined in the plane (F, A) by the
following rule.

(2.P) The point Q is the pole of the line L and the line L s the
polar of the point Q if, and only if, there exists an involution »
such that Q = P(v) and L = N(v).

We shall refer to this polarity as to the @-polarity.

Proor: It follows from (L.2) that every point Q is the pole
of at least one line. If » and w are involutions in @ such that
Q = P(v) = P(w), then Q & [N(v) "N(w)] has rank not less
than two and is on P(vw) [by Corollary 1]. It follows from (L.1)
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that vo = 1 or » = w. Thus every point is the pole of one and
only one line.

It follows from Lemma 2 that every line L is the polar of at
least one point. If » and @ are involutions in @ such that
L = N(y) = N(w), then L < P(vo); and it follows from (L.1)
that »o = 1 or v = w. Thus every line is the polar of one and only
one point.

Assume now that the point Q is on the line L; and denote by
v and o the uniquely determined involutions in @ such that
Q = P(v) and L = N(w). Then Q < N(»w) so that N(vw) # 0;
and it follows from Lemma 3 that »w is an involution. Hence
vw = wv so that P(w) = P(v"'wv) = P(w)v is a fixed point of
the involution ». Since P(w) is not on N(w), it follows that
P(w) # P(»)[= Q < L = N(w)]. But all the other fixed points
of » are on N(v); and this implies P(w) < N(»). Thus we have
shown that the pole P(w) of L is on the polar N(») of ¢ whenever
the point Q is on the line L; and this completes the proof of the
fact that rule (2.P) defines a polarity.

CoroLLARY 3: No point is on its polar [with respect to the ®-
polarity].

This is an almost immediate consequence of Corollary 1 and
the rule (2.P).

CoroLLARY 4: L-groups of linear transformations are infinite.

Proor: It follows from Corollary 8 that the projective plane
(F, A) carries an infinity of points [see Baer [1], p. 82, Theorem 5].
Hence it follows from (L.2) that L-groups contain an infinity of
involutions and are consequently infinite.

It is well known that every polarity of the projective plane
(F, A) may be represented by a ,,Generalized Hermitean Form”
[see, for instance, Birkhoff-von Neumann [1], p. 837—843].
Consequently there exists an anti-automorphism ¢ of F and an
F-valucd function f(z, y) of the elements # and y in 4, meeting
the following requirements.

(F.a) o2 =1.

(F.b) f(z,y)° = [(y, @).

(F.e) fla+by) = fla,y) + f(b,y).
(F.d) f(ex, y) = cf(z, y).

(F.e) yison the ®-polar of the point Q if, and only if, {(Q, y) = 0.
Applying (F.b) onto (F.c) and (F.d) one deduces that

(F.c') f(z, a + b) = f(z, @) + f(, b);
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(F.d') f(=, cy) = f(@, y)c.
On the basis of (F.e) it follows that Corollary 3 is essentially

equivalent to the property
(F.f) f(@, ) = 0 implies @ = 0.
The form f is not uniquely determined by the @-polarity. But

because of (F.f) it is possible to impose always the following
normalizing condition.

(F.g) f(e, e) = 1 for some [preassigned] e # 0 in A.
A linear transformation » is said to preserve f, if
fav, yv) = f(a, y) for every x and y in A.
LEMMA 4: The transformations in @ preserve f.

Proor: Because of Corollary 2 it suffices to prove this for
involutions » in @. If z is an element in A4, then there exist uniquely
determined elements x’, "' in P(v) and N (») respectively such that
x = a2’ + a"’. We notice furthermore that f[P(v), N(»)] =0 as a
consequence of (F.e) and the definition of the ®@-polarity. Now
we find that

flav, bv) = f(a" —a”, b’ —b") = f(a', V') + f(a", b") =
— f(@ + a", b + b") = f(a, b),
as we claimed.
ReMAaRrk: The converse of Lemma 4 is false, as.the linear trans-
formation — 1 does not belong to @, but preserves f. — Later
we shall be able to prove a kind of converse.

LeEMMA 5: The following properties of the three distinct involutions
o, B, y in @ are equivalent.
(i)  «fy is an involution.
(i1) P(a), P(B) and P(y) are collinear points.
(iii) N(«), N(B) and N(y) are copunctual lines.

Proor: The equivalence of properties (ii) and (iii) is an im-
mediate consequence of the definition of the @-polarity and the
general properties of polarities.

Assume the validity of (iii). Then the point Q=N («) "N ()N (y)
is clearly on N(afy) so that N(afy) # 0. It follows from Lemma 3
that «fy is an involution in @.

If v and w arc distinet involutions in @, then it follows from
(L.1) and the fact that distinct lines in a plane meet in a point
that P(vw) = N(») NN (w). If now ofy is an involution, then
o, f and apy, y are pairs of distinct involutions so that

N(a) ON(B) = P(«p) = P[(apy)y] = N(«fy) 0 N(y)
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is the common point of the three lines N(«), N(f) and N(y).
Thus (i) and (iii) are equivalent too; and this completes the proof.

ProrosiTioN 3: ¢ = 1.

CoROLLARY +4: The field F is commutative and f is an ordinary
symmetrical bilinear form.

It is clear that Corollary 4 is an immediate consequence of the
fundamental Proposition 8, since the identity is an anti-auto-
morphism of the field I’ if, and only if, F is commutative. We
note that this latter fact is known to be equivalent to the validity
of the Theorem of Pappus in the projective plane (F, 4). Pro-
position 3 is a much stronger statement which in a way may be
likened to the Theorem of Pascal. We note the fact, interesting
for the foundations of geonietry, that the commutativity of F
is obtained as a trivial consequence of ¢ = 1; and is not used
in its proof.

Proor: According to (F .g) there exists a point e such that
f(e, ¢) = 1. Denote by d some element, not 0, on the polar of the
point Fe. Then the points Fe and Fd span a line L = Fe & Fd.
We note that f(e, d) = f(d, ¢) = 0, since Fe is on the polar of Fd
and Fd on the polar of Fe. We let & = f(d, d); and note that
0 £k =A% by (F.b) and (F.f). If ¢ is some number in F, then
F(e + td) is a point on the line L; and there exists one and only
one involution »(¢) such that P[»(t)] = F(e + td) [by (L.2) and
Proposition 2]. It will be convenient to let v = »(0) and v = »(1).

If t is neither 0 nor 1, then Fe, F(e + d) and F(e + td) are
three distinct collinear points. It follows from (L.1) and the
definition of the involutions »(¢) that », v and »(¢) are three
distinct involutions; and it follows from Lemma 5 that »wp(?) is
an involution. This implies that
(¢.1) »ov(t) = v(t)vv is an tnvolution for every t # 0, 1 in F.

The lines L and N[»(¢)] meet in a point which we are going
to determine next. From P[r(t)] = F(e + td) and

f(— Kkt + d, e + td) = — kt°f(e, e) + f(d, d)t° =0
it follows that L NN[»(¢)] = F(— ki°e + d). Consequently »(¢)
meets the following two requirements.

(e + tdpw(t) = e + td.
(— kt% + d)v(t) = — (— ki% + d).
From these formulae it follows by elimination that
(1 + tht®)er(t) = (1 — thi%)e + 2td
(1 + tht®)tdv(t) = 2tki% + (thi® — 1)td.
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It is clear that 1 - tkt® # 0.
We note furthermore that ev = e, dv = —d and
1+ k)ev=(1—k)e + 2d
(1 4 k)dv = 2ke + (kK —1)d.
Noting that the numbers tki°, 1 + thi®, 1 — tkt®, (1 + tkt®)~!
commute with each other one verifies now by direct computation
that
evor(t) = (1 + k)71 [(1 — k)(1 — tht®) + 471 (tht”)](1 + tht®)le+
+ 2(1 + k)Y (1 — k) + ¢ 1(tkt® — 1))(1 F tht®)-1td;
ev(tyov = (1 + tht®)1[(1 — tht®)(1 — k) + 4tk](1 + k)e —
— 2(1 + tht®) (1 — tkt®) + ¢(k — 1)](1 + k)d.
If £ 0,1, then we may apply (¢.1); and because of the in-
dependence of ¢ and d we may equate corresponding coefficients.
Thus we obtain the following two equations which are valid for
every t % 0, 1.
(t.2) (1 4+ E)'[(1 —E)(1 — tkt®) + 4kt°)(1 + thi®)1 =
= (1 + tkt®) 1 [(1 — tht°)(1 — k) + 4E](1 + k)%
(¢.8) (1 4 k)[(1—Ek) 4+ 72tk — 1)](1 + tht°) 1t =
= (1 + tkt®) 1 [(tkt® — 1) + t(1 —k)]J(1 + k).
With the equations (£.2) and (£.83) we have also the equations
(—t.2) and (— ¢.8). Adding and subtracting these equations and
remembering that the characteristic of the field F is not 2 [Pro-
position 1] we find the following equations.
(¢.2) (1 4+ k)Y (1 —k)(1 — tht®)(1 + tht®) =
= (1 + tht®)1(1 — tkt®)(1 — k)(1 + k)%
(¢.2"7) (1 + R)7%hto(1 + tht®) = (1 + tht®) k(1 + k)Y
(¢.8") (1 + k) 1(tht® — 1)(1 + tht®) "t =
= (1 + tht®) "L (tht® — 1)(1 + k)1
(8") (1 + k)21 —E)(1 + tht®) 1t = (1 + tht®) (1 —k)(1+-k)L
[The equation (2.8") is trivially satisfied.] From (£.3"") we deduce
that
(T — k)X -+ k)™ (1 + k) = (1 + k)(1 + tht®) (1 — k)
or
—k(14-tkt%) 7+ (1 +tht )tk =k (1 +tkt® ) ~1—(1 4 tkt®)tk.
But the characteristic of the field F is not 2 [Proposition 1};
and so it follows that

(¢.4) E[(1 4 k)~ %] = [(1 + tht®)-t]k.
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Applyving (t.4) onto (£.2”) we find that
(1 + k)1 = (1 + thi®) 4t
or
(t.5) (1 + th")i® = t(1 - tht9).
Combine (f.4) and (¢.5) to find that
(1 + thi®)k = tht-1(1 + thi®) = th(1 + thi®)t=C
or
(t.6) (1 + tht®)kt® = th(1 + tht®).
From (1.2") we deduce now successively that
(T — )1 — ) + the®) (1 + k) =
= (1 + A)(X — tht®)(1 + tht®)~1(1 — k),

— k(1 —th®)(1 + tht®) + (1 — tht®)(1 + thi®)h =
= k(1 — tht®)(1 + tht®) 1 — (1 — tht)(1 + tht®)~1k.

But the characteristic of I is not two [Proposition 1]; and so it
follows that

k(U — tht®)(1 + thi®)~1 = (1 + thi®)"Y(1 — thiO)k

or

(1 + tht®)h(1 — thi®) = (1 — thi®)k(1 + thi®)

or

thi®k — ktht® = — tht°k 4 ktki®.

But this implics

(th®)k = k(tht),

sinee the characteristic of I7 is not two. If we apply this on (£.6)
and use (£.5), then we find that

(VA-tR1TYWet® = th(1 4 tht®) = t(1 + tht®)k = (1 + thi®)i%

or
(t.7) kt® = 7k for every tin I,

sinee 1 - tht" ~0. But IF-: I'% and so (t.7) implies that

(7) k belongs to the center of F.
If ¢ were not 1, then there would exist an element w £ 0 inF
such that w0 #w’ Let 5 = w—w% Then 340 and % = —— =2,

Clearly therefore 3 % 15 and so we may apply (:.5) and (7). It
follows that

(U - ki) (1 k) (U - h3)s.
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But 1 — 2hkz = 1 4+ zkz% =~ 0; and so it follows that 2 = — z or
2 = 0, since the characteristic of F is not two. This is a contra-
diction which proves that o = 1, as we desired to show.

Since the field F is commutative, every linear transformation
of (F, A) has a well determined determinant.

CoroLLARY 3: Every linear transformation in @ has determinant
-+ 1.

Because of Corollary 2 it suffices to prove this for the involu-
tions in @; and the involutions in @ have determinant -1
because of Corollary 1.

ProvrosiTioN 4: If G is an S*-group, then D(G) is a three dimen-
sional projective space, the Theorem of Pappus is true in D(G)
and the canonical polarity may be represented by means of an
ordinary symmetrical bilinear form.

Proor: It is a consequence of § 1.C, Theorem 2 that G is
essentially the same as an L-group of linear transformations of
the linear manifold (F, .4) which is projectively equivalent [by
§ 1.G, (5)] to the hyperplane J in D(G). It follows from § 2, Pro-
position 1 that (F, .{) has rank 8 so that J is a plane and D(G)
is a three dimensional projective space. It follows from Corollary
4 that F is commutative; and this is equivalent to the validity
of the Theorem of Pappus in the projective plane J. But if the
Theorem of Pappus holds in one plane, it holds everywhere.
Finally it is possible to represent the canonical polarity in D(G)
by means of a generalized Hermitean form which may be restricted
to a generalized Hermitean formin J. But the latter is an ordinary
symmetrical bilinear form [by Corollary 4] so that the former is
an ordinary symmetrical bilinear form too.

3. Motion groups of elliptic planes.

The triplet (F, d, f) is termed an elliptic plane, if
(a) F is a commutative field of characteristic different from 2,
(b) A has rank 8 over F,
(e) f(x.y) is an ordinary symmetrical bilinear form over (F, 4)

such that

(c*) fe, &) = 0 implies x = 0.

The question arises [and seems to be open] which fields F may
be the fields of coordinates of an elliptic plane. It is a consequence
of a well known theorem on polarities of projective planes [see
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Baer [1], p.82, Theorem 5] that F must be infinite. Whenever
F is a commutative field, there exists a projective plane (F, 4)
over F and there exist non-trivial symmetrical bilinear forms
f over (F, 4). But these may or may not meet requirement (c*).
If P is a commutative field of any characteristic, and if the
commutative field F is obtained by adjoining to P two alge-
braically independent elements » and v, then the form zyy, +
2y, + vy, is symmetrical, bilinear and meets requirement
(¢*). Thus F may have any characteristic; and this example
shows incidentally the indispensability of the requirement that
F be of characteristic different from 2.

Suppose now that (F, 4, f) is an elliptic plane. 4 motion of
(I, A4, f) is a linear transformation v of (F, A) which has deter-
minant + 1 and which preserves f. It is clear that the totality of
motions of (F, 4, f) is a group, the motion group of (F, A4, f);
and we note that the motion group does not change, if we sub-
stitute for f any form which defines the same polarity as f, since
such a form is necessarily a multiple fc of f. We note that f defines
a polarity. It follows from (c*) that no point is on its polar [with
respect to this polarity].

THEOREM: The group @ of linear transformations of the linear
manifold (F, A) has Properties (L..1) and (L.2) if, and only if,
D s the motion group of an elliptic plane (F, A4, f).

Proor: Assume first that @ is the motion group of the elliptic
plane (F, A, f). We begin by proving the following property
of P.

(L.1") If o #% 1 is in D, then the rank of P(o) does not evceed 1.

Suppose that « is in @ and that P(«) contains a line L. The
pole Q of L is characterized by the equation f(L, Q) = 0; and is
a fixed point of «, since L is a fixed line of « and « prescrves f.
If ¢ -4 0 is in Q, then there cxists a number ¢ = 0 in F such that
gx = tq. From 4 == L & Q and L < P(a) we infer that the deter-
minant of « is #. But « is a motion and has therefore determinant
-+ 1. Hence ¢ = 1 so that « = 1.

(L.1") If v is an involution in @, then P(v) isa point and N(v)
a line.
We have 4 = P(v) ® N(v). Since the dcterminant of v is + 1,

N(v) has even rank which cannot be 0, as v % 1. Hence N(»)
is a line and P(») a point, since the rank of A is three.
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(L.2") If Q is a point, then there exists an involution v in @ such
that Q = P(v) and such that N(v) is the polar of Q.

We note first that the polar of Q is theé line L defined by the
equation f(Q, L) = 0; and that Q is not on L[by (c*)]. Hence
A = Q ® L. Since the characteristic of F is not 2, there exists
one and only one involutorial linear transformation » such that
P(v) = Q and N(v) = L. It is clear that » has determinant 4 1.
If 2 is an element in A4, then there exist uniquely determined
elements 2" and @' in Q and L respectively such that x = 2’ + 2”.
Hence

Hav, by) = f(a" —a”, b" —b") = f(a’, b') 4 f(a", b"') =
= f(a’ + a"”, b’ + ") = [(a, b)
so that v preserves f. Hence » is a motion and consequently an
element in .

(L.8) If f(a, a) = f(b, b), then there exists an involution in D
which interchanges a and b.

This is an immediate consequence of (L.2') in case a = 4+ b.
Ifa = + b, then F(a + b) and F(a — b) are points; and it follows
from the symmetry of f that

fl@ + b, a—b) = f(a, a) + f(b, @) — f(a, b) — f(b, b) = 0
so that F(a—>b) is on the polar of F(a + b). We infer from
(L.2’) the existence of an involution » in @ such that P(v) =
F(a 4+ b) and N(») is the polar of F(a + b). Hence F(a —b)
is on N(»). Thus (¢ +b)y =a + b and (a—b}y =b—a; and
this implies av = b so that the involution » interchanges a and b.

(L.4) If v is in @ and N(v) % 0, then v is an involution.

There exists an element a # 0 such that av = — a. Since Fa
is a fixed point of », the polar L of Fa is a fixed line of ». If b 5% 0
is on L, then v is on L too. If Fb is a fixed point of », then by = eb;
and we have f(, b) = f(bv, bv) = €* (b, b), since » preserves f.
Hence ¢2 = 1; and one verifies that Fa + Fb < P(»?) so that
v2 =1 by (L.1"). If I'b is not a fixed point, then f(b, b) = f(b», bv),
since v preserves f; and we may deduce from (L.3) the existence
of an involution w in @ which interchanges b and bv. It is clear
that L = Fb + Fbyis afixed line of L, that P(w) = F(b + bv) =
F(b 4 bw) is on L, and that the pole Fa of L is a fixed point
of w. From this last remark it follows that Fa is on N(w); and
now one verifies that Fa 4+ Fb < P(vw). But then it follows
from (L.1") that »o = 1. Hence » = w is an involution.
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(L") P(v) # 0 for every v in D.

If a # 0 is in 4, then f(— a, — a) = f(a, a) = f(av, av), since
v preserves f. There exists by (L.3) an involution w in @ which
interchanges — @ and av. Then avw = — a so that @ 0 is in
N(rw). It follows from (L.4) that vo = v is an involution. It
follows from (L.1"”") that N(v) and N(w) are lines in the plane
(I', A). Their intersection is certainly not 0; and it is clear that

0 < N(v) NN(w) < P(vw) = P(v),

as we intended to show.

(L.1) is an immediate consequence of (L.1’) and (L.1""") whercas
(L.2) is contained in (L.2"). Thus we have shown that every
motion group of an elliptic plane is an L-group of linear transfor-
mations.

Assume now that @ is an L-group of linear transformations.
Then we deduce from § 2, Proposition 1 and § 2, Corollary 4
that F is a commutative field of characteristic different from 2
and that 4 has rank 8 over F. There exists by § 2, Proposition 2,
§ 2, Corollary 4 and § 2, Lemma 4 an ordinary symmetrical
bilinear form f over (F, A) which meets requirement (¢*) and
which is preserved by every transformation in @. It follows
from § 2, Corollary 5 that every transformation in @ has deter-
minant 4 1; and thus we have shown that @ is a subgroup of
the motion group @, of the elliptic plane (I, .1, f). We have shown
in the first part of this proof that @, is an L-group too. If » is
an involution in @y, then P(») is a point by (L.1); and there exists
by (L.2) an involution w in the L-group @ such that P(v) = P(w).
It follows from § 2, Proposition 2 that the L-group @, contains
only one involution ¢ with given point P(c). Hence » = w so
that @ contains every involution in @, It follows from § 2,
Corollary 2 that the L-group @, is generated by its involutions.
Since these are all contained in @, we have @ = @,. Thus @ is
the motion group of the elliptic plane (F, 4, f), as we intended
to show.

We consider now the motion group @ of the elliptic plane
(F, A, f). Because of the preceding theorem @ is an L-group of
linear transformations so that the results of § 2 may be used
freely.

If v is a linear transformation of (F, 4), then an auto-projec-
tivity is obtained by mapping the subspace S upon the subspace
Sv. We shall denote this induced auto-projectivity by »”.
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ProrositioN 1: If @ is an L-group of linear transformations,
then mapping v in D upon the auto-projectivity v* constitutes an
isomorphism.

Proor: It is clear that z is a homomorphism. If » is in @ and
»® = 1, then every point is a fixed point of »; and »* = 1 may
be inferred from § 2, Lemma 8. We deduce from § 2, Corollary 1
that the fixed points of an involution are just the points on a
certain line and one point off this line. Thus » is not an involution.
Hence v = 1, as we wanted to show.

To describe a number of characteristic properties of the group
@™ of auto-projectivities we need two definitions.

DEFINITION 1: The auto-projectivity o of the projective plane
IT is a reflection with center C(p) and axis a(p), if o has order 2,
if every line through C(p) and every point on a(g) is left invariant
by o, and if the point C(p) is not on the line a(o).

In other words: reflections are involutorial perspectivities
whose center and axis are not incident.

DEFINITION 2: The group A of auto-projectivities of the pro-
jective plane IT s elliptic, if it meets the following requirements.

(E.1)
(E.2) To every point Q there

Every element in A is the product of two reflections in A.

To every line L there exists

exists one and only one reflection
with center Q in A.

(E.8) The product of three dif-
ferent reflections in A is a reflec-
tion, tf their centers are collinear.

one and only one reflection with
azis L in A.
The product of three different

reflections in A is a reflection,
if their axes are copunctual.

The postulates (E£) have been stated in a convenient, self-dual
form. They are redundant; and it would be easy to state them
in such a form that the planar character would be a provable fact.

The justification for the term ,elliptic’’ is contained in the
following

ProrosiTiON 2: If @ is an L-group of linear transformations,
then @" is an elliptic group of planar auto-projectivitics.

Proor: (F, A) is a projective plane by § 2, Proposition 1. It
follows from § 2, Corollary 1 that »" is a reflection with center
P(v) and axis N(») whenever » is an involution in @. It follows
from Proposition 1 that » in @ is an involution if, and only if,
" is a reflection. Now one deduces (E.1) from § 2, Corollary 2,
(E.2) from § 2, Proposition 2 and (E.3) from § 2, Lemma 5.
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4. Elliptic groups of planar auto-projectivities.

Throughout this section we consider a projective plane IT [in
which the Theorem of Desargues may or may not hold] and an
elliptic group A of auto-projectivities of II [in the sense of § 3,
Definition 2]. It is our objective to derive a number of purely
group theoretical properties of the group A. The ellipticity hypo-
thesis need not be restated and much use will be made of its
self-dual character.

Lemma 1: The following properties of the reflections « and
B in A are equivalent.
(i) of = Pa is an involution.
(i) C(«) is on a(B).
(iii) C(B) is on a(a).

Proor: For reasons of symmetry it suffices to prove the
equivalence of (i) and (iii). If (i) is true, then « and g are different
reflections’in A so that C(x) # C(8) by (E.2). One deduces from
(i) and the definition of center that C(8) = C(afa) = C(f)a.
But every fixed point of « with the exception of C(«) is on the
axis a(a); and so the fixed point C(8) of « is on a(«). Hence
(iii) is a consequence of (i). — Assume conversely the validity
of (iii). Since C(B8) is on a(x) and C(«) is not, C(a) % C(B) and
consequently « 7% f. Next we note that C(f) is a fixed point of
a, as a point on the axis a(a). Hence C(f) = C(B)a = C(a'pua).
Consequently the reflections g and «a~!fa have the same center;
and it follows from (E.2) that § = «~!f« or aff = fa. This implies
(i), since « and B are different involutions.

LevmMA 2: The following properties of the element ¢ in A are
equivalent.

(1) o is an tnvolution.

(1) o is a reflection.

(iii) @ # 1 possesses at least two fixed points.
(iv) o # 1 possesses at least two fized lines.

Proor: Assume first that g is an involution. We deduce from
(E.1) the existence of reflections ¢’ and '’ such that ¢ = g¢'9"’;
and we deduce from (E.1) the existence of reflections «, g in 4
such that ¢’ = «f. Thus ¢ = «fp’’ is a product of three reflec-
tions; and p is trivially a reflection, if two of the three reflections
«, B, o’ are equal. Thus we may assume that they are all different.
Since «, f and aff = o’ are reflections, it follows that «, # and o’
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are three different commuting reflections; and it follows from
Lemma 1 that C(g’) is on a(«) and a(f). Since ¢’ and o'’ are two
different and commuting reflections [as g is an involution], it
follows from Lemma 1 that C(¢’) is also on a(¢’’). The three
axes a(x), a(f) and a(¢’’) have therefore the common point C(g’);
and now it follows from (E.3) that afo’’ = p'9"" = ¢ is a reflec-
tion. Hence (ii) is a consequence of (i).

If o is a reflection, then every point on the axis a(p) is a fixed
point; and so ¢ possesses at least three fixed points. Hence (iii)
is a consequence of (ii).

Assume next the validity of (iii). We deduce from (E.1) the
existence of reflections ¢’ and ¢”’ in A such that ¢ = g’p"”’. From
¢ # 1 weinfer o’  ¢’’; and it follows from (E.2) that a(p’)7#a(e”’)
The two different lines a(p’) and a(o’’) meet therefore in a point
Q which is a fixed point of ¢’ and ¢’’ and consequently of p = g’p"".
But ¢ possesses at least two fixed points by (iii); and so there
exists a fixed point R = Q of g. We deduce now from (E.2) the
existence of one and only one reflection 7 in 4 whose axis is the line
Q 4+ R. Then a(p’), a(¢”’) and a(r) have the common point Q;
and one deduces from (E.3) that g7 = g'p"'t = » is likewise a
reflection. Since the points Q and R are fixed points of g [by
construction] and fixed points of 7 [as points on the axis a(7)],
they are also fixed points of the reflection g7 = ». But ¢ # 1
implies 7 7 »; and it follows from (E.2) that a(z) # a(v). Hence
it is impossible that both Q and R are on a(»); and it follows from
the properties of reflections that one of them is the center of
v [since the center and the points on the axis are all the fixed
points of a reflection]. The center of » is therefore on the axis
of 7; and it follows from Lemma 1 that v = »7r = ¢ is an in-
volution. Hence (i) is a consequence of (iii). This completes the
proof of the equivalence of properties (i) to (iii); and the equi-
valence of property (iv) with these properties follows by duality.

REMARK: Using (E.2) and Lemmas 1, 2 one may define a /-
polarity by the rule:

The point @ and the line L are in the pole-polar-relation if,
and only if, there exists a reflection with center Q and axis L
in A.

That in this way a polarity is defined, is fairly easy to see;
we omit the details of the argument, as no use will be made of
this fact.

Naturally the transformations in A preserve this A-polarity.
The question may be asked which groups of planar auto-pro-
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jectivities preserving a polarity are elliptic. In the presence of

such an invariant polarity one could certainly omit ,,half” of the

postulates (E.2) and (E.8). But then we would have instead of
self-dual postulates totally undual postulates.

LEMMA 8: Assume that « and B are two different reflections in A.
(a) If of is a reflection, then C(af) = a(«) Na(f) and a(af) =

C(x) + C(B).

(b) If «pf is not a reflection, then a(«) Na(B) is the one and only
one fixzed point of aff and C(a) + C(B) is the one and only
one fized line of of.

Proor: If «f is a reflection, then f = «(«8) is the product of
the two different reflections « and «f; and a(«f) = («f)x is itself
a reflection. It follows from Lemma 1 that C(«f) is on a(«);
and that C(«f) is on a(8), is seen likewise. From « % 8 and
(E.2) we deduce a(a) # a(8); and as distinct lines meet in a
point, we see that C(af) = a(x) N a(f). — The equation a(«f) =
C(x) + C(B) follows by duality.

Assume next that «f is not a reflection. We infer from Lemma 2
that «f possesses at most one fixed point. It follows from (E.2)
and « # f that a(a) # a(B); and so these lines meet in one and
only one point. This point is a fixed point of «f, since as a point
on a(«) it is a fixed point of « and as a point on a(f) it is a fixed
point of B. — That C(«) + C(B) is the one and only one fixed
line of «f, follows by duality.

NoratioN 1: If v is an element in A, »? # 1, then it follows
from (E.1) and Lemma 3, (b) that » possesses one and only one
fixed point which we denote by C(v); and » possesses one and
only one fixed line which we denote by a(v). — It follows from
Lemma 3 that this choice of notation is in accordance with the
corresponding notations for reflections.

Notariox 2: If X' is a subset of the group 4, then J(X) is the
totality of involutions » in A such that every »o for ¢ in 2 is an
involution in A

This concept J(Z) is defined for every abstract group. It is
an extension of a concept introduced in § 1.C, (9). — We note
furthermore that J = J(1) is just the totality of involutions in
the group 4.

ProrosiTioN 1: The following properties of the reflection o and
the element o # 1 in A are equivalent.

(1) o belongs to J(o).

(iil) C(p) ts on a(o).

(iii) C(o) is on a(p).
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Proor: Assume first that p belongs to (o). Then go = 7 is
an involution and ¢ = tp. Applying Lemma 2—38 and Notation
1 we find that a(o) = C(7) + C(p); and this shows that (ii) is a
consequence of (i). Assume conversely that C(p) is on a(c). We
deduce from (E.1) the existence of reflections o', ¢’ in A such
that ¢ = ¢’¢’’; and it follows from Lemma 8 and Notation 1
that a(o) = C(¢’) + C(o"’). If o equals ¢’ or ¢”, then go equals
¢'’ or ¢''0’d’’ each of which is a reflection so that ¢ belongs to
J (o). If on the other hand g is different from ¢’ and ¢'’, then it
follows from [(E.2) and] (ii) that C(p), C(¢’) and C(c¢’’) are three
different points‘ on the line a(o); and it follows from (E.3) that
po'c’’ = go is a reflection; and p belongs again to J(o). This
completes the proof of the equivalence of (i) and (ii); and the
equivalence of (i) and (iii) follows by duality.

ProrosiTioN 2: The following properties of the reflection v and
the element o # 1 in A are equivalent.

(i) t belongs to J[J(o)].
(i) C(z) = C(o).
(iii) a(r) = a(o).

Proor: Suppose first that v belongs to J[J(o)]. Consider two
distinct points S and T on a(s). There exist [by (E.2)] uniquely
determined reflections «, 8 in A such that S = C(«) and T = C(B).
It follows from Proposition 1 that « and § are in J(o), since
C(a) and C(B) are on a(o). It follows from (i) that = belongs
to J(«) and J(B); and hence it follows from Proposition 1 that
a(t) passes through C(«) and C(f). Consequently
a(r) = C(a) + C(B) = a(o) so that (iii) is a consequence of (i).

Assume next the validity of (iii). Consider a reflection g in
J (o). It follows from Proposition 1 that C(g) is on a(g) = a(z)
and again from Proposition 1 that = belongs to J(g). Thus 7 is
in every J(p) with g in J(o) so that v is in J[J(o)]. Hence (i) is
a consequence of (iii). — The equivalence of (i) and (ii) follows
by duality.

THEOREM: Every elliptic group A of planar auto-projectivities
has the following properties.

(G.1) J[J(o)], for ¢ % 1 in A, consists of one and only one in-
volution which we denote by o*.

(G.2) o* = p*dmplies J(«) = J(B) whenever « and B are elements,
not 1, in A.

(G.3) If « and B are two different involutions in A, then
(af)* = J(a) O J(B)-

(G.4) The center of the group A is 1.
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Proor: An element in A is an involution if, and only if, it is a
reflection [Lemma 2]. Now (G.1) is a consequence of (E.2) and
Proposition 2; and (G.2) is a consequence of Propositions 1 and 2.

Suppose next that « and g are different involutions in 4. Then
they are different reflections in A; and it follows from Proposition
1 that the reflection v belongs to J(«) NJ(f) if, and only if,
a(t) = C(a) + C(B). It follows from Lemma 3, Notation 1 and
Proposition 2 that a(r) = C(«) + C(8) = a(af) = a[(«f)*]. Henc
T = («f)* by (E.2); and this proves the validity of (G.3).

If the transformation ¢ in .1 commutes with the reflection o
in 4, then the center C(g) of ¢ is clearly a fixed point of ¢. It
follows from (E.2) that a center element of /A leaves invariant
every point in /1. Hence the center of A is 1 so that (G.4) is
true too.

Remark 2: If (G.1) is satisfied by the group 4, then one
verifies without difficulty that (G.2) is equivalent with the
following condition.

(G.2") If o # 1 is an clement in A, then J(o) = J(o*).

Remembering the definition of o* [in ((G.1)] we see that this

is equivalent to requiring.
(G.2") If o0 #1 is an element in A, then J(o) = J(J[J(0)]).
This condition is trivially satisfied whenever ¢ is an involution.
But in casc o* # 1 it does not seem possible to derive this con-
dition from the other conditions.

5. The incidence groups of A. ScHMIDT.

We want to prove in the present section that the class of groups
which is characterized by the properties (G.1) to (G.4) of § 4 is
identical with a class of groups introduced by A. Schmidt [1]
under the name ,,Inzidenzgruppe”. To do this we need the
following fact which will also be used later in another context.

LemMA: If a group G has properties (G.1) and (G.4), the every
clement in G is the product of two involutions in G.

Proor: Suppose that g 4 1 is an element in G. If the set J(g)
were vacuous, then J[J(g)] would be the set of all involutions
in G; and it would follow from (G.1) that g* is the one and only
one involution in G. But then g* would belong to the center of G,
since @~ 'g*x is an involution for every @ in G. It follows from
(G.4) that this is impossible. Hence there exists an involution
7 in J(g). Consequently jg = k is an involution and g = kj is
the product of two involutions.
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A. Schmidt [1] has defined an incidence group as a group G

with the following properties.

(I.1) G 1is generated by its involutions.

(I.2) To every involution j in G there exists an involution j" in
G such that jj' is nmot an involution.

(I.8) It is possible to assign to every pair of distinct involutions
a and b in G an involution a 0 b in G meeting the following require-
ments.

(a) aob=0boa.

(b) Suppose that a, b, ¢ are involutions in G and a # b.

(b’) abe is an invdlution if, and only if, (a0 b)c is an involution.
(b"") If ac and bc are involutions, then ¢ = a0b.

Now we prove the announced result.

THEOREM: A group G has properties (G.1) to (G.4) if, and
only if, G is an incidence group.

Proor: Assume first the validity of (G.1) to (G.4). Then every
element in G is the product of two involutions [Lemma 1], proving
the validity of (I.1). If the involution § in G would commute
with every involution in G, then § would belong to the center
of G, contradicting (G.4). Thus (1.2) is true.

If a and b are distinct involutions in G, then (ab)* = J[](ab)]
is a well determined involution by (G.1); and we may let

aob = (ab)*.

It is easy to see that J(ab) = J[(ab)1]=](ba). Hence a0 b =
bo a. If c is some involution, then (a0 b)c = (ab)*c is an involu-
tion if, and only if, ¢ belongs to J[(ab)*]. But J[]((ab)*)] = (ab)*;
and it follows from (G.2) that J(ab) = J[(ab)*]. Thus (a0 b)c
is an involution if, and only if, ¢(ab) is an involution; and this
is the case if, and only if, abc is an involution. Hence (') is true. —
If ac and bc are both involutions, and if ¢ is an involution, then ¢
belongs to J(a) and to J(b); and it follows from (G.3) that
¢c= J(a)N J(b) = (ab)* = aob. Thus (b"”) is true too. Hence
G is an incidence group.

Assume conversely that G is an incidence group. Then every
element in G is the product of two involutions [for a proof, see
A. Schmidt [1], 8, Satz, p. 233]. One deduces from (b) that
(ab)* = J[J(ab)] = aob whenever a and b are different in-
volutions. This proves (G.1), since every element in G is the
product of two involutions. One deduces (G.2) from (b’), (G.3)
from (b"). — If finally 2z belongs to the center of G, then z = 23"’
where 2’ and 2" are involutions. Since z commutes with 2’ and
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3"’, it follows that 2 is 1 or an involution. But it follows from (I1.2)
that an involution cannot be in the center. Hence 2 = 1; and this
proves (G.4).

REMaRK: It becomes apparent form the proof that Schmidt’s
composition aob of the involutions is not a second and in-
dependent operation on the group elements, but is completely
determined by the multiplicative properties of the group G.

6. The characteristic properties of projective space groups.

It is the purpose of this section to show that groups with
properties (G.1) to (G.4) [of § 4, Theorem] are S*-groups i.e.
projective space groups of dimension not less than two. Using § 5,
Theorem we could do this simply by reference to a result of
A. Schmidt [1, § 5, p. 287]. We shall, however, offer a direct proof,
somewhat different from the one due to A. Schmidt and more
appropriate in the present context. We begin by proving the
following result.

ProrosriTioN 1: If the group G meets requirements (G.1) to (G.4),
and if collinearity of the three involutions a, b, ¢ in G is defined
by the rule:

(C) a, b, ¢ are collinear involutions if, and only if, abc is an
involution;
then the totality | of involutions in G forms a projective plane.

Proor: Considering that abc is an involution if, and only if
cab is an involution — assuming that a, b, ¢ are involutions — it
follows that J(ab) is exactly the set of all involutions collinear
with @ and b. Consequently we may term the sets J(g) for g # 1
the lines in J, if we only remember that by § 5, Lemma every
element, not 1, in G is the product of two distinet involutions.
(1.a) Two distinct involutions belong to one and only one line.

If a and b are distinct involutions, then they certainly belong
to the line J(ab). Suppose next that they also belong to the line
J(g). Then g* is different from, and commutes with, ¢ and b.
Hence g* = J(a) N J(b) = (ab)* by (G.3); and it follows from
(G.2) that J(g) = J(ab). This proves (1.a).

(1.b) Two distinct lines have one and only one involution in com-
mon.

Suppose that g and & are elements, not 1, in G and that
J (k) 5= J(¢). It follows from (1.a) that J(h) and J(g) possess at
most one common involution. From J(k) # J(¢) and (G.2) we
infer that g* and h* are different involutions. Hence g*h* 7 1
and we may form the involution j = (g*h*)* by (G.1). Now g*
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and h* belong to J(g*h*) = J(j); and thus j is different from,

and commutes with, g* as well as with A*. Consequently j belongs

to J(g*) = J(g) [by (G.2)] as well as to J(h*) = J(h), as we

intended to show.

(1.¢) The two distinct involutions a and b determine the line J(ab)
and the two distinct lines J(g) and J(h) meet in (g*h*)*.

The proof of this fact is contained in the proofs of (1.a), (1.b).
(1.d) There exist three involutions which are not collinear.

Since G # 1, there exists an element g = 1 in G. By § 5, Lemma
there exist involutions a, b such that g = ab. These are both on
the line J(ab) = J(g*) whereas the involution g* is not on this
line.

(1.e) Every line carries at least three involutions.

Every line has the form J(ab) where a and b are different in-
volutions [§ 5, Lemma]; and the two involutions a and b are
certainly on J(ab). Suppose by way of contradiction that the line
J(ab) does not carry a third involution. Since a is not on the line
J(a), the lines J(a) and J(ab) meet in exactly one involution which
of necessity is b; and likewise we see that J(b) and J(ab) meet
in a. It follows that a and b are commuting, but different involu-
tions. Hence ab itself is an involution so that in particular
ab = (ab)*. 1t follows from (G.4) that a does not commute with
every element in G; and since every element in G is a product of
two involutions [§ 5, Lemma] there exists an involution a’ which
does not commute with a. Since a is not on J(a’), the lines J(a')
and J(ab) meet in b. But then b is on J(a’) and this is equivalent
to the fact that a’ is on J(b). Since @ and a’ do not commute, a’
is different from the involutions a and ab on J(b). Likewise there
exists an involution b’ on J(a) which is different from ab and b.
The line J(a'd’) carries a’ and b’ neither of which is on J(g), since
otherwise one of the lines J(a) or J(b) would be equal to J(g)
{use (1.a)]. This line likewise cannot carry a or b, but meets the
line J(ab) through a and b in some involution w which would be
different from @ and b. This contradiction proves (l.e). The
statements (1.a) to (l.e) just contain the contention of Propo-
sition ‘1.

Prorosritiox 2: If the group G satisfies conditions (G.1) to (G.4),
then the derived geometrical structure D(G) [see §1.A] is a three-
dimensional projective space.

Proor: It will be convenient to adopt the following terminology
which is in essential agreement with the terminology of § 1, the
homogeneity of D(G) and Proposition 1. The clements in G will
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be termed points; if g is an element in G, then P(g) is the totality
of elements @ in G such that ag is an involution, and P(g) is the
plane [determined by] g; if @ £ 1 is in G, and if b is a random
element in G, then the points of J(a)b form a line.

We note that P(1) = J is the plane of all the involutions.

(2.1) Plg) = Jg.
(2.2) P(g) N P(h) = J(g"th)g™ = J(h-ig)h~ for g # h.

These two facts are easily verified. (2.2) asserts that two different
planes meet in a line; and (2.1) implies that the plane P(g) has
the same geometrical structure as the [by Proposition 1] projec-
tive plane of all the involutions.

(2.83) The two different points g and h determine one and only one
line, namely J(h=1g)(g*h*)*.

It follows from (1.c) that (g*h*)* is the uniqucly determined
common involution of the lines J(g) and J(k). Hence (g*h*)*g
and (g*h*)*h are involutions so that a = g(g*h*)* and b =
h(g*h*)* are two distinct involutions. We have ab=ab~!=gh~1#1;
and it is clear now that a and b belong to the line J(ab) = J(gh™!).
Hence g = a(g*h*)* and h = b(g*h*)* belong to the line
T (eh=1)(gh* ).

Suppose now that g and % are both on the line J(u)v where
u 7% 1. Then g' = gv~! and A’ = hv~! are distinct involutions on
the line J(u); and it follows from (1.c) that J(u)=](g'h’)=] (gh™).
If @ is any element in J(u)v, then av~! is an involution in J(u).
It follows from (1.c) that J(w) = J(;77'") whenever j' and ;' are
distinct involutions in J(u); and this implies that

the product of three involutions in J(u) is likewise an involution
in J(u).

However, we have shown that zv~!, vg=! and g(g*h*)* are in-
volutions in J(u). Hence their product (xv=1)(vg=1)(g(g*h*)*) =
z(g*h*)* is in J(u); and this shows that J(u)v = J(gh™!)(g*h*)*,
as we claimed.

(2.4) Every plane carries with any two different points the whole
line through them.

If a and b are two distinet points in the plane P(g) = Jg71,
then ag and bg are distinet involutions. They determine by (1.c)
the line J[(ag)(bg)] = J(ab™1) of involutions; and so a and b both
belong to the line J(ab~')g~! in P(g) = Jg~L. It follows from (2.8)
that this is the only line carrying @ and b.
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(2.5) If two planes pass through a point p, then their line of inter-
section passes through p.

Obvious.
(2.6) A line J(a)b and a plane P(g), not through J(a)b, meet in
a point.

Because of (2.4) we need only show that J(a)b and P(g) possess
a common point. Now P(g) = Jg! so that b = g=! would imply
that J(a)b is on P(g). Hence bg # 1. It follows from Proposition 1
that the lines J(a) and J(bg) possess a common involution j. Then
7b is certainly on ](a‘)b; and b = (jbg)gtisin Jg~! = P(g), since
7 is in J(bg) so that jbg is an involution. Thus /b is the desired
point of intersection of J(a)b and P(g).

(2.7) A line and a point, not on the line, determine one and only
one plane.

Since two distinct planes meet in a line by (2.2), we need only
show the existence of at least one plane through the point p and
the line J(a)b, not through p. Denote by p’, p”’ two different
points on the line J(a)b; and consider the three planes P(p), P(p’)
and P(p”). The last two meet in a line by (2.2); and a line and a
plane have always a common point by (2.6). Thus there exists a
common point g on the planes P(p’), P(p'’) and P(p). Then gp’,
gp”’ and gp are involutions; and this implies also that pg, p’g and
p’’g are involutions. Hence p, p’ and p’’ are points on the plane
P(g); and it follows from (2.4) that this plane P(g) carries the
whole line j(a)b.

Remembering that every plane P(g) is a projective plane in the
strict sense of the word [by (2.1) and Proposition 1] we deduce
now from (2.2) to (2.7) that the points, lines and planes which we
defined in the beginning of this proof just constitute a three-
dimensional projective space [see, for instance, Menger [1]]. Hence
D(G) is a three-dimensional projective space, as we claimed.

REMARK: The principle of duality could not be used in the
proof in its explicite form, since lines had been defined as inter-
sections of planes, not self-dually. However, an analysis of the
proof of (2.7) will show that we have used the principle of duality
at least implicite.

7. The representations and their uniqueness.

We begin by stating a theorem that summarizes part of the
results obtained sofar and that will permit us to put the problem
of this section into proper focus.
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THEOREM 1: The following properties of the group G are equivalent.

(i) G is an S*-group.

(ii) G s isomorphic to an L-group of linear transformations.

(ili) G 1s tsomorphic to the group of all motions of an elliptic plane.

(iv) G is isomorphic to an elliptic group of planar auto-projec-
Livities.

(v) G has Properties (G.1) to (G.4).

(vi) The derived geometrical structure D(G) is a three dimensional
projective space.

The proof of this theorem is effected by reference to the preced-
ing results in the following fashion. We recall that the group
has been termed an S*-group, if the derived geometrical structure
is a projective space of dimension greater than 1. That ever
S*-group is isomorphic to an L-group of linear transformations
is the content of § 1.C, Theorem 2. We deduce from § 8, Theorer
that a group of linear transformations is an L-group if, and onl -
if, it is the group of all motions of an elliptic plane; and § 8, Prc-
positions 1 and 2 show that the group of all motions of an elliptic
plane induces isomorphically an elliptic group of planar auto-pro-
jectivities. It is a consequence of § 4, Theorem that elliptic groups
of planar auto-projectivities have the properties (G); and (v) im-
plies (vi) by § 6, Proposition 2 whereas it is trivial that (vi) implies
(i).

We note that properties (ii) to (iv) assert the existence of cer-
tain representations of S*-groups; and we have already pointed
out that the representations as L-groups of linear transformations
are the same as those as motion groups of elliptic planes. We recall
that the representations constructed in § 1.C and § 8 were natural
ones. But we have not shown yet that these are the only possible
representations; and in particular we have not yet shown that all
representations as elliptic groups of planar auto-projectivities are
isomorphically induced by L-groups of linear transformations.
With these questions [and related ones] we want to concern our-
selves in the present section.

We shall use the name S*-group to indicate any group with the
equivalent properties (i) to (vi) of the above theorem; and we
recall that because of § 1.B, Proposition 2 such groups have the
following often used property.

(G.0) Ewvery element in G is the product of two involutions in G.
That (G.0) is actually a consequence of (G.1) and (G.4), is the
content of § 5, Lemma.
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ProrosiTioN 1: If A is an elliptic group of auto-projectivities
of the projective plane II, then mapping the reflection ¢ in A upon its
center C(a) constitutes a projectivity of the plane of involutions in
D(A) upon IT such that C(o)a = C(a"loa) for every « in A.

Proor: It is a consequence of § 4, Lemma 2 that every involution
in A is a reflection; and thus it is a consequence of Property (E.2)
that mapping ¢ upon C(o) constitutes a one to one mapping of the
totality J of involutions in /A upon the totality of points in I7.
Suppose that «, 8, y are three different reflections in A. If the
points C(a), C(f), C(y) are collinear, then it follows from (E.3)
that «fy is a reflection. If conversely a8y = ¢ is a reflection, then
it follows from § 4, Lemma 8 and § 4, Notation 1 that C(«) + C(8)
= a(af) = a(dy) = C(6) + C(y), proving the -collinearity of
C(a), C(8), C(y). But three points in the plane J in D(A) are
collinear if, and only if, their product belongs to J [see, for in-
stance, § 6, Proposition 1]; and thus we have shown that C(x),
C(B), C(y) are collinear points in I7 if, and only if, «, 5, y are
collinear points in the plane J [in D(A)]. This proves Proposition 1
as C(o)a = C(aloa) is an almost immediate consequence of the
definition of the center. -

THEOREM 2: Every tsomorphism between elliptic groups of planar
auto-projectivities is induced by one and only one projectivity between
the underlying projective planes.

Proor: Suppose that A is an elliptic group of auto-projectivities
of the projective plane I7; and suppose that the auto-projectivity
« of IT induces the identity automorphism in A. Then « commutes
with every element in A and in particular with every reflection o
in A. Thus we find that C(o) = C(aloa) = C(0o)« holds for every
reflection o in /4. But every point in T is the center of a reflection
in 4 [by (E.2)] so that « leaves invariant every point in /1. Hence
a = 1; and this implies that an isomorphism of /4 upon some group
of planar auto-projectivities is induced by at most one projectivity
of II.

Assume now that O is an elliptic group of auto-projectivities of
the projective plane T; and that § is an isomorphism of A upon 6.
If Q is a point in I7, then there exists [by (E.2)] one and only
one reflection ¢(Q) with center Q in A; and it follows from Pro-
position 1 that mapping Q onto ¢(Q) constitutes a projectivity of
II upon the plane J of involutions in D(A). It is clear that 8
induces a projectivity of the plane J in D(A) upon the plane J’
of all involutions in @; and it follows from Proposition 1 that
mapping the reflection » in @ upon its center C(») in T constitutes
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a projectivity of the plane J’ in D(®) upon the plane T. Mapping
Q onto Qua = C[o(Q)P] constitutes therefore a projectivity of IT
upon T. One verifies easily that, for every involution ¢ in 4,

C(aloa) = C(o)x = C[o(C[s])f] = C(dP).

Since a~loa and of are both reflections in @ [§ 4, Lemma 2], we
infer a~loa = of for every involution ¢ in A. Since every element
in 4 and in @ is a product of two reflections [by (E.1)], one veri-
fies now that the isomorphism g is induced by the projectivity «,
completing the proof.

CoROLLARY 1: An S*-group possesses one and essentially only
one representation as an elliptic group of planar auto-projectivities.
This is an obvious consequence of Theorems 1 and 2.

CoRrOLLARY 2: Every elliptic group of planar auto-projectivities
is isomorphically induced by the group of all motions of an elliptic
plane.

Proor: Suppose that 4 is an elliptic group of auto-projectivities
of the projective plane II. Then A is an S*-group [Theorem 1]
and consequently isomorphic to the group @ of all motions of an
elliptic plane (F, 4, f). Every element » in @ induces an auto-
projectivity »" in the projective plane (F, 4); and it follows from
§ 3, Propositions 1 and 2 that = is an isomorphism of @ upon the
elliptic group O = @* of auto-projectivities of (F, A). Now
Corollary 2 is an immediate consequence of Corollary 1.

CoRrOLLARY 8: The Theorems of Desargues and Pappus hold in
projective planes possessing elliptic groups of auto-projectivities.

Proor: If (F, A4, f) is an elliptic plane, then F is a commutative
field [see § 8, Theorem] so that the Theorems of Desargues and
Pappus hold in the projective plane (F.4.). Now Corollary 3
is an immediate consequence of Corollary 2.

THEOREM 38: Isomorphisms between L-groups of linear trans-
formations are induced by essentially uniquely determined semi-
linear transformations between the underlying linear manifolds.

Proor: Suppose that @ is an L-group of linear transformations
of the linear manifold (F, A); and suppose that the semi-linear
transformation 7 of (F, A) commutes with every element in @
[induces the identity automorphism in @]. If Q is a point in (F, 4),
then there exists an involution » in @ such that Q = P(») [by
(L.2)]. Clearly Qr = P(v)t = P(t"wr) = P(v) = Q so that every
point is a fixed point. It is well known that 7 is then a multipli-
cation by a number in F; and this implies that isomorphisms
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between L-groups are induced essentially by at most one semi-
linear transformation.

Suppose now that @ and @’ are L-groups of linear transfor-
mations of the linear manifolds (F, 4) and (F’, A’) respectively;
and that x is an isomorphism of @ upon @’. We deduce from § 3,
Theorem that @ and @’ are the groups of all motions of elliptic
planes (F, 4, f) and (F’, 4’, f') respectively. It follows from § 3,
Propositions 1 and 2 that @ induces isomorphically the elliptic
group /A of auto-projectivities of the projective plane (F, 4) and
that @’ induces isomorphically the elliptic group A’ of auto-pro-
jectivities of the projective plane (F’, A’). If » is an element in
A, then there exists one and only one transformation +» in @
which induces »; and we denote, as usual, by " the auto-projec-
tivity in A’ which is induced by the transformation » in @’. Since
&, » and x are isomorphisms, &xz is an isomorphism of A upon A’.
It is a consequence of Theorem 2 that the isomorphism &xz is
induced by a projectivity # of (F, 4) upon (F’, A'); and it is the
content of the Fundamental Theorem of Projective Geometry
that # is induced by some semi-linear transformation z of (F, 4)
upon ( F’, A’). One verifies easily that = induces x, as we claimed.

CoROLLARY 4: An S*-group possesses one and essentially only
one representation as an L-group of linear transformations.

This is an immediate consequence of Theorems 1 and 3.

REMARK 1: If @ is the group of all motions of the elliptic plane
(F, A, f) and if ¢ is a number, not 0, in F, then @ is also the group
of all motions of the elliptic plane (F, A4, c¢f). — Conversely if @
is the group of all motions of the elliptic planes (F, 4, f) and
(F, A4, g), then it is not difficult to prove the existence of a number
¢ # 0 in F such that g = ¢f. Thus the elliptic plane underlying
such a group of motions is essentially uniquely determined.

REMARK 2: If the group @ of linear transformations of the
linear manifold (F, A4) is an S*-group, then @ need not be an
L-group, as is seen from easily constructed examples. [The rank
of 4 may be too big or the field F may be chosen too large”,
for instance]. — The situation changes somewhat, if we require
that @ induces an elliptic group of planar auto-projectivities, as
may be seen from the next result.

ProrosiTioN 2: The group @ of semi-linear transformations of
the linear manifold (F, A) induces isomorphically an elliptic group
of planar auto-projectivities if, and only if, there exists an L-group
© of linear transformations of (F, A) such that @ Q{—1} =

0® {1}
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Here as always @ indicates the direct product.

Proor: Assume first the existence of an L-group @ of linear
transformations of (F, A)suchthat ® ® {—1} = 0 ® {— 1}=E&.
Then £ consists of linear transformations only. We map the ele-
ment 7 in £ upon the auto-projectivity 7" which it induces. This
mapping z is a homomorphism with kernel {— 1} such that
d" = @ = E" = /A is an elliptic group of planar auto-projec-
tivities [§ 3, Propositions 1 and 2] and now it is clear that @ induces
isomorphically an elliptic group of planar auto-projectivities.

Conversely we assume now that @ is a group of semi-linear
transformations of (F, 4) and that mapping the transformation
v in @ upon the induced auto-projectivity ™ constitutes an iso-
morphism of @ upon the elliptic group 4 = @" of planar auto-
projectivities. It is implicite in these hypotheses that 4 has rank
8 over F; and it follows from Corollary 8 that F is a commutative
field. We note furthermore that [by Theorem 1] @ and A are
isomorphic S*-groups.

(1) Ifw is an involution in D, then v is linear, A = P(v) ® N(v)
and one of the subspaces P(v), N(v) is a point, the other one a line.

To prove this, we note first that »” is an involution in 4, since
7 is an isomorphism and » an involution. It follows from § 4,
Lemma 2 that »" is a reflection whose center Q is a point and
whose axis L is a line in (F, A) satisfying 4 = Q & L, since the
center of a reflection is not on its axis. Since every point on L
is a fixed point of », there exists a number e 7= 0 in F such that
v = ex. This implies already the linearity of », since L has rank
2, and since F is commutative. We infer now e2 =1ore = + 1
from »2 = 1. From the linearity of » and »*> = 1 we deduce further-
more the existence of a number f in F such that av = fz for «
in Q and f = 4+ 1. From »* # 1 we deduce e # f; and this implies
e = —f. It is clear now that Q is P(») or N(») and that L is
accordingly N(») or P(v); and this completes the proof of (1).
(2) Everyelementin @ is a linear transformation of determinant + 1.

By (G.0) every element in the S*-group @ is a product of two
involutions. Involutions are by (1) linear transformations whose
determinant is clearly 4+ 1. This proves (2). — We note that the
commutativity of F makes it possible to speak of the determinant
of linear transformations.

It is clear that — 1 does not belong to @. Thus we may form
the direct product & = @ ® {— 1}. It is clear that all the linear
transformations in & have determinant -4 1, since the same holds
for @; and that the mapping = of transformations in £ upon the
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induced auto-projectivities is a homomorphism of £ upon 4 = &%
with kernel {— 1}. The totality @ of transformations in Z
with determinant + 1 is clearly a subgroup of & such that
E=0 {1} =060 Q {—1} and such that z induces an iso-
morphism of @ upon A.

(8) Ifvisaninvolution in O, then P(v)is a point and N (v) is a line.

Since the determinant of the involution » is + 1, the rank of
N(») is even. Since the rank of 4 is 8, and since » # 1, it follows
that N(v) has rank 2; and P(») is consequently a point.

(4) O is an L-group of linear transformations.

Suppose that ¢ # 1 is an element in @. If ¢ is an involution,
then P(c) is a point by (8). Suppose therefore that o2 % 1. It
follows from (G.0) [which may be applied, since O isisomorphic
to the S*-group A] that there exist involutions «, § in O such
that ¢ = «f. Since =z is an isomorphism, we may deduce from § 4,
Lemma 2 that o™ and g% are reflections in 4 whereas ¢”" is not a
reflection in A [nor is it 1]. We deduce from § 4, Lemma 3 that
a(o™) Na(f™) is the one and only one fixed point of ¢%; and it
follows from (8) that a(«™) = N(«) and a(f*) = N(8). This
makes it obvious that the one and only one fixed point of ¢ is
a(o®) Na(f*) = P(ap) = P(c). Since every point on P(g) is a
fixed point of o, it is clear now that P(¢) is a point. Thus (L.1)
is satisfied by 6.

It follows from (E.2) that there exists to every point Q in (F, 4)
one and only one reflection ¢ in A with center (. There exists
one and only one involution » in @ such that »* = p, since = is
an isomorphism. It follows from (8) that P(») is the center Q of g.
This shows the validity of (L.2); and completes the proof of (4).

Thus we have shown the existence of an L-group @ of linear
transformations of (F, 4) such that ® @ {—1} =0 ® {—1};
and this completes the proof of Proposition 2.

REMARK 3: Suppose that @ is an L-group of linear transfor-
mations. Then there exists a natural one to one correspondence
between the totality of subgroups of index 2 of @ and the totality
of groups @ of linear transformations which satisfy @ @ {—1} =
® @ {—1}. The totality of subgroups of index 2 of an S*-group
and in particular conditions for their non-existence will be dis-
cussed in § 8.
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8. The group of squares and the Pythagorean case.

We begin by proving the following facts which may or may not
be new.

LeEmMA 1: Suppose that G is an S*-group.

(a) If a and b are conjugate involutions in G, then there exists an
involution § in G such that jaj = b.
(b) Products of squares in G are squares in G.

Proor: Suppose that a and b are conjugate involutions in G. Then
there exists an element g in G such that b = g—lag. There is
nothing to prove if @ = b [let j = a]. Thus we assume that a # b.
If g* were a, then a and g would commute so that ¢ = b which is
impossible. Hence g* == a; and it follows from (G.1) and (G.3)
that the involution ¢ = (g*a)* = J[J(g*a)] = J(g*) N J(a)=
J(g) nJ(a). Consequently g = 7 is an involution and ta = at.
Hence

b = g7lag = (¢)7'a(lj) = jtatj = jaj;

and this proves (a).

Consider next two elements g and 4 in G. We want to show that
g2h? is a square; and so we may assume without loss in generality
that neither g2 nor A% is 1. Applying (G.2) and (G.3) again we find

*h* 'f % h*
1@ 0 fm={JTER e

and hence there exists always at least one involution 2z in
J(g) J(h). Then g' = gz and h’ = zh are involutions. Then
u = g'z¢’ is an involution too. Since h'zh’ = (g'h’) lu(g'h’) we
infer from (a) the existence of an involution j in G such that
h'zh'= juj. Now g*h* = g'zg’z zh'zsh’ = g'zg' h'zh’ = w juj = (uj)?;
and this proves (b).

ProvrositioN 1: If G’ is the commutator subgroup of the S*-group
G, then G’ s firstly exactly the totality of all squares of elements in
G and G’ is secondly exactly the totality of all commutators in G.

Proor: Denote by G? the totality of all elements of the form
g? for g in G. Then it follows from Lemma 1, (b) that G2 is a
characteristic subgroup of G. Denote by W the set of all commu-
tators [, y] for 2, y in G. If g is an element in G, then there exist
involutions a, b in G such that g = ab [by (G.0)]. Hence g2 =
abab = [a, b] so that G2 < W < G'. On the other hand it is well
known that G/G? is abelian, since all its elements, not 1, are in-
volutions. Hence G’ < G2 so that G2 = W = G, as we claimed.



[43] The group of motions of a two dimensional elliptic geometry. 283

ProrosiTioN 2: Suppose that G is an S*-group. Then the line
from 1 to the involution § [in the derived geometrical structure D(G)]
carries a point which is on its canonical polar if, and only if, §
belongs to G2

Proor: If the involution 7 is in G2, then there exists an element
¢ in G such that j = g% Clearly the point g is on the plane g.
Suppose that the line from 1 to g is on the plane 4. Then & is an
involution, since 1 is on h; and gh is an involution so that

gh = hg, (jh)? = g®hg®h = hg~2g%h =1, j # h.

Hence j is on every plane through the line from 1 to g so that
1, g, j are collinear, showing the sufficiency of our condition.

Assume conversely that the line from 1 to j carries a point p
which is on its own canonical polar. The last statement is equi-
valent to the assertion that p? is an involution. There exist in-
volutions a, b such that p = ab [by (G.0)]. Since 1, § and p are
collinear, we have p* = 4. But it follows from (G.2) and (G.3)
that j = p* = J[J(p)] = J(a) 0 J(b). Next we note that ap? =
aabab = bab = baba a = p~2a = p?a since p? is an involution;
and likewise we see that bp? = p2?b. Thus the involution p? belongs
to J(a) N J(b) too; and this shows p? = j. This completes the
proof.

We have shown a little more than we intended to prove, namely
the following fact which will be useful later on.

CoroLLARY 1: Suppose that G is an S*-group, § an involution
in G. Then the point p in D(G) ts both on its canonical polar and on
the line from 1 to § if, and only if, j = p2

We are now ready to characterize the special class of S*-group
which is the object of this section.

ProrositioN 8: The following properties of the S*-group G are
equivalent.

(i) G = G’ = G2 [so that every element in G is a commutator and
a square].

(ii) Every tnvolution in G is a square [or | < G2).

(iii) Any two commuting involutions in G are conjugate in G.

(iv) Any two involutions are conjugate in G.

Proor: We shall make use both of the geometrical properties
of the derived geometrical structure D(G) [which is a three di-
mensional projective space by § 7, Theorem 1] and of the charac-
teristic group theoretical properties (G.1) to (G.4). We note that
the equivalence of the various properties condensed in (i) is a
consequence of Proposition 1.
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It is clear that (i) implies (ii). Assume now the validity of (ii)
and consider two different, but commuting involutions a and &
in G. Then ab = j is an involution in G; and we deduce from (ii)
the existence of an element g in G such that j = g2 It follows
from Corollary 1 that g is a point on the line from 1 to j [in D(G)].
Since ja = b and jb = a are different involutions, the line from
1 to 7 is on the two planes a and b. Hence g is on these two planes
so that ga and gb are involutions. Hence

g7'bg = g g7 bg = g(ab)bg = gag = gagaa = a.
Thus (iii) is a consequence of (ii).

Assume now the validity of (iii) and consider any two different
involutions a and b. Then it follows from (G.3) that the involution
j = (ab)* = J(a) 0 J(b). Since § commutes with ¢ and with b,
there exist [by (iii)] elements g and & in G such that g-lag =4
and A%k = b. Hence (gh)~'a(gh) = b so that (iv) is a consequence
of (iii).

Assume finally the validity of (iv); and consider an element
g # 1 in G. It follows from (G.0) that there exist involutions a, b
in G such that g = ab. We deduce from (iv) and Lemma 1, (a)
the existence of an involution j such that b = jaj. Then g =
ab = a(jaj) = (aj)? so that (i) is a consequence of (iv).

CoROLLARY 2: The S*-group G satisfies G = G? if, and only if,
every line through the point 1 [in D(G)] carries a point which is on
its canonical polar.

This is an immediate consequence of Corollary 1 and Proposi-
tion 3.

LeMmMa 2: If A is an elliptic group of auto-projectivities of the
plane I1, if Q is a point in II and o a transformation in A, then there
exists a reflection in A which interchanges the points Q and Qo.

Proor: There exists by (E.2) one and only one reflection p
with center Q in /. Since /A is an S*-group [by § 4, Theorem],
we infer from Lemma 1, (a) the existence of an involution » in A4
such that o~1go = rgr. It is a consequence of § 4, Lemma 2 that
» too is a reflection. Using the definition of center of a reflection
we find that

Qv = C(g)r = C(vor) = C(c7"¢0) = C(g)o = Qo3
and the reflection » in A consequently interchanges Q and Qo.

ProvrosiTioN 4: The following properties of the elliptic group (A

of auto-projectivities of the plane IT are equivalent.
(i) 4A4=4a%
(it)  The group A 1is transitive on the points [lines] in II.
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(iii) There exists a reflection in A which interchanges the points
Q and R in II whenever there exists a reflection in A with
center ) and axis through R.

(iv) If the group P of semi-linear transformations induces A iso-
morphically, then @ is an L-group of linear transformations.

(v) If Ais induced by the group D of all the motions of the elliptic
plane (F, A, [), then

(a) 1+ 2 fortin F is a square, not 0, of an element in F [so that
F is a formally real, Pythagorean field] and

(b) f(a, x) is a square of an element, not 0, in F for every x # 0
[so that f is positive definite].

NotE: In order to obtain (b) it is necessary to make the nor-
malization hypothesis § 2, (F.g) assuring the existence of an ele-
ment e in A such that f(e, ¢) = 1. Without such a hypothesis one
could only assert that f(z, z) f(y, y)™, for z and y not 0 in 4, is a
square in F.

Proor: We note first that A4 is an S*-group so that we may
make use of all the results of this section. Assume first the validity
of (i). If Q and R are different points in I, then there exist by
(E.2) uniquely determined reflections « and # in A with centers
Q and R respectively. It is a consequence of Proposition 8 and
hypothesis (i) that « and § are conjugate in A. Hence there exists
a transformation ¢ in A such that ¢~lac = f. It follows from the
properties of the center of a reflection that

Qo = C(a)o = C(o7ac) = C(f) = R.

Hence (ii) is a consequence of (i); and it is a fairly immediate
consequence of Lemma 2 that (ii) implies (iii).

Assume now the validity of (iii) and consider two different, but
commuting involutions « and g in A. It is a consequence of § 4,
Lemma 1 and 2 that « and g are reflections and that C(«) is on
a(p). We infer now from condition (iii) the existence of a reflection
¢ in 4 interchanging C(«) and C(8). Hence C(pfg) = C(B)o =C(«)
so that the reflections « and gfig have the same center. It follows
from (E.2) that « = gfig; and thus we have shown that A meets
requirement (iv) of Proposition 8. But then 4 = A% by Propo-
sition 8. Hence (i) is a consequence of (iii); and we have shown
the equivalence of conditions (i) to (iii).

Assume now the validity of (i); and assume that @ is a group
of semi-linear transformations of (F, A) which induces A iso-
morphically — note that the linear manifold (F, A4) represents
the projective plane /1. We deduce from §7, Proposition 2 the
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existence of an L-group £ of linear transformations of (F, A4)
such that @ ® {— 1} = & ® {— 1}. It follows from condition (i)
that @ does not possess subgroups of index 2; and this implies
that every element in the group @ of linear transformations has
determinant + 1. Hence @ = 5; and we have shown that (iv)
is a consequence of (i).

Assume next that (i) is false. Then it follows [using Proposition
1] that A possesses a subgroup of index 2. We note that 4 is iso-
morphically induced by the group @ of all the motions of the
elliptic plane (F, A4, f) [§7, Proposition 2 and § 7, Corollary 2].
Since @ and A are isomorphic, @ possesses a subgroup 7T of index
2. Denote by @ the group of linear transformations consisting of
all the 7 in T and all the —» for v in @, but not in 7. The two
groups @ and O both induce 4 isomorphically. Since every element.
in @ has determinant + 1, not every element in © has determinant
+ 1. Hence O is not an L-group of linear transformations [§ 2,
Corollary 5]. Thus (iv) is false if (i) is false so that (iv) implies (i).

Suppose next that @ is the group of all the motions of the
elliptic plane (F, 4, f) and that @ induces A. Assume the validity
of the equivalent conditions (i) to (iv). Consider any a # 0 in A.
There exists by (ii) a transformation » in @ which maps the point
Fa upon the point Fe [where e is such that f(e, ¢) = 1]. Then there
exists a number ¢ = 0 in F such that av = te. Since » preserves f,
we have

f(a, a) = f(av, av) = f(te, te) = %
and this proves the validity of (v.b). One proves readily the

existence of an element d in A4 such that f(d,d) =1, f(e,d) =
f(d,e) = 0. If # is any number in F, then

1+ 2% = f(e, €) + f(od, xd) = f(e + xd, e + ad);

and (v.a) is seen to be a consequence of (v.b).

Assume conversely the validity of (v). If Q and R are different
points, then there exist by (v.b) ciements ¢ and r such that
Q = Fq, R = Frand 1 = f(q, ¢) = f(r. r). Since @ is an L-group
of linear transformations [§ 8, Theorem], there exists an involution
v in @ which interchanges ¢ and r [by Property (L.3) derived
during the proof of §38, Theorem]; and this involution » inter-
changes the points Q and R. Thus A has property (ii); and this
completes the proof.

ReMARrk 1: Condition (iv) may be restated as follows.
(iv¥) There exists one and essentially only one group of semi-

linear transformations which induces A isomorphically.



[47] The group of motions of a two dimensional elliptic geometry. 287

Thus the validity of a Uniqueness Theorem is characteristic
for this class of groups [see § 7, Remark 2].

REMARK 2: The S*-groups G satisfying G = G? may be termed
Pythagorean because of the characteristic property (v) of Propo-
sition 4. The question arises which S*-groups may be imbedded
into Pythagorean S*-groups. In this respect one proves without
much difficulty the following result.

The group @ of all the motions of the elliptic plane (F, A, f) may
be imbedded into a Pythagorean S*-group if, and only if, there exists
an algebraical order of the field F with the property:

(PD)O0 < f(x, ) for every x #0 in A

Naturally this presupposes that f is subjected to the normali-
zation f(e, e¢) = 1 for some e.

It is interesting to note that the above result ceases to be true
once we omit the condition” '(PD), as may be seen from the follow-
ing example. F is the field of all rational numbers, 4 the group of
all triplets (@, #;. #,) with rational coefficients z; and

[, y) = @eyo + 331 — 225,
It is not difficult to verify that f(z, ) 7= 0fora = 0. Thus (F, 4, f)
is an elliptic plane. But it is clear that f does not satisfy (PD). Thus
the group of motions of (F, 4, f) cannot be imbedded into a
Pythagorean group in spite of the fact that F admits of one and
only one algebraical order.-

This example is interesting for another reason. The points Fa
such that f(z, #) < 0 form a hyperbolic plane; and the group of
motions of the elliptic plane (F, 4, f) is at the same time the group
of motions of the hyperbolic plane just defined.

REMARK 8: Suppose that P is a Pythagorean field [in the sense
of Proposition 4, (v.a)]. Then one may show that the field F o
all formal power series in one indeterminate with coefficients fron
P is likewise Pythagorean. We form a linear manifold (F, 4) o
rank 8 over F and consider a positive definite, symmetrical bi
linear form f(z, y) [in the sense of Proposition 4, (v.b)]. The grouy
@ of all the motions of the elliptic plane (F, 4, f) is known not t
be simple [Dieudonné [1], p. 85]; but it follows from Propositior
4 that @ is an S*-group which satisfies @ = @2 We see therefor:
that the equivalent conditions (i) to (iv) of Proposition 8 do no.
imply simplicity of the S*-group G, though simplicity of G cer
tainly implies G = G2.

REMARK 4: Reidemeister-Podehl [1, § 11] have shown that the
property (v) is a consequence of the possibility of ’bisecting right
angles” which is essentially the same as our condition (iii).
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