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The group of motions of a two dimensional

elliptic geometry
by

Reinhold Baer

Urbana, Illinois

If 0 is the group of motions of a two dimensional elliptic geo-
metry, then it is possible to reconstruct within 0 by purely group
theoretical means the original geometry. This phenomenon, not
uncommon in geometry in general, makes it possible and con-
venient to use as postulates for such a geometry group theoretical
properties of its motion group 0. This has been done with great
success. An extremely neat and straightforward set of postulates
for plane elliptic geometry has been obtained in just this fashion
by A. Schmidt [1] where further references may be found.
One of the tools used in the development of plane elliptic geo-

metry from its group theoretical basis is Reidemeister’s construc-
tion of the motion space [Reidemeister-Podehl [1 ], § 5-8].
This may be applied to any abstract group G in the following
fashion: The derived geometrical structure D(G) of G has for its
points as well as for its hyperplanes just the elements in G; and
incidence is defined in D(G) by the rule that the point p is on
the hyperplane h if, and only if, the product ph is an element
of order 2 in G. The question arises to find criteria for D(G) to
be a projective space, a question that has a rather surprising
answer: The derived geometrical structure D(G) of the group G
is a projective space of dimension greater than one if, and only
if, G is isomorphic to the motion group of a plane elliptic geometry.
The motion group of a plane elliptic geometry may be con-

sidered as an abstract group, as a group of linear transformations,
as a group of planar auto-projectivities or we may consider its
derived geometrical structure. Each of these points of view leads
to a definite characterization of our class of groups; and the proof
of the equivalence of these four characterizations is the principal
objective of this investigation. We shall arrange the argument
as follows. In § 1.C we consider a group G whose derived geo-
metrical structure is a projective space of dimension greater than
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one; and we construct in a natural way a representation of G
as a group ^ of linear transformations with the following two
properties: (L.1). If v ~ 1 is a linear transformation in A, then
its space of fixed elements has rank 1. (L.2) To every subspace
Q of rank 1 there exists an involution J in ^. with Q for its space
of fixed elements. In § 2,3 we prove that a group ^ of linear
traiisformations has these properties (L ) if, and only if, it is the

motion group of an elliptic plane; and that ^. induces isomor-
phically a group of planar auto-projectivities satisfying three
conditions ( E ) on its reflections. In § 4 we show that every group
of planar auto-projectivities with these properties (E) meets a
set of four abstract group theoretical requirements (G) which
deal almost exclusively with the involutions in the group; and
in § 6 we close the circle by proving that D(G) is a three dimen-
sional projective space whenever G satisfies the conditions (G).
[See § 7, Theorem 1 for a summary of these results.]

It is only to be expected that the representations of groups as
L-groups of linear transformations or as E-groups of planar auto-
proj ectivities are essentially uniquely determined; and the proofs
of these uniqueness theorems [together with some implications
for the foundations of elliptic geometry] may be found in § 7.

It is clear that groups in our class may be represented in many
different ways as groups of linear transformations; and thus one

may be tempted to ask whether the L-groups are at least the
only groups of linear transformations which induce isomor-

phically an E-group of planar auto-projectivities. Strangely
enough this is not the case; and we discuss in § 8 the class of
motion groups of elliptic planes with this additional uniqueness
property. They may be variously characterized by the "Pytha-
gorean" character of the underlying elliptic plane, the possibility
of bisecting all right angles, the fact that every group element is
a square and by the transitivity of the induced group of planar
auto-projectivities.

1. Proj ective group spaces.

The present section has two principal objectives. Firstly we
want to give a survey of the low dimensional projective group
spaces; and secondly we shall show that every higher dimensional
projective group space may be represented in a natural way as
a group of linear transformations.
The definition of a projective group space will be preceded by
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the definition of the derived geometrical structure which may be
attached to every group.

l.A. The derived geometrical structure of a group.

If G is any group whatsoever, then the derived geometrical
structure D(G) is defined as follows. Both the set of points and
the set of hyperplanes in D(G) are equal to the set of elements
in G. The point p is on the hyperplane h [in symbols : p  h] if,
and only if, their product ph in G is an involution [= element
of order 2].

The structure D(G) is homogeneous. For if g is some fixed
element in the group G, and if we map the point p in D(G) upon
the point pg and at the same time the hyperplane h onto the
hyperplane g-lh, then we obtain an incidence preserving, one to
one and exhaustive transformation of D(G). This family of trans-
formations is a group isomorphic to G; and it is simply transitive
on the points and on the hyperplanes of D(G).

The structure D(G) is self-dual. To prove this fact we construct
the canonical polarity of which use will be made quite often.
This canonical polarity is obtained by interchanging the point g
and the hyperplane g. That this interchange preserves incidence,
follows from the easily verified equivalence of the following four
properties:
(i) p  h;
(ii) ph is an involution;
(iii) hp = h(ph)h-1 is an involution;
(iv) h  p.
Linear dependence in D(G) is defined as follows: If S is a set

of points in D(G), and if the point p is on every hyperplane
which passes through every point in S, then p is said to depend
on S. In other words : p depends on 5 if ph is an involution whenever
Sh is a set of involutions.

Point subspaces of D(G) are sets M of points such that p
belongs to M whenever p depends linearly on M. If S is a set of
points in D(G), and if M = M(S) is the totality of points linearly
dependent on S, then it is easily seen that M(S) is a point subspace
of D(G). We shall refer to M(S) as to the point subspace spanned
by S.

Linear dependence and subspaces may be defined for hyper-
planes too [by duality]. We shall make little use of it; and thus
we shall usually say subspace instead of point -,ubspacp
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S-groups [or projective group spaces] may now be defined as
groups G whose derived geometrical structure D(G) meets the
following requirements.
(a) If the point p depends on the point q, then p = q.
(b) If p and q are different points, then there exists a third

point r dependent on the set (p, q) [in other words: lines
carry at least three points].

(c) If the point p depends on the set S, then p depends on a
finite subset of S.

(d) The totality of subspaces of D( G ) is a complete, complemen-
ted, modular lattice.

Thèse conditions may be restated shortly as requiring that the
subspaces of D(G) form a projective space whose points are the
points of D(G). As we shall make little use of the above pro-
perties, but only of various well known derived properties, a
further analysis of them is out of place.

l.B. The low dimensional proj ective group spaces.

Low dimensional means for us dimension less than three.

THEOREM 1: The group G is a projective group space o f dimension
1 il, and only i f , G contains one and only one involution and is o f
order greater than two.

PROOF: The group G is a projective group space of dimension
one if, and only if, there exist at least three points and if every
hyperplane carries one and only one point. The first of these
conditions is satisfied if, and only if, the order of G is greater
than two. It follows from the homogeneity of D(G) [see l.A] that
the second of these conditions is satisfied if, and only if, the

hyperplane 1 carries one and only one point. But a point p is

on the hyperplane 1 if, and only if, pi = p is an involution; and
so the second condition is equivalent to the requirement that
there exists one and only one involution.
REMARK 1: The class of groups with the properties of Theorem 1

is extremely large. We mention a few examples only. The quater-
nion group; the direct product of any group with the above
properties and of a group without involutions etc.

PROPOSITION 1: Projective group spaces do not have dimension 2.
PROOF : Assume by way of contradiction that D ( G ) is a projective

plane. l’hen G contains at least seven elements; and the "hyper-
planes" are lines with the property that any two different lines
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have one and only one point in common. Consider an element
g ~ 1 in G. Then 1 and g represent different lines; and these have
one and only one common point p. From p  1 we infer that

p is an involution; and from p  g we deduce that pg is an

involution too. Naturally g-lpg and g-1(pg)g = (g-lpg)g are in-
volutions too so that the point g-lpg is likewisè on the two lines
1 and g. Hence p = g-lpg or pg = gp. But pg is an involution;
and so it follows that 1 = (pg)2 = p2g2 = g2.
Hence every element, not 1, in G is an involution. If a and b

are different elements, then ab is an involution; and this shows
that every point p is on every line not p. It follows that any
two distinct lines have at least five common points; and this is
the desired contradiction.

PROPOSITION 2: The following properties o f the S-group G are
equivalent.

(i) The dimension of D(G) is greater than one.
(ii) Every element in G is a product of two involutions.
(iii) The center o f G does not contain involutions.
(iv) The center o f G equals 1.

PROOF: Assume the validity of (i). Then we deduce from Pro-
position 1 that the dimension of D(G) is at least three. Consider
an element g ~ 1 in G. Then the points 1 and g span a line which
is on at least one hyperplane. There exists therefore a hyperplane
h such that 1  h and g  h hold at the same time. But 1  h

implies that h is an involution; and g  h implies that gh = j
is an involution. Hence g = jh is the product of the two involu-
tions i and h, proving that (i) implies (ii).
Assume next the validity of (ii). Then we infer from G ~ 1

the existence of at least two different involutions in G; and it
follows from Theorem 1 that the dimension of D(G) is greater
than one. Thus we see the equivalence of (i) and (ii).
Assume now the validity of the equivalent properties (i) and

(ii); and suppose, by way of contradiction, the existence of an
element c ~ 1 in the center of G. Then c = j’j" where j’ and j"
are different involutions [by (ii)]. Since c belongs to the center
of G, cj’ = j’c; and this implies j’j" = j"j’ so that c is an in-

volution. It is clear now that 1  c and j’  c. Hence the line

through 1 and j’ is on the hyperplane c. This line carries at least
a third point p; and this point is necessarily on c too. Hence
pc is an involution; and this implies that p is an involution
différent from c, since c is an involution in the center of G. Con-
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sequently j’  1 and p  1 so that the two different points p,
j’ of the line from 1 to j’ are on the hyperplane 1. Hence the

point 1 is on 1, an impossibility since 1 is not an involution. Thus
we have shown tlat (iv) is a consequence of the équivalent pro-
perties (i), (ii).

It . is clear that (iii) is a conséquence of (iv). - Assume finally
tlie validity of (iii). Then it is impossible that G contains just
ulze involution, since an only involution would be equal to all

its conjugates in G and would therefore belong to the center
of G. Thus it follows from Theoren1 1 that the dimension of G
is not one. Tllis sliows tlat (i) is a conséquence of (iii); and this
complètes tle proof.
REMARK 2. In the presence of the équivalent conditions (i) to

(iv) of Proposition 2 the element 1 is tlie only élément in G which
commutes with every involution, since elements commuting with
cyery involution belong to the center [by (ii)J and since the center
cquats 1 [by (iv)].

l.C. The canonical représentation of G as a group of

linear transformations.

ive sliall call the group G an S*-group, il D(G) is a projective
space o f diulcnsion greater than one. It follows from Proposition
1 [of I.B] that the dimension of D(G) is at least three; and this
implies anlong other things tliat tlie Theorem of Desargues holds
ilz D(G) and in all its subspaces.
We denote by J tlie totality of involutions in G. This is just

the totality of points on the hyperplasie 1 so that the projective
spacc J lias at least dimension 2. Wc note that tlie point 1 is

mot on tliis hyperptane J so that the whole space is spanned
by tlie hypcrplnne J and tlie point 1. Since the Theorem of

Desargucs jlolds in J, it is possible to rcpresent i by means of
"coordinatcs" from a [not ncccssarity commutative] field. But
this field and this représentation are only esseltially uniqaely
dcterlnincd; and it will bc convenicnt for us to obtain a canonical
represeiitatioii. It will then be possible to obtain a représentation
of G as a group of linear transformation, again in a natural way.
We précède our discussion by the introduction of two symbols.

1. If g ~ 1 is an élément in the S*-group G, tlel tlie points
1 and g determine a line in D(G) whieh meets the hyperplane J
in one and orlly one point whicl we shall denote throughout
by g*. Thus g* is a zvell detertnined involution for every g ~ 1
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2. If the element g in the S*-group G is neither 1 nor an

involution, then we infer from the validity of the Theorem of
Desargues in D(G) the existence of one and only one perspectivity
g with axis J and center g* which maps 1 onto g [we recall that
g leaves invariant every point in J and every line through g*].
It will be convenient to let 1 be the identity transformation.

The natitral representation of the hyperplane J. We denote by
A the totality of all elements in the S*-group G which do not
belong to J. Then we may introduce an addition in A by the
following rule.

[is the image of a under the perspectivity b].
we note that the null-element for this addition is just the iden-

tity element in the group G; and thus we shall denotate this
element by either of the symbols 0 and 1 according as we discuss
addition in A or multiplication in G.

It is easily seen [and well known] that mapping a in A upon
the perspectivity a is an isomorphism of the additive system A
upom the multiplicative group of all the perspectivities with axis
J and center on J. Thus A is an additive abelian group, since A
is a multiplicative abelian group.

If we note that a = la for every a in A, then we may restate

(3) as follows.

(3’) a + b = 1 a b for a, b in A.

Consider now a perspectivity f with center 1 and axis J. If a
is any élément in A, then f maps a upon a well determined element
in -4 which we shall denote by f a. One verifies that

and this implies that

(J’) 1(a+b) =-Ia+fb for a, b in A.

It is well known that the ring F of endomorphisms of the additive
group A which is generated by these transformations is a [not
necessarily commutative] field; and that 0 is the only element
in F which is not a perspectivity f with center 1 and axis J.
(5) The subset U of A is an F-admissible subgroup of A if,
and only if, the totality U* of all the u* with u ~ 0 in U is a
subspace of J ; and mapping U onto U* constitutes a projectivity
between the partially ordered set of F-subgroups of A and the
partially ordered set of subspaces of J.
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This well known theorem asserts that the F-subgroups of A
constitute a representation of the subspaces of J; and this is the
desired natural representation o f the hyperplane J by means of
the subspaces of the linear manifold (F, A ).
The relation between addition in A and multiplication in G is

somewhat obscure. We noted already that the null-element 0
in A and the identity-element 1 in G are identical. Upon this
result we can improve a little by proving the following useful
statement.

LEMMA 1: - a = a-1 f or every a in A.

PROOF: To prove this we consider the following mapping a
of the derived geometry D(G). If g is a point [hyperplane] in

D(G), then g03C3 is the point [hyperplane] g-1. If the point p is on
the hyperplane h, tlien ph = j is an involution. Hence h-Ip-1 =
j-1 = f is an involution too; and consequently p03C3h03C3 = p-lh-1 -
h(h-1p-1)h-1 is likewise an involution. Consequently p03C3 is on ha;
and thus we see that 03C3 is an involutorial auto-projectivity of the
derived geometry D(G). But a leaves invariant the point 1 and
every point on the hyperplane J. Consequently a is an involutorial
perspectivity with center 1 and axis J ; and a is therefore an ele-
ment in F which maps a in A upon aa = a-1 in A. Now 03C3 is

involutorial; and the field F contains only one involutorial

element, namely - 1. Hence a in F is just - 1 ; and we see that-
- a = a-1 for every a in A. Since G contains elements which
are different from their inverses, -1 .t 1 in F; and thus we have
shown incidentally the following fact.
COROLLARY 1: The characteristic’ o f F is not 2.

Now we are ready to establish the desired
Natural representation o f G as group o f linear transformations of
(F, A ).

If we map the element g in G upon the inner automorphism
X9 = g-lxg, then we obtain an isomorphic mapping of G upon
the group of inner automorphisms of G [by Proposition 2 of I.B].
If we map the point p upon the point pg and at the same time
the hyperplane h upon the hyperplane hg, then we obtain an

auto-projectivity of D(G), since ph is an involution if, and only
if, (ph)9 - pghg is an involution; and this auto-projectivity gn
preserves the canonical polarity, the point 1 and the hyperplane
J. Mapping the element a in A upon the element ag we obtain
clearly a permutation of the elements in A which we denote by
g+; and it is clear that mapping g upon g+ constitutes a homomor-
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phism of the group G upon a group G+ of permutations of A.
Before stating our principal result we introduce some notations.

If v is a linear transformation of the linear manifold ( F, A ), then
we denote by P(v) the totality of elements x in A such that
xv = x and by N(v) the totality of elements x in A such that
xv = -- x. Clearly P(v) and N(v) are subspaces of A.
The group 0 of linear transformations of the linear manifold

(F, A ) will be termed an L-group of linear transformations, if it

has the following two properties.

(LJ) P(v) is a point in (F, A) for every v e 1 in 0.

(L.2) To every point Q in (F, A) there exists an involution ro

in 0 such that Q = P(03C9).
Now we are ready to state the principal result of this section.
THEOREM 2: Il G is an S*-group, then mapping g onto g+constitutes

an isomorphism o f G upon the L-group G+ of linear transformations.
The proof of this theorem will be effected in a number of steps.

PROOF: If x ~ 1, then there exists one and only one line L
in D(G) which connects the points 1 and x; and L meets the

hyperplane J in the uniquely determined point x*. The inner
automorphism of G which is induced by the element g maps the
line L upon the line Lg which connects the points 1 and xg and
which meets in J in the point (xg )*. But our transformation
maps the point x* of intersection of L and J upon the point
(xg )* of intersection of Lg and J so that (xg)* = (x*)g, as we
claimed.

(7) The mapping o f g upon g+ constitutes an iso1norph’isrn o f G
upon G+.

PROOF: Suppose that g+ = 1. If a ~ 0 is an element in A,
then we deduce from (6) that

Hence g commutes with every involution in G. But every element
in G is a product of involutions in G [§ 1.B, Proposition 2] so
that g belongs to the center of G. But the center of G is 1 [by § 1.B,
Proposition 2]; and so g+ == 1 implies g = 1.

(8) (ag) = (gn)-lag" for a in A and g in G.
PROOF: We note first that (a°) is the uniquely determined

perspectivity with axis J and center (a9)* which maps 1 onto ay.
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Secondly we note that (g03C0)-1ag03C0 is the uniquely determined
perspectivity with axis J and center (a*)g which maps 1 upon

1(g03C0)-1ag03C0. But (a*)g - (ag)* by (6) and 1(g03C0)-1ag03C0 = 1ag03C0 =ag03C0 = ag.
’thus tlie two perspectivities under considération are equal,
proving (8).

PROOF: This follows from (8), if we note that

and that tllerefore [by (8’)j

(10) If j is an involution in G, then j+ is an involutorial linear
toans f orwmtiora of (F, A) zvith the following properties.
(a) P(j+)* consists o f j alone.
(1» N(j+)* is the totality J(j) o f involutions II in G sllch that 2cj

is an itivollitioii.

(c) --l = P(j+) EB N(j+).
PROOF: The involution j in G con1mutes «-ith itself and with

tlie involutions in J(j) and with no further involution. But J(j)
is clcarly tlie intersection of the hypcrplane j and the hyperplane
’of all involutions]. Since the point j is not on the hyperplane
j, tlie whole space is spanned by the point j and the points on
tlie hypcrplane j. Since j is on tlie hyperplallc of all involutions,
it folloBvs that J is spaiiiied by tlie point j and its submanifold
J(j). We deduce from (5) the existence of uniquely determined
subspaces U and V of (F, A) such that U* = j and V* = J(j);
and it follo%N,s from (5) [and the fact that J is spanned by J(j)
and the point j not on J(j)] that

Suppose now that a ~ 0 is an élément iu U. Then we deduce
from tlie definition of U tliat a* = j. Since G is an S*-group,
there exist involutions a’, a" in G such that a = a’a" [by § I.B,
Proposition 2]. Since aa’ = a’ct"cz’ and aa" == a’ are clearly in-
volutions in G, it follows that the point a is on the two different
Iy-perplanes cL’ and a". Thèse two hyperplanes carry 1; and so
the whole line from 1 to a is on them. But the point a* = j is
on tlie line from 1 to a so that j is on the hyperplanes a’ and a".
Since j, a’, a" and ja’, ja" are therefore involutions, it follows

that j commutes witli a’ and with a". But this implies ja = aj
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or a = aj+ belongs to the totality P(j+) of fixed elements of i+.
Hencc

Consider next an element a ; 0 in F. Then a* is a well deter-
ulined element in J(( ) so that a* and a*j are involutions. Con-
sequcntly the points 1 and a* are on the hyperplane i. Since
i , a, a* are collinear points, it follows that a too is on the hyper-
plane j. Hence aj is an involution; and we deduce from Lemma 1
that

Hence a belongs to the totality N(j+) of clements in A such that
ai+ = -- a ; and we liave shown that

It follows from (9) [and (7)] that j+ is an involutorial auto-

morphism of the additive group A. Hence P(j+) and N(j+) are
certainly subgroups of A. If these subgroups were equal, then
it would follow from (10.1) to (10.3) that they are equal to A
so that j+ --- 1 which is impossible by (7). But once P( j+) and
N(j+) are different, they liave only 0 in common; and now it

follows from (10.1) to (10.3) that

Since U and V are ..F-admissible subspaces with direct sum A,
it is now an almost immediate conséquence of (10.4) that the
involutorial automorphism j+ of the additive group A is a linear

transformation of .4 over F; and this complètes tlie proof of (10).

(11) Ever,y transformation in G+ is lincar.

PROOF: If g is in G, then there exist involutions h, k in G such
that g = hk [§ 1.B, Proposition 2J. It follows from (10) that h+
and 1;-F are linear transformations; and consequently g+ = h+k+
is linear too.

Vei-ilication of (L.1): Suppose that g ~ 1 is an element in G.
If g happens to he an involutions, then it follows from (5) and
(10) that P(g+) is a point in (F, ri). Assume now that g2 ~ 1.
Then g is an élément, not 0, in A too. Consider now an element
a ~ 0 in P(g+). Then a = ag so that 1, a and consequently the
line from the point 1 to the point a are left invariant by the auto-
projectivity gn. Since g1’&#x26; leaves also the hyperplane 1 invariant,
the point a* [in which the line from 1 to a meets J] is a fixed
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point of g03C0. Hence a*g= ga* or g=ga* so that g is an element, not 0,
in P[(a*)+]. Since P[(a*)+] is a point [by (10)], we have
P[(a*)+] = Fg; and it follows from [(5) and] (10) that ( Fg )* =

P[(a*)+] = a*. Thus we sce that a* = g* whenever a ~ 0 is in
P(g+). Since g itself certainly belongs to P(g+), it follows now

that P(g+)* = g*; and it follows from (5) that P(g+) is a point
in ( F, A ). This shows the validity of (L.1).

L’eri f ication of (L.2): If Q is a point in ( F, A), then it follows
from (5) that Q* = j is an involution in G. We deduce from (10)
that j+ is a linear transformation in G+, satisfying P(j+)* = j = Q* ;
and it follows from (5) that P(j+) = Q, showing the validity of
(L.2 ).
Combining (7), (11) with these last two vérifications we see the

validity of Theorem 2.

2. L-groups of linear transformations.

Throughout this section we consider a linear manifold (F, A)
and an L-group 0 of linear transformations of ( F, A ) [as defined
in § I.C]. It is our principal objective in this section to show
that such a group is the group of motions of an elliptic plane.
Thus there will be no danger of confusion, if we abstain from

restating this hypothesis (L) in the course of this section.
PROPOSITION 1: The characteristic of F is not 2 and the rank

of ( F, A ) is 3.

PROOF: Since A ~ 0, there exists a point Q. We infer from
(L.2) the existence of an involution v such that Q = P(v). Since
v ~ 1, Q ~ A so that the rank of A is at least 2.

Assume now by way of contradiction that the characteristic
of F is 2. If a is an element in A, then a + av belongs to P(v)=Q,
since v is an involution. If a + av = 0, then av = - a = a,
since the characteristic of F is 2. Hence a + av ~ 0 for every
a in A, not in Q; and this implies

If a and b are elements, not in Q, then it follows that there exists
a number c ~ 0 in F such that b + bv = c(a + av ) or

since the characteristic of F is 2. Hence b is in Q + Fa ; and we
have shown that A = Q + Fa is a, line.

We infer from (L.2) the existence of an involution 03C9 iii 0 such
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that P(03C9) is some point different from Q. Hence A = P(v ) ~ P(03C9),
since A is a line. Since vco belongs to 0, and since P(v) ~ P(ro),
v and 03C9 are different involutions so that 03BD03C9 =1= 1. It follows from

(L.1) that P(03BD03C9) is a point. Hence there exists an element b ~ 0
in P(03BD03C9); and we infer from A = P(v) ~ P(m) the existence of
elements s and t in P(03BD) and P(03C9) respectively such that b=s+t.
Then

s + t = b = bvro = s03BD03C9 + tvco = s03C9 + ivw.

Remembering that the characteristic of F is supposed to be two
it follows that

(s + s03C9) + ( tv -f - tvw) = t + tv

is an element in the intersection 0 of P(v) and P(03C9). Hence
t + tv = 0 or tv = t so that t belongs to the intersection 0 of
P(v) and P(03C9). Consequently t = 0; and this implies s + s03C9 = 0
or scv = s so that s belongs to the intersection 0 of P(v) and P(03C9).
Hence s = 0 so that 0 ~ b = s + t = 0, the desired contradic-
tion. This shows that the characteristic of F is not 2.

If the linear transformation v of (F, A ) is an involution, then
it follows [as usual] that A = P(v) ~ N(v). We have already
pointed out that the rank of (F, A) is at least 2. Assume now by
way of contradiction that A is a line. Then N(v) is a point, since
P(v) is a point. Thus there exists by (L.2) an involution m such
that P(03C9) = N(v). Clearly vro =1= 1; and it follows from (L.1) that
there exists an element a ~ 0 in P(vco). From A = P(v) ~ N (v ) we
deduce the existence of elements p, n in P(v) and N(v) respectively
such that a = p + n. Then

since N(v) - P(03C9). Hence 2n = pro - p is in the intersection 0
of P(03C9) and N(03C9); and this implies n = 0 and pcv = p, since the
characteristic of F is not 2. But then p itself is in the intersection
0 of P(v ) and N(v ) so that p = 0. Hence 0 ~ a = p + n = 0
is the desired contradiction which shows that the rank of A is
at least 3.

If v is any involution in 0, then P(v) is a point [by (L.1)] so
that N(v) has rank not less than 2. We deduce from (L.2) the
existence of an involution 03C9 such that P(03C9) is some point on
N(v). It is clear that

Since v and w are different involutions, vcv ~ 1; and it follows
from (L.1) that P(03BD03C9) is a point. It follows from (L.1) that P(v)
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and P(03C9) arc points; and w-e have A P (y) EDIV = P(03C9) ~N(03C9),
since the cllaraeteristic of F has been shown to be different
from 2. The rank of A consequently exceeds the rank of N(v) ~ N(03C9)
at most by two. But we hâve shown alreadv that the rank of
N(v) m1XT(cv) cannot exceed one; and thus we see that the rank
of A cannot exceed three. Since we liave shown in the preceding
paragraph of this proof that thé rank of A is at least three, it

follows tlat the rank of A over 1; is exactly three; and tliis

complètes tlie proof.

COROLLARY l : Il F is ccyt involution in 0, then A = P(v) ED N(v)
where P(n) is a point and N(v) a line.

This is a fairly obvions conséquence of Proposition 1 and (L.1)
and has actually been verified in the course of its proof.

LEMMA 1: If v is an involution in 03A6, and i f P(v) is a f ixed point
of the toarts f orotatiort i in 03A6, then -ri, = vr.

PROOF : Clearly cV = 03C4-103BD03C4 is an invotution in 03A6; and it follows
from our hypothesis that P(03C9) - P(v)i = P(v). Thé intersection
of the lines N(03BD) a nd N(03C9) has at least rank 1. Since obviously

it follows that P(03BD03C9) has at least rank two. We deduce from (L.1)
that pro = 1 or v = co - 03C4-103BD03C4 or 03C403BD = 03BD03C4, as we intended to show.

LEMMA 2: To every line L in A there exists an involution in

16 such that L == N(03BD).

PROOF: We infer from (1.,.2) tlie existence of an involution

a in 0 such that P(03B1) ~ L. Then the lines L and N(oc) are neces-
sàrily different so that they meet in a point Q - L ~ N(03B1), since
A is by Proposition 1 a plane. There exists by (L.2) an involution
03B2 in 0 such that Q = P(03B2). Since Q is a fixed point of a, it follows
from Lemma 1 that cxf3 == 03B203B1 to that v = cxf3 == 03B203B1 is an involution.
From P(03B1) - P(03B2-103B103B2) = P( cx)f3 it follows that P(03B1) is a fixed

point of 03B2 which is différent l’rom P(03B2) = Q = L ~ N(03B1). But all
these fixed points of 03B2 arc on N(p). F’rom P(03B1) ~ N(03B2) and
P(03B2) ~ N(03B1) we infer

and this implies L = N(03B103B2), since N(03B103B2) is a line by Corollary 1.

LEMMA 3: The following pi-opei-lies of the transformation 03C4 --- 1

in 0 are cquÍvalent.
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(i) lV(T) ~ o.
(ii) r is an involution.

(iii) T possesses at least tzco fixed points.
PROOF: If N(03C4) ~ 0, then P(03C4) ~ N(i)  P(12) implies that

P(t2) has at least rank 2. It follows from (L.1) that T2 = 1.

Hence (ii) is a consequence of (i).
If (ii) is true, then N(s) is a line [Corollary 1] all of whose

points are fixed points so that 03C4 possesses at least three fixed

points. Hence (iii) is a consequence of (ii).
Assume finally the validity of (iii). Since P(r) is a [fixed]

point by (L.1), it follows that there exists a fixed point Q ~ P(i).
We deduce from Lemma 2 the existence of an involution v in 0

such that N(v) = Q ~ P(i). Clearly P(03C1) ~ N(03C403BD) so that

N(03C403BD) ~ 0. We have already verified that (i) implies (ii); and so
it follows that iv is an involution. Clearly Q is a fixed point of
rv [as a fixed point of T and of v]. Suppose now that Q  N(03C403BD).
Since Q  N(v), this would imply Q  P(-ci, v) = P(i); and this
is impossible, since Q and P(z) are different points. But the only
fixed point of the involution av which is not on N(tv) is P(i1J)
[by Corollary 1]. Hence P(iv) =Q ~N(03BD) so that Q~N(03C403BD03BD)=N(03C4).
Consequently N(03C4) ~ 0 so that (i) is a consequence of (iii). This
completes the proof.
COROLLARY 2: Every transformation in 0 is the prodiict o f two

involutions in 0.

PROOF: Suppose that 03C4 ~ 1 is a transformation in 0. Then

P(i) is a point [by (L.1)]; and we infer from Lemma 2 the
existence of an involution v in 0 such that P(03C4) ~ N(03BD). Then
P(03C4) ~ N(iv) so that N(03C403BD) ~ 0. It follows from Lemma 3 that
iv = ro is an involution and r = 03C903BD is the product of two in-
volutions.

PROPOSITION 2: A polarity is defined in the plane ( F, A) by the
lollou’i.ng rule.
(2.P) The point Q is the pole of the line L and the line L is the
polar of the point Q if, and only il, there exists a-n involution v
such that Q = P(v) a-nd L = N(v).
We shall refer to this polarity as to the 03A6-polarity.
PROOF: It follows from (L.2) that every point Q is the pole

of at least one line. If v and co are involutions in 0 such that

Q = P(v) = P(cu), then Q ~ [N(v) ~N(03C9)] has rank not less

than two and is on P(03BD03C9) [by Corollary 1]. It follows from (L.1)
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that 03BD03C9 = 1 or v = M. Thus every point is the pole of one and
only one line.

It follows from Lemma 2 that every line L is the polar of at
least one point. If v and £0 are involutions in 0 such that

L = N(v) - N(03C9), then L  P(vw); and it follows from (L.1)
that iJw = 1 or v = 03C9. Thus every line is the polar of one and only
one point.
Assume now that the point Q is on the line L; and denote by

v and co the uniquely determined involutions in 0 such that
Q = P(v ) and L = N(03C9). Then Q  N(03BD03C9) so that N(03BD03C9) ~ 0;
aiid it follows from Lemma 3 that vw is an involution. Hence

vw = cov so that P(w) - P(v-103C903BD) - P(w)v is a fixed point of
tlie involution v. Since P(03C9) is not on N(co), it follows that

P(03C9) ~ P(03BD)[= Q  L = N(03C9)]. But all the other fixed points
of v are on N(v); and tliis implies P(m)  N(v). Thus we have
shown that the pole P(co) of L is on the polar N(v) of Q whenever
the point Q is on the line L; and this completes the proof of the
fact tlat rule (2.P) defines a polarity.
COROLLARY 3: No point is on its polar [with respect to the 0-

polarity] .
This is an almost immediate consequence of Corollary 1 and

tlie rule (2.P).
COROLLARY 4: L-groups of linear translormations are infinite.

PROOF: It follows from Corollary 3 that the projective plane
(F, A ) carries an infinity of points [see Baer [1 ], p. 82, Theorem 5].
Hence it follows from (L.2) that L-groups contain an infinity of
involutions and are consequently infinite.

It is well known that every polarity of the projective plane
(F, A ) may be represented by a Generalized Hermitean Form"
[see, for instance, Birkhoff-von Neumann [1], p. 837-843].
Consequently there exists an anti-automorphism 03C3 of F and an
F-valucd function f(x, y ) of the elements x and y in A, meeting
the followiilg requirements.

(F.e) y is on the 0-polar of the point Q il, and only il, f(Q, y) = o.
Applying (F.b) onto (F.c) and (F.d) one deduces that
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( F.d’ ) f(x, cy) = f(x, y)c(J.
On the basis of ( F.e ) it follows that Corollary 3 is essentially

equivalent to the property

(jF./) f(x, x) = 0 implies x = 0.

The form f is not uniquely determined by the 03A6-polarity. But
because of (F.f) it is possible to impose always the following
normalizing condition.

(F.g) f(e, e) = 1 for soine [preassigned] e :A 0 in A.

A linear transformation v is said to preserve f , if

f(xv, yv) = f(x, y ) for every x and y in A.
LEMMA 4: The transformations in 03A6 preserve f.
PROOF: Because of Corollary 2 it suffices to prove this for

involutions v in 0. If x is an element in A, then there exist uniquely
determined elements x’, x" in P(v) and N(v) respectively such that
x = x’ + x". We notice furthermore that f[P(v), N(v)] - 0 as a
consequence of (F.e) and the definition of the 03A6-polarity. Now
we find that

as we claimed.

REMARK: The converse of Lemma 4 is false, as.the linear trans-
formation - 1 does not belong to 0, but preserves 1. Later
ive shall be able to prove a kind of converse.

LEMMA 5: The following properties o f the three distinct involutions
K, 03B2, 03B3 iii 0 are équivalent.
(i) ufly is an involution.
(ii) P(a), P(fJ) and P(y) are collinear points.
(iii) N(03B1), N(03B2) and N(y) are copunetual lines.
PROOF: Tlie équivalence of properties (ii) and (iii) is an im-

mediate conséquence of the definition of the 0-polarity and the
general properties of polarities.
Assume the validity of (iii). Then the point Q=N(03B1)~N(03B2)~N(03B3)

is clearly on N(03B103B203B3) so that N(03B103B203B3) ~ 0. It follows from Lemma 3
that 03B103B203B3 is an involution in 0.

If v and 03C9 arc distinct involutions in 0, then it follows from
(L.1) and the fact that distinct lines in a plane meet in a point
that P(03BD03C9) = N(v) ~N(03C9). If now 03B103B203B3 is an involution, then
a, 03B2 and 03B103B203B3, y are pairs of distinct involutions so that
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is tlie common point of the three lines N(oc), N(fl) and N(03B3).
Thus (i) and (iii) are equivalent too; and this completes the proof.
PROPOSITION 3: 03C3 = 1.

COROLLARY 4: The field F is commutative and f is an ordinary
symmetrical bil inear lorul.

It is clear that Corollary 4 is an immédiate consequence of the
fundamental Proposition 3, since the identity is an anti-auto-

morphism of the field F if, and only if, F is commutative. We
note tliat tliis latter fact is known to be équivalent to tlie validity
of tlie ’hlicorem of Pappus in the projective plane (F, A). Pro-
position 3 is a much stronger statement which in a way may be
likened to tlie Theorem of Pascal. yVe note the fact, interesting
for the foundations of geonlctry, that the commutativity of F
is obtained as a trivial consequence of a == 1; and is not used

in its proof.
PROOF: According to ( F . g) there exists a point e such that

f(e, e ) = 1. Denote by d some element, not 0, on the polar of the
point Fe. Then the points Fe and Fd span a line L = Fe ~ Fd.
We note that f(e, d) = f(d, e) = 0, since Fe is on the polar of Fd
and Fd on tlie polar of Fe. We let lL = f(d, d); and note that
0 ~ k = k03C3 by (F.b) and (F.f). If t is some number in F, then
F(e + td) is a point on the line L; and there exists one and only
one involution v(t) such that P[v(t)] - F(e + td) [by (L.2) and
Proposition 2]. It will be convenient to let v = v(O) and v = v(1).

If t is neither 0 nor 1, then Fe, F(e + d) and F(e + td) are
tlree distinct collinear points. It follows from (L.1 ) and the
definition of the involutions v(t) that v, v and v(t) are three

distinct involutions; and it follows from Lemma 5 that vvv(t) is

an involution. This implies that
(t.l ) vvv(t) == v(t)vv is an involution for every t ~ 0, 1 in F.
The lines L and N[v(t)] meet in a point which we are Toing

to détermine next. From P[v(t)] = F(e + td) and

it follows that L ~N[03BD(t)] = F(-kt03C3e + d). Consequently v(t)
meets the following two requirements.

From these formulae it follows by elimination that
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It is clear that 1 + tkt03C3 ~ 0.
We note furthermore that ev = e, dv = -d and

Noting that the numbers tkt03C3, 1 + tkic, 1 - tktlJ, (1 + tkt03C3)-1
commute with each other one vérifies now by direct computation
that

If t ~ 0, 1, then we may apply (t.l ); and because of the in-

dependence of e and d we may equate corresponding coefficients.
Thus we obtain the following two equations which are valid for
every t ~ 0, 1.

With the equations (t.2) and (t.3) we have also the equations
(- t.2 ) and (- t.3). Adding and subtracting these equations and
remembering that the characteristic of the field F is not 2 [Pro-
position 1] we find the following equations.

[The equation (t.3’ ) is trivially satisfied.] From (t.3" ) we deduce
that

or

But the characteristic of the field F is not 2 [Proposition 1];
and so it follows that
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Applying (t.4) onto (t.2") we find that

or

Coiiibiiie (t.4) and (t.5) to find that

or

From (t.2’) we deduce now successively that

But thé ehnrneteristic of F is not two [Proposition 1]; and so it

follows that

or

or

But this implies

since tlie charactcristic of 1; is not two. If we apply tliis on (t.6)
and use (t.5), then we fiiid tliat

or

since 1 -1- tkt03C3 ;’- 0. But F - F03C3; and so (t.7) implies that

(7) k belongs to thc ccntcr nf 11.
If 03C3 were not 1, then there would exist an element Le ~ 0 in F

such that ro ~ w03C3. Let s = w -w03C3. Then s ~ 0 ans z03C3 -= -- z.

Ctcarty therefore z /: 1; and so wc tuay npply (z.5) and (7). It

folhnys that
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But 1 - zkz = 1 + zhz03C3 ~ 0; and so it follows that = - z or
z = 0, since the characteristic of F is not two. This is a contra-
diction which proves that a = 1, as we desired to show.

Since the field F is commutative., every linear transformation
of (F, A) has a well- determined determinant.

COROLLARY 5: Every liiieai- trans f ormcrtion iii 0 has determinant
+ 1.
Because of Corollary- 2 it suffices to prove this for the involu-

tions in 0; and the involutions iii 0 have determinant + 1
because of Coiolla rp- 1.

PROPOSITION 4: Il G is an S*-group, then D(G) is a three dimen-
sional projective space, the Theorem of Pappits is true in D(G)
and the canonical polarity iiiay be represented by means of an
ordinary symmetrical bilinear for/ne

PROOF: It is a conséquence of § 1.C, Theorem 2 that G is

essentially the same as an L-group of linear transformations of
the linear manifold (F, A) which is projectively equivalent [by
§ I.G, (5)] to the hyperplane / in D(G). It follows froni § 2, Pro-
position 1 that ( F, A) has rank 3 so that J is a plane and D(G)
is a three dimensional projective space. It follows from Corollary
4 that F is commutative; and this is équivalent to the validity
of the Theorem of Pappus in the projective plane J. But if the
Theorem of Pappus holds in one plane, it holds everywhere.
Finally it is possible to represent the canonical polarity in D(G)
by IllealllS of a generalized Hel’Illltealt form which may be restricted
to a generalized Heiniitean form iii J. But thé latter is an ordinary
symmetrical bilinear form [by CoroUary 4] so that the former is
an ordinary symmetrical bilinear form too.

3. Motion groups of elliptic planes.

Tlie triplet (F, A, f) is ternled an l’lliptic plane, i f
(a) F is a commutative fiild of characteristic diffei-ent fronz 2,
(b) .4 has rank 3 over F,
(c) f(x, y) is an ordinary syiiiiiieti-ical bilinear foriii over (F, A)

such that

Tlie question arises [and seems to be open] whieh fields F may
be tlie fields of coordinates of an elliptic plane. It is a conséquence
of a well- known theorem on polarities of projective planes [see
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Baer [1 ], p.82, Theorem 5] that F must be infinité. Whenever
F is a commutative field, there exists a projective plane (F, A )
over F and there exist non-trivial symmetrical bilinear forms

f over (F, A ). But these may or may not meet requirement (c*).
If P is a commutative field of any characteristic, and if the

commutative field F is obtained by adjoining to P two alge-
braically independent elements u and v, then the form x0y0 +

x1uy1 + 2 is symmetrical, bilinear and meets requirement
(c*). Thus F may have any characteristic ; and this example
sliows incidentally thé indispensability of tlie requirement that
F be of characteristic différent from 2.

Suppose now that (F, A, f ) is an elliptic plane. A îîiotion of
(F, A, f ) is a linear trans f orrnation v of (F, A) which has deter-
Ininant + 1 and !vhich preserves f. It is clear that the totality of
inotioiis of (F, A, f ) is a group, the motion group of (F, A, f);
and we note that the motion group does not change, if we sub-

stitute for f any form which defines the same polarity as f, since
such a form is necessarily a multiple f c of 1. We note that f defines
a polarity. It follows from (c*) that no point is on its polar [with
respect to this polarity].

THEOREM:: The group 03A6 o f linear transformations of the linea,.
111anifold (F, A) has Properties (L.1) and (L.2) i f , and only if,
0 is the ttiotion group o f an elliptic plane ( F, A, 1).

PROOF: Assume first tliat 0 is tlie motion group of tlie elliptic
plane (F, A, 1). we begin by proving the followiiig property
of 0.

(L.1’ ) Il 03B1 ~ 1 is in 0, then the rank of P(03B1) does not exceed 1.

Suppose tliat « is iii 0 and that P(ex) contains a line L. The
pole Q of L is claracterized by the équation f(L, Q ) -- 0; and is
a fixed point of 03B1, since L is a fixed line of 03B1 and « préserves f.
If q j&#x26; 0 is itl Q, then tlere exists a nunlber t =1= 0 in F such that
qx = tq. Froin 4 = L Et) Q and L  P(,x) we infer that thc doter-
minant of ex is t. But « is a motion and lias therefore déterminant

+ 1. 1-leiice i = 1 so tliat « -- 1.

(L.1") I f v is an involution in 03A6, then P(v) is a point and N(v)
a line.

i""e have A - P(v) ~ N(v). Since the déterminant of v is + 1,
N(v) has even rank Whlch cannot be 0, as v ~ 1. Ileiice N(v)
is a line and P(v) a point, since the rank of A is tliree.
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(L.2’ ) If Q is a point, then there exists an involution v in 0 such
that Q = P(v) and such that N(v) is the polar of Q.
‘Ve note first that the polar of Q is thé line L defined by the

equation f(Q, L) = 0; and that Q is not on L[by (c*)]. Hence
A = Q ~ L. Since the characteristic of F is not 2, there exists
one and only one involutorial linear transformation v such that
P(v) = Q and N(v) = L. It is clear that v has determinant + 1.
If x is an element in A, then there exist uniquely determined
elements x’ and e in Q and L respectively such that x = x’ + x".
Hence

so that v preserves f. Hence v is a motion and consequently an
element in 0.

(L.3) Il f(a, a) = f(b, b), then there exists an involution in 0
zvhich interchanges a and b.

This is an immediate consequence of (L.2’) in case a = ±b.
If a ~ ± b, then F(a -E- b ) and F(a - b ) are points; and it follows
from the symmetry of f that

f(a + b, a -b) = f(a, a ) + 1(b, a ) -f(a, b) -f(b, b) = 0

so that F(a- b) is on the polar of F(a + b). We infer from
(L.2’) the existence of an involution v in 0 such that P(v) ==
F(a + b ) and N(v) is the polar of F(a + b). Hence F(a b)
is on N(v). Thus (a + b )v = a + b and (a - b)v = b-a; and
this implies av = b so that the involution v interchanges a and b.

(L.4) Il v is in 0 and N(v) ~ 0, then v is an involution.

There exists an element a ~ 0 such that av = a. Since Fa
is a fixed point of v, the polar L of Fa is a fixed line of v. If b =1= 0
is om L, then is on L too. If Fb is a fixed point of v, then bv = eb;
and we llave f(b, b ) = f(bv, bv) - e2f(b, b ), since v preserves f.
Hence e2 = 1; and one verifies that Fa + Fb ~ P(v2) so that
v2 == 1 by (L.l’). If Fb is not a fixed point, then f(b, b ) = f(bv, bv ),
since v préserves f ; and we may deduce from (L.3) the existence
of an involution 03C9 iri 0 which interchanges b and bv. It is clear
that L = Fb + Fbv is a fixed line of L, tliat P(03C9) = F(b + bv) -
F(b + bcv ) is on L, and that the pole Fa of L is a f ï xed point
of 03C9. Froni tliis last remark it follows that Fa is on N(cw); and
now one verifies that Fa + Fb  P(vw). But then it follows
from (L.l’) that vcv = 1. Hence v = w is an involution.
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(L.1 "’ ) P(v) ~ 0 f or every v in 0.

If a ~ 0 is in A, then f(- a, - a) = f(a, a) == f(av, av), since
v preserves 1. There exists by (L.3) an involution 03C9 in 0 which

interchanges -a and av. Then ayw - a so that a ~ 0 is in

N(03BD03C9). It follows from (L.4) that vco = v is an involution. It

follows from (L.1") that N(v ) and N(03C9) are lines in the plane
(F, A). ’fheir intersection is certainly not 0; and it is clear that

as we intended to show.

(L.1) is an immédiate conséquence of (L.l’) and (L.1’") whercas
(L.2) is contained in (L.2’). Thus we have shown, that every
motion group of an elliptic plane is an L-group of linear transfor-
mations.

Assume now tliat 0 is an L-group of linear transformations.
rrhen we deduce from § 2, Proposition 1 and § 2, Corollary 4
that F is a commutative field of characteristic different from 2

and that A has rank 3 over F. There exists by § 2, Proposition 2,
§ 2, Corollary 4 and § 2, Lemma 4 an ordinary symmetrical
bilinear form f over (F, A ) which meets requirement (c*) and
which is preserved by every transformation in 0. It follows

from § 2, Corollary 5 that every transformation in 0 has deter-
minant + 1; and thus we have shown tliat (P is a subgroup of
the motion group 03A60 of the elliptic plane (F, A, f ). We have shown
in thé first part of this proof that 03A60 is an L-group too. If v is
an involution in 03A60, then P(v) is a point by (L.1); and there exists
by (L.2) an involution co in the L-group 03A6 such that P(v) = P(03C9).
It follows from § 2, Proposition 2 that the L-group 0. contains
only one involution a with given point P(or). Hence v = co so
that W contains every involution in 00. It follows from § 2,

Corollary 2 that the L-group 00 is generated by its involutions.
Since these are all contained in 0, we liave 0 = 03A60. Thus (P is
the motion group of the elliptic plane (F, A, f), as we intended
to show.

We consider now the motion group 0 of the elliptic plane
(F, A, f). Because of the preceding theorem 0 is an L-group of
linear transformations so that the results of § 2 may be used
freely.

If v is a linear transformation of (F, A ), then an auto-proj ee-
tivity is obtained by mapping the subspace S upon the subspace
Sv. We shall denote this induced auto-projectivity by 0.
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PROPOSITION 1: If 03A6 is an L-group of linear trans f ormations,
then mapping v in 0 upon the auto-projectivity v’t constitutes an

isomorphism
PROOF: It is clear that n is a homomorphism. If v is in 0 and

03BD03C0 = 1, then every point is a fixed point of v; and V2 = 1 may
be inferred from § 2, Lemma 3. we deduce from § 2, Corollary 1
that the fixed points of an involution are just tlie points on a
certain line and one point off this line. Thus v is not an involution.
Hence v = 1, as we wanted to show.
To describe a number of characteristic properties of the group

f/J1’t of auto-projectivities we need two definitions.

DEFINITION 1: The auto-profectivity  of the projective plane
Il is a re f lection with center C() and axis a(e), il o has order 2,
i f every line through C() and every point on. a(e) is left invariant
by e, and i f the point C() is not on the line a(p).

In other words: reflections are involutorial perspectivities
whose center and axis are not incident.

DEFINITION 2: The group A of auto-projectivities of the pro-
jective plane Il is elliptic, il it meets the following requirements.

(E.1) Every elelnent in A is the product of two reflections in A.

(E.2) To every point Q there To every line L there exists
exists one and only one re f lection one and only one re f lection with
with center Q in lI. axis L in A.

(E.3) The product o f three di f - The product of three different
f erent reflections in ^ is a re f lec- re f lections in A is a reflection,
tion, i f their centers are collinear. il their axes are copunctual.
The postulates (E) have been stated in a convenient, self-dual

form. They are redundant; and it would be easy to state them
in such a form that the planar character would be a provable fact.

The justification for the term "ell iptic" is contained in the

following
PROPOSITION 2: Il 0 is an L-group o f linear trans f ormations,

then On is an elliptic group of planar auto-projectivities.
PROOF: (F, A) is a projective plane by § 2, Proposition 1. It

follows from § 2, Corollary 1 that e is a reflection with center
P(v) and axis N(v) whenever v is an involution in 0. It follows
from Proposition 1 that v in 0 is an involution if, and only if,
e is a reflection. Now one deduces (E.1) from § 2, Corollary 2,
(E.2) from § 2, Proposition 2 and (E.3) from § 2, Lemma 5.
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4. Elliptic groups of planar auto-projectivities.

’rhroughout this section we consider a projective plane 77 [in
which the Theorem of Desargues may or may not hold] and an
elliptic group ^ of auto-projectivities of II [in the sense of § 3,
Definition 21. It is our objective to derive a number of purely
group theoretical properties of the group A. The ellipticity hypo-
tlesis need not be restated and much use will be made of its

self-dual character.

LEMMA 1: The following properties o f the i-ellections 03B1 and

03B2 in A are eqziivalent.

( i ) 03B103B2 = 03B203B1 is an involution.
(ii) C(a) is on a (f3 ) .
(iii) C(fl) is on a(a).

PROOF: For reasons of symmetry it suffices to prove the

equivalence of (i) and (iii). If (i) is true, then a and 03B2 are different
reftections in ^ so that C ( a ) ~ C(03B2) by (E.2). One deduces from
(i) and the définition of center that C(03B2) - C(03B103B203B1) = C(03B2)03B1.
But every fixed point of oc with the exception of C(03B1) is on the

axis a(03B1); and so the fixed point C(03B2) of oc is on a(03B1). Hence
(iii) is a consequence of (i). - Assume conversely the validity
of (iii). Since C(03B2) is on a(03B1) and C(oc) is not, C(a) e C(03B2) and
consequently 03B1 ~ 03B2. Next we note that C(P) is a fixed point of
oc, as a point on the axis a(oc). Hence C(03B2) = C(f3)(X = C(03B1-103B203B1).
Consequently the reflections 03B2 and 03B1-103B203B1 have the same center;
and it folloivs from (E.2) that 03B2 = (X-lf3(X or (Xf3 == Pa. This implies
(i), since oc and 03B2 are different involutions.

LEMMA 2: The following properties o f the element e in A are

eqzcivalent.

(i) e is an involution.
(ii) e is a reflection,.
(iii)  ~ 1 possesses at least Two fixed points.
(iv) e =1= 1 possesses at least two f ixed lines.

PROOF: Assume first that e is an involution. We deduce from

(E.1) the existence of reflections ’ and Q" such that = ’";
and we deduce from (E.l ) the existence of reflections (x, 03B2 in A
such that Q’ = (Xf3. Thus p = 03B103B2" is a product of three reflec-
tions ; and  is trivially a reflection, if two of the three reflections
oc, 03B2, e" are equal. Thus we may assume that they are all different.
Since (x, f3 and (Xf3 = Q’ are reflections, it follows that oc, P and e’
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are three different commuting reflections; and it follows from

Lemma 1 that C(e’) is on a(03B1) and a(03B2). Since Q’ and e" are two
différent and commuting reflections [as  is an involution], it

follows from Lemma 1 that C(e’) is also on a("). The three
axes a(03B1), a(03B2) and a(") have therefore the common point C(e’);
and now it follows from (E.3) that ocpo" = p’,o" =  is a reflec-

tion. Hence (ii) is a consequence of (i).
If e is a reflection, then every point on the axis a() is a fixed

point; and so e possesses at least three fixed points. Hence (iii)
is a conséquence’ of (ii).
Assume next the validity of (iii). We deduce from (E.1) the

existence of reflections Q’ and " in ll such that é = Q’to". From
 ~ 1 we infer Q’ ~ p"; and it follows from (E.2) that a(’~a(")
The two different lines a(@’) and a(") meet therefore in a point
Q which is a fixed point of Q’ and e " and consequently of e = ’".
But  possesses at least two fixed points by (iii); and so there
exists a fixed point R =1= Q of e. We deduce now from (E.2) the
existence of one and only one reflection i in ̂  whose axis is the line
Q + R. Then a(’), a(") and a(T) have the common point Q;
and one deduces from (E.3) that 03C4 = ’"03C4 = 03BD is likewise a

reflection. Since the points Q and R are fixed points of p [by
construction] and fixed points of T [as points on the axis a(03C4)],
they are also fixed points of the reflection e7: = v. But  ~ 1
implies 03C4 ~ v ; and it follows from (E.2) that a(03C4) ~ a(v). Hence
it is impossible that both Q and R are on a(v); and it follows from
the properties of reflections that one of them is the center of
v [since the center and the points on the axis are all the fixed
points of a reflection]. The center of v is therefore on the axis

of z; and it follows from Lemma 1 that zv = 03BD03C4 =  is an in-

volution. Ilence (i) is a consequence of (iii). This completes the
proof of the equivalence of properties (i) to (iii); and the equi-
valence of property (iv) with these properties follows by duality.

REMARK : Using (E.2) and Lemmas 1, 2 one may define a A-
polarity by the rule:
The point Q and the line L are in the pole-polar-relation if,

and only if, there exists a reflection with center Q and axis L
in A.

That in this way a polarity is defined, is fairly easy to see;
we omit the details of thé argument, as no use will be made of
this fact.

Naturally the transformations in ^ preserve this A-polarity.
The question may be asked which groups of planar auto-pro-
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jectivities preserving a polarity are elliptic. In the presence of
such an invariant polarity one could certainly omit "half" of the
postulates (E.2) and (E.3). But then we would have instead of
self-dual postulates totally undual postulates.
LEMMA 3: Assitme that a and f3 are two di f f erent rellections in A.

(a) If 03B103B2 is a re f l ection, then C(03B103B2) = 03B1(03B1) ~a(03B2) and a(03B103B2) =

C(oc) + C(03B2).
(b) Il exf3 is not a reflection, then a(oc) ~a(03B2) is the one and only

one fixed point o f exf3 and C(ex) + C(03B2) is the one and only
one fixed line of exf3.

PROOF: If af3 is a reflection, then 03B2 = 03B1(03B103B2) is the product of
tlie two different reflections oc and 03B103B2; and 03B1(03B103B2) = (03B103B2)03B1 is itself
a reflection. It follows from Lemma 1 that C(03B103B2) is on a(03B1);
and tlat C(exf3) is on a(03B2), is seen likewise. From 03B1 ~ 03B2 and
(E.2) we deduce a(03B1) ~ a(03B2); and as distinct lines meet in a

point, we see that C(exf3) = a(03B1) ~ a(03B2). - The equation a(03B103B2) =
C(03B1) + C(03B2) follows by duality.
Assume next that oefl is not a reflection. We infer from Lemma 2

tliat 03B103B2 possesscs at most one fixed point. It follows from (E.2)
and 03B1 ~ 03B2 tlat a(03B1) ~ a(03B2); and so these lines meet in one H nd
only one point. This point is a fixed point of afl, since as a point
on a(03B1) it is a fixed point of oc and as a point on a(03B2) it is a fixed
point of 03B2. - That C(03B1) + C(03B2) is the one and only one fixed
line of rxf3, follows by duality.
NOTATION 1: If v is an element in A, v2 ~ 1, then it follows

from (E.1) and Lemma 3, (b) that v possesses one and only one
fixed point which we dcnote by C(v) ; and v possesses one and
only one fixed line which we denote by a(v). - It follows from
Lemma 3 that tllis choice of notation is in accordance with the

corresponding notations for reflections.
NOTATION 2: If Z is a subset of the group A, then J(03A3) is the

totality of involutions v in ^. such that every va for a in 27 is an
involution in A

This concept J(03A3) is defined for every abstract group. It is
an extension of a concept introduced in § I.C, (9). - We note
furthermore that J = J(1) is just the totality of imvolutions in
the group A.

PROPOSITION 1: The following properties o f the rellection  and
the element a e 1 in A are equivalent.
(i)  belongs to J(03C3).
(ii) C() is on a(a).
(iii) C(a) is on a().
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PROOF: Assume first that é belongs to J(a). Then ea = i is
an involution and a -ce. Applying Lemma 2-3 and Notation
1 we find that a(a) = C(i) + C(); and this shows that (ii) is a
consequence of (i). Assume conversely that C(o) is on a(a). We
deduce from (E.1 ) the existence of reflections ’, a" in ^ such
that u = 03C3’03C3"; and it follows from Lemma 3 and Notation 1

that a(03C3) = C(a’) + C(a"). If é equals a’ or a", then pa equals
a" or a"a’a" each of which is a reflection so that O belongs to
J(a). If on the other hand o is different from 03C3’ and a", then it
follows from [(E.2) and] (ii) that C(), C(a’) and C(a") are three
different points on the line a(a); and it follows from (E.3) that
Oa’Q" = oa is a reflection; and e belongs again to J(03C3). This
completes the proof of the equivalence of (i) and (ii); and the
equivalence of (i) and (iii) follows by duality.

PROPOSITION 2: The following properties of the reflection i and
the element a =1= 1 in A are equivalent.
(i) T belongs to J[J(03C3)].
(ii) C(03C4) = c(6).
(iii) a(i) = a(a).
PROOF: Suppose first that 03C4 belongs to J[J(03C3)]. Consider two

distinct points S and T on a(Q). There exist [by (E.2)] uniquely
determined reflections oc, P in ̂  such that S = C(03B1) and T = C(03B2).
It follows from Proposition 1 that oc and P are in J(Q), since
C(a) and C(03B2) are on a(a). It follows from (i) that T belongs
to J(03B1) and J(03B2); and hence it follows from Proposition 1 that
a(a) passes through C(a) and C(03B2). Consequently
a(03C4) = C(a) + C(03B2) = a(a) so that (iii) is a consequence of (i).
Assume next the validity of (iii). Consider a reflection e in

J (a). It follows from Proposition 1 that C(e) is on a(oa) = a(a)
and again from Proposition 1 that i belongs to J(). Thus T is
in every J() with o in J(a) so that T is in J[J(a)]. Hence (i) is
a consequence of (iii). - The equivalence of (i) and (ii) follows
by duality.
THEOREM: Every elliptic group A of planar auto-projectivities

has the follozving properties.
(G.1) J[J(a)], for 03C3 ~ 1 in A, consistes of one and only one in-
volution which we denote by a*.
(G.2) 03B1* = 03B2* i1nplies J(03B1) = J(03B2) whenever oc and 03B2 are elements,
not 1, in A.

(G.3) Il ce and fi are Two different involutions in A, then

(03B103B2)* = J(«) n J(03B2).
(G.4) The center o f the group A is 1.
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PROOF: An element in A is an involution if, and only if, it is a

reflection [Lemma 2]. Now (G.1) is a consequence of (E.2) and
Proposition 2; and (G.2) is a conséquence of Propositions 1 and 2.

Suppose next that ce and f3 are different involutions in A. Then
they are different reflections im ^; and it follows from Proposition
1 that the reflection T belongs to 1(o,.) ~ J(03B2) if, and only if,
a(03C4) = C(03B1) -;- C(03B2). It follows from Lemma 3, Notation 1 and

Proposition 2 that a(z) - C(03B1) + C(03B2) = a(rlf3) = a[(03B103B2)*]. Henc
i - (03B103B2)* by (E.2); and this proves thé validity of (G.3).

If the transformation a in ^ commutes with the reflection o
in A, tlien the center C(é) of  is clearly a fixed point of 03C3. It

follows from (E.2) that a center élément of ^ leaves invariant
every point in II. Hence the center of ^ is 1 so that (G.4) is

true too.

REMARK 2: If (G.1 ) is satisfied by the group A, then one
verifies without difficulty tliat (G.2) is équivalent with the

followily condition.
(G.2’) If 03C3 ~ 1 is an cleUlent in .11, then J(03C3) = J(03C3*).
Remcmbcring tlie defillitiom of 03C3* [in ((G.1)] we sec that this

is equivalent to requiring.
(G.2") If 03C3 ~ 1 is an elClnent in ^, then J(03C3) = J(J[J(a)]).
’This condition is trivially satisfied whenever 03C3 is an involution.
But in case 03C32 ~ 1 it does not seem possible to derive this con-
dition frorm the other conditions.

5. The incidence groups of A. SCHMIDT.

We want to provc in the present section that the class of groups
Bvhich is characterized by the properties (G.1) to (G.4) of § 4 is
identical with a class of groups introduced by A. Schmidt [1]
under the name Inzidenzgruppe". To do this we need the

following fact which will also bc used later in another context.
LEMMA : Il a gl’o’up G has properties (G.1) and (G.4), the every

cleiiient in G is the product o f tiCO involutions in G.

PROOF: Suppose that g ~ 1 is an clément in G. If the set J(g)
were vacuous, then J[J(g)] would be the set of all involutions
in G; and it would follow fronl (G.1) that g* is the one and only
one involution in G. But then g’v would belong to the center of G,
since x-1g*x is an involution for every x in G. It follows from

(G.4) that, this is impossible. Hence there exists an involution
j in J(g). Coiisequently jg = k is an involution and g = kj is

tlie product of two involutions.
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A. Schmidt [1] has defined an incidence group as a group G
with the following properties.
(I.1) G is generated by its involutions.

(1.2) To every involution j in G there exists an involution j’ in
G such that jj’ is not an involution.

(1.3) It is possible to assign to every pair of distinct involutions
a and b in G an involution a o b in G meeting the follozf-’ing require-
ments.

(a) aob = boa.

(b) Suppose that a, b, c are involutions in G and a -=1= b.

(b’) abc is an invalution if, and only il, (aob)c is an involiition.
(b") 1 f ac and bc are involutions, then c = a o b.
Now we prove the announced result.

THEOREM: A group G has properties (G.1) to (G.4) i f, and
only if, G is an incidence group.
PROOF: Assume first the validity of (G.1) to (G.4). Then every

element in G is the product of two involutions [Lemma 1], proving
the validity of (I.1). If the involution j in G would commute
with every involution in G, then j would belong to the center
of G, contradicting (G.4). Thus (1.2) is true.

If a and b are distinct involutions in G, then (ab)* = J[J(ab)]
is a well determined involution by (G.1); and we may let

It is easy to see that J(ab) = J[(ab)-1]=J(ba). Hence a o b =
b o a. If c is some involution, then (a o b)c = (ab)*c is an involu-
tion if, and only if, c belongs to J[(ab)*]. But J[J((ab)*)] = (ab)*;
and it follows from (G.2) that J(ab) = J[(ab)*]. Thus (a o b)c
is an involution if, and only if, c(ab) is an involution; and this
is the case if, and only if, abc is an involution. Hence (b’ ) is true. -
If ac and bc are both involutions, and if c is an involution, then c

belongs to j(a) and to J(b); and it follows from (G.3) that
c = J(a) ~ J(b) = (ab)* = aob. Thus (b") is true too. Hence
G is an incidence group.
Assume conversely that G is an incidence group. Then every

element in G is the product of two involutions [for a proof, see
A. Schmidt [1], 3, Satz, p. 233]. One deduces from (b) that
(ab)* = J[J(ab)] = aob whenever a and b are different in-
volutions. This proves (G.1), since every element in G is the

product of two involutions. One deduces (G.2) from (b’), (G.3)
from (b"). - If finally z belongs to the center of G, then z = z’z"
where z’ and z" are involutions. Since z commutes with z’ and
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z", it follows tliat z is 1 or an involution. But it follows from (1.2)
that an involution cannot be in the center. Hence z = 1; and this

proves (G.4).
REMARK : It becomes apparent form the proof that Schmidt’s

coinposition a o b of the involutions is not a second and in-

dependent operation on the group éléments, but is completely
determined by the multiplicative properties of the group G.

6. The characteristic properties of proj ective space groups.
It is thé purpose of this section to show that groups with

properties (G.1) to (G.4) [of § 4, Theorein] are S*-groups i.e.

projective space groups of dimension not less than two. Using§ 5,
Theorems we could do tlis silnply by reference to a result of
A. Schmidt [1, § 5, p. 237]. We shall, however, offer a direct proof,
somewhat different from the one due to A. Schmidt and more

appropriate in the présent contexte We begin by proving the
following result.
PROPOSITION 1: If the group G rneets requirclnents (G.1) to (G.4),

and if collinearity o f the three involzctions a, b, c in G is de f ined
by the rule:

(C) a, b, c are collinear involutions i f , and only i f , abc is an

involution;
then the totality J o f involutions in G foruzs a projective plane.

PROOF: Considering that abc is an involution if, and only if
cab is an involution - assuming that a, b, c are involutions -- it
follows tlat J(ab) is exactly the set of all involutions collinear
with a and b. Consequently we may term the sets J(g) for g ~ 1
the lines in J, if we only remember that by § 5, Lemma every
elemcmt, not l, in G is the product of two distinct involutions.
(l.a) Two distinct involutions belong to one and only one line.

If a and b are distinct involutions, then they certainly belong
to the line J(ab). Suppose next that they also belong to the line
J(g). ’rllen g* is différent from, and commutes with, a and b.

Hence g* = J(a) n J(b) = (ab)* by (G.3); and it follows from

(G.2) that J(g) = J(ab). This proves (l.a).
(l.b) Tzeo distifzct lines have one and only one involution in corn-

»ion.

Suppose that g and Ît are elements, not 1, in G and that

J(h) ~ J(g). It follows from (l.a) that J(h) and J(g) possess at
most one common involution. From J(h) ~ J(g) and (G.2) we
infer that g* and h* are different involutions. Hence g*h* =F- 1
and ,ve may foril thé involutioll j = (g*h*)* hy (G.1). New g*
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and h* belong to J(g*h*) = J(j); and thus i is different from,
and commutes with, g* as well as with h*. Consequently i belongs
to J(g*) = J(g) [by (G.2)] as well as to J(h*) - J(h), as we
intended to show.

(l.e) The Two distinct involutions a and b deterntine the line J(ab)
and the two distinct lines J(g) and J(h) meet in (g*h*)*.

The proof of this fact is contained in the proofs of (l.a), (1.b).
(l.d) There exist three involutions which are not collinear.

Since G ~ 1, there exists an element g ~ 1 in G. By § 5, Lemma
there exist inv olutions a, b such that g = ab. These are both on
the line J(ab) - J(g*) whereas the involution g* is not on this
line.

(l.e) Every line carries at least three involutions.
Every line has the form J(ab) where a and b are different in-

volutions [§5, Lemma]; and the two involutions a and b are
certainly on J(ab). Suppose by way of contradiction that the line
J(ab) does not carry a third involution. Since a is not on the line
J(a), the lines J(a) and J (ab ) meet in exactly one involution which
of necessity is b ; and likewise we see that J(b) and J(ab) meet
in a. It follows that a and b are commuting, but different involu-
tions. Hence ab itself is an involution so that in particular
ab = (ab)*. It follows from (G.4) that a does not commute with
every element in G; and since every element in G is a product of
two involutions [§ 5, Lemma] there exists an involution a’ which
does not commute with a. Since a is not on J(a’), the lines J(a’ )
and J(ab) meet in b. But then b is on J(a’) and this is equivalent
to the fact that a’ is on J(b). Since a and a’ do not commute, a’
is different from the involutions a and ab on J(b). Likewise there
exists an involution b’ on J (a ) which is different from ab and b.
The line J(a’b’) carries a’ and b’ neither of which is on J(g), since
otherwise one of the lines J(a) or J(b) would be equal to J(g)
[use (1.a)]. This line likewise cannot carry a or b, but meets the
line J(ab ) through a and b in some involution which would be
différent from a and b. This contradiction proves (l.e). The
statements (l.a) to (1.e) just contain the contention of Propo-
sition 1.

PROPOSITION 2: Il the group G satisfies conditions (G.1) to (G.4),
then the derived seoîîzeti-ical structure D(G) [see §I.A] is a three-
diiiiensional projective space.

PROOF : It will be convenient to adopt the following terminology
which is in essential agreement with the terminology of § 1, the
homogeneity of D(G) and Proposition 1. The clements in G will
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be termed points; if g is an element in G, then P(g) is the totality
of elements x in G such that xg is an involution, and P(g) is the
plane [determined by] g; if a ~ 1 is in G, and if b is a random
element in G, then the points of J(a)b form a line.
We note that P(1) - J is the plane of all the involutions.

Thèse two facts are easily verified. (2.2) asserts that two différent
planes meet in a line; and (2.1) implies tha t tlie plane P(g) has
the saine geometrical structure as the [by Proposition 1] projec-
tive plane of all the involutions.

(2.3) The two di f f erent points g and h deterllline one and only one
line, namely J(h-1g)(g*h*)*.

It follows from (1.c) that (g*h*)* is the uniqucly determined
common involution of the lines J(g) and J(h). Hence (g*h*)*g
and (g*h* )*h are involutions so that a = g(g*h*)* and b =

h(g*h*)* are, two distinct involutions. We have ab=ab-1=gh-1~1;
and it is clear now that a and b belong to tlie line J(ab) = J(gh-1).
Hence g == a(g*h*)* and h = b(g*h*)* belong to the line

J(gh-1)(g*h*)*.
Suppose now that g and la are both on tlie line J(u)v where

u =1= 1. Then g’ - gv-1 and h’ = hv-1 are distinct involutions on
tlie line i(it); and it follows from (1.c) that J(u)=J(g’h’)=J(gh-1).
If x is any element in J(u)v, then xv-1 is an involution in J(u).
It follows from (l.c) that J(u) - J(j’j") wlieiiever j’ and j" are
distinct involutions in J(u); and this implies that

the product of three involutions in J(u) is likewise an involution
in J(u).
However, we have shown that XV-l, vg-1 and g(g*h*)* are in-

volutions in J(u). Hence their product (xv-1)(vg-1)(g(g*h*)*) -
x(g*h*)* is in J(u); and this shows that J(ic)v = J(gh-1)(g*h*)*,
as we claimed.

(2.4) Every plane carries with any two ditferent points the whole
line through thern.

If a and b are two distinct points in the plane P(g) = Jg-1,
then ag and bg are distinct involutions. They determine by (1.c)
the line J[(ag)(bg)] = J(ab-1) of involutions; and so a and b both
belong to the line J(ab-1)g-1 in P(g) - Jg-1. It follows from (2.3)
that this is the only line carrying a and b.
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(2.5) If too planes pass through a point p, then their line o f inter-
section passes through p.

Obvious.

( 2.6 ) A line J(a)b and a plane P(g), not through J(a)b, meet in
a point.

Because of (2.4) we need only show that J(a)b and P(g) possess
a common point. Now P(g) = Jg-1 so that b = g-1 would imply
that J(a)b is on P(g). Hence bg i=- 1. It follows from Proposition 1
that the lines J(a) and J(bg) possess a common involution j. Then
jb is certainly on J(a)b; and jb = (jbg)g-1 is in Jg-1 = P(g), since
j is in J(bg) so that jbg is an involution. Thus is the desired
point of intersection of J(a)b and P(g).
(2.7) A line and a point, not on the line, determine one and only

one plane.
Since two distinct planes meet in a line by (2.2), we need only

show the existence of at least one plane through the point p and
the line J(a)b, not through p. Denote by p’, p" two different
points on the line J(a)b; and consider the three planes P(p), P(p’)
and P(p" ). The last two meet in a line by (2.2); and a line and a
plane have always a common point by (2.6). Thus there exists a
common point g on the planes P(p’), P(p") and P(p). Then gp’,
gp" and gp are involutions; and this implies also that pg, p’g and
p"g are involutions. Hence p, p’ and p" are points on the plane
P(g); and it follows from (2.4) that this plane P(g) carries the
whole line J(a)b.
Remembering that every plane P(g) is a projective plane in the

strict sense of the word [by (2.1) and Proposition 1] we deduce
now from (2.2) to (2.7) that the points, lines and planes which we
defined in the beginning of this proof just constitute a three-
dimensional projective space [see, for instance, Menger [1]]. Hence
D(G) is a three-dimensional projective space, as we claimed.

REMARK : The principle of duality could not be used in the
proof in its explicite form, since lines had been defined as inter-
sections of planes, not self-dually. However, an analysis of the
proof of (2.7) will show that we have used the principle of duality
at least implicite.

7. The représentations and their uniqueness.
we begin by stating a theorem that summarizes part of the

results obtained sofar and that will permit us to put the problem
of this section into proper focus.
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THEOREM 1: The following properties o f the group G are equivalent.

(i) G is an S*-group.
(ii) G is isomorphic to an L-group o f linear translormations.
(iii) G is isomorphic to the group of all motions of an elliptic plane.
(iv) G is isomorphic to an elliptic group of planar auto-projec-

tivities.

(v) G has Properties (G.1) to (G.4).
(vi) The derived geometrical structure D(G) is a three dimensional

projective space.
The proof of this theorem is effected by reference to tlie preced-

iiig results in the following fashion. We recall that the group G
has been termed an S*-group, if the derived geometrical structure
is a projective space of dimension greater than 1. That every

S*-group is isomorphic to an L-group of linear transformation"
is the content of § I.C, Theorem 2. We deduce from § 3, Theorer
that a group of linear transformations is an L-group if, and onl
if, it is the group of all motions of an elliptic plane; and § 3, Prc,-
positions 1 and 2 show that the group of all motions of an elliptic
plane induces isomorphically an elliptic group of planar auto-pro-
jectivities. It is a conséquence of § 4, Theorem that elliptic groups
of planar auto-projectivities have the properties ( G ); and (v) im-
plies (vi) by § 6, Proposition 2 whereas it is trivial that (vi) implies
(i).
We note that properties (ii) to (iv) assert the existence of cer-

tain representations of S*-groups; and we have already pointed
out that the representations as L-groups of linear transformations
are the same as those as motion groups of elliptic planes. We recall
that the representations constructed in § 1.C and § 3 were natural
ones. But we have not shown yet that these are the only possible
representations; and in particular we have not yet shown that all
representations as elliptic groups of planar auto-projectivities are
isomorphically induced by L-groups of linear transformations.
With these questions [and related ones] we want to concern our-
selves in the present section.
We shall use the name S*-group to indicate any group with the

equivalent properties (i) to (vi) of the above theorem; and we
recall that because of § I.B, Proposition 2 such groups have the
following often used property.
(G.0 ) Every eleinent in G is the product of tzvo involutions i’n G.
That (G.0 ) is actually a consequence of (G.1) and (G.4), is tlie

content of § 5, Lemma.
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PROPOSITION 1: If A is an elliptic group o f auto-projectivities
o f the projective plane 03A0, then mapping the re f lection a in A upon its
center C(a) constitutes a projectivity o f the plane of involutions in
D(^) upon II such that C(03C3)03B1 = C(03B1-103C303B1) f or every a in A.
PROOF: It is a consequence of § 4, Lemma 2 that every involution

in ll is a reflection;’and thus it is a consequence of Property (E.2)
that mapping a upon C(03C3) constitutes a one to one mapping of the
totality J of involutions in ^ upon the totality of points in 77.
Suppose that «, 03B2, 03B3 are three different reflections in A. If the
points C(03B1), C(03B2), C(y) are collinear, then it follows from (E.3)
that oefly is a reflection. If conversely oefly == c5 is a reflection, then
it follows from § 4, Lemma 3 and § 4, Notation 1 that C(03B1) + C(03B2)
- 03B1(03B103B2) = a(03B403B3) = C(03B4) + C(y), proving the collinearity of

C(03B1), C(03B2), C(03B3). But three points in the plane J in D(^) are
collinear if, and only if, their product belongs to J [see, for in-
stance, § 6, Proposition 1]; and thus we have shown that C(oc),
C (fl), C(03B3) are collinear points in II if, and only if, ce, 03B2, y are
collinear points in the plane J [in D(^)]. This proves Proposition 1
as C(a)ce = C(03B1-103C303B1) is an almost immédiate consequence of the

definition of the center. 
THEOREM 2: Every isomorphism between elliptic groups o f planar

auto-projectivities is induced by one and only one projectivity between
the underlying projective planes.
PROOF: Suppose that ^ is an elliptic group of auto-projectivities

of the projective plane II; and suppose that the auto-projectivity
(x of lI induces the identity automorphism in A. Then (x commutes
with every element in ^ and in particular with every reflection a
in A. Thus we find that C(03C3) = C(03B1-103C303B1) = C (a)oc holds for every
reflection a in A. But every point in II is the center of a reflection
in ̂  [by (E.2)] so that a leaves invariant every point in II. Hence
« = 1; and this implies that an isomorphism of ̂  upon some group
of planar auto-projectivities is induced by at most one projectivity
of lI.

Assume now that 0 is an elliptic group of auto-projectivities of
the projective plane T; and that 03B2 is an isomorphism of ̂ . upon O.

If Q is a point in II, then there exists [by (E.2)] one and only
one reflection a(Q ) with center Q in A ; and it follows from Pro-
position 1 that mapping Q onto a( Q ) constitutes a projectivity of
II upon the plane J of involutions in D(^). It is clear that
induces a projectivity of the plane J in D(^) upon the plane J’
of all involutions in e; and it follows from Proposition 1 that

mapping the reflection v in 0 upon its center C(v) in T constitutes
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a projectivity of the plane J’ in D(0) upon the plane T. Mapping
Q onto Qa = C[03C3(Q)03B2] constitutes therefore a projectivity of II
upon T. One verifies easily that, for every involution a in A,

Since 03B1-103C303B1 and afJ are both reflections in 0 [§ 4, Lemma 2], we
infer a-laot = 03C303B2 for every involution a in A. Since every element
in A and in 0 is a product of two reflections [by (E.1)], one veri-
fies now that the isomorphism 03B2 is induced by the projectivity oc,

completing the proof.
COROLLARY 1: An S*-group possesses one and essentially only

one representation as an elliptic group of planar auto-projectivities.
This is an obvious consequence of Theorems 1 and 2.

COROLLARY 2: Every elliptic group o f planar auto -projectivities
is isomorphically induced by the group o f all motions o f an elliptic
plane.

PROOF: Suppose that A is an elliptic group of auto-projectivities
of the projective plane II. Then A is an S*-group [Theorem 1]
and consequently isomorphic to the group 0 of all motions of an
elliptic plane (F, A, f). Every element v in 0 induces an auto-
projectivity i," in the projective plane (F, A ); and it follows from
§ 3, Propositions 1 and 2 that n is an isomorphism of 0 upon the
elliptic group 0 = On of auto-projectivities of (F, A ). Now
Corollary 2 is an immediate consequence of Corollary 1.

COROLLARY 3: The Theorems o f Desargues and Pappus hold in
projective planes possessing elliptic groups o f auto- projectivities.

PROOF: If ( F, A, f ) is an elliptic plane, then F is a commutative
field [see § 3, Theorem] so that the Theorems of Desargues and
Pappus hold in the projective plane ( F.A . ). Now Corollary 3
is an immediate consequence of Corollary 2.

THEOREM 3: Isomorphisms between L-groups o f linear trans-

f ormations are induced by essentially uniquely deterinined semi-
linear transformations between the underlying linear manifolds.

PROOF: Suppose that 0 is an L-group of linear transformations
of the linear manifold (F, A ); and suppose that the semi-linear
transformation T of (F, A ) commutes with every element in 0
[induces the identity automorphism in 0]. If Q is a point in ( F, A ),
then there exists an involution v in 0 such that Q = P(v) [by
(L.2)]. Clearly Qt = P(v)03C4 = P(T-1Vi) = P(v) = Q so that every
point is a fixed point. It is well known that i is then a multipli-
cation by a number in F; and this implies that isomorphisms



279

between L-groups are induced essentially by at most one semi-
linear transformation.

Suppose now that 0 and 0" are L-groups of linear transfor-
mations of the linear manifolds (F, A ) and ( F’, A’ ) respectively;
and that x is an isomorphism of 03A6 upon f/J’. We deduce from § 3,
Theorem that 0 and 03A6’ are the groups of all motions of elliptic
planes (F, A, f ) and ( F’, A’, f’) respectively. It follows from § 3,
Propositions 1 and 2 that 0 induces isomorphically the elliptic
group ̂  of auto-projectivities of the projective plane (F, A ) and
that 0’ induces isomorphically the elliptic group ^’ of auto-pro-
jectivities of the projective plane (F’, A’). If v is an element in
A, then there exists one and only one transformation ve iii 0
which induces v; and we denote, as usual, by (on the auto-projec-
tivity in ̂ ’ which is induced by the transformation 03C9 in 0’. Since

03BE, ~ and x are isomorphisms, 03BE~03C0 is an isomorphism of ̂  upon A’.
It is a consequence of Theorem 2 that the isomorphism 03B6~03C0 is

induced by a projectivity 1J of ( F, A ) upon (F’, A’ ); and it is the
content of the Fundamental Theorem of Projective Geometry
that ~ is induced by some semi-linear transformation r of ( F, A )
upon ( F’, A’ ). One verifies easily that T induces x, as we claimed.
COROLLARY 4: An S*-group possesses one and essentially only

one representation as an L-group of linear transformations.
This is an immediate consequence of Theorems 1 and 3.

REMARK 1: If 0 is the group of all motions of the elliptic plane
( F, A, f ) and if c is a number, not 0, in F, then 0 is also the group
of all motions of the elliptic plane (F, A, cf). - Conversely if 03A6

is the group of all motions of the elliptic planes (F, A, f ) and
( F, A , g), then it is not difficult to prove the existence of a number
c ~ 0 in F such that g = c f . Thus the elliptic plane underlying
such a group of motions is essentially uniquely determined.
REMARK 2: If the group 0 of linear transformations of the

linear manifold (F, A ) is an S*-group, then 0 need not be an
L-group, as is seen from easily constructed examples. [The rank
of A may be too big or the field F may be chosen "too large",
for instance]. - The situation changes somewhat, if we require
tliat çb induces an elliptic group of planar auto-projectivities, as
may be seen from the next result.
PROPOSITION 2: The group f/J of semi-linear transformations o f

the linear manifold ( F, A) induces isomorphically an elliptic group
o f planar auto-projectivities il, and only i f , the1’e exists an L-group
0 of linear transformations of (F, A) such that 0 ~ { -1} =
0 ~ {-1}.
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Here as always ~ indicates the direct product.
PROOF: Assume first the existence of an L-group e of linear

transformations of (F, A ) such that 0 ~ {- 1} = e ~ {- 1}=.
Then E consists of linear transformations only. We map the ele-
ment r in  upon the auto-projectivity e which it induces. This
mapping 03C0 is a homomorphism with kernel {- 1} such that
(/)1t = 039803C0 == an = A is an elliptic group of planar auto-projec-
tivities [§ 3, Propositions 1 and 2] and now it is clear that 0 induces
isomorphically an elliptic group of planar auto-projectivities.

Conversely we assume now that 0 is a group of semi-linear
transformations of (F, A ) and that mapping the transformation
1 in 0 upon the induced auto-projectivity 03C403C0 constitutes an iso-

morphism of 0 upon the elliptic group ^ = (/J1t of planar auto-
projectivities. It is irnplicite in these hypotheses that A has rank
3 over F; and it follows from Corollary 3 that F is a commutative.
field. We note furthermore that [by Theorem 1] 03A6 and ^ are
isomorphic S*-groups.
(1 ) I f v is an involution in 0, then v is linear, A = P(v) ~ N(v)
and one o f the subspaces P(v), N(v) is a point, the other one a line.
To prove this, we note first that 03BD03C0 is an involution in A, since

n is an isomorphism and v an involution. It follows from § 4,
Lemma 2 that vn is a reflection whose center Q is a point and
whose axis L is a line in (F, A ) satisfying A = Q ~ L, since the
center of a reflection is not on its axis. Since every point on L
is a fixed point of y, there exists a number e ~ 0 in F such that
xv = ex. This implies already the linearity of v, since L has rank
2, and since F is commutative. We infer now e2 = 1 or e = :f: 1
from v2 = 1. From the linearity of v and v2 = 1 we deduce further-
more the existence of a number f in F such that xv = f x four x
in Q and f = ± 1. From v03C0 ~ 1 we deduce e ~ f ; and this implies
e = -- f. It is clear now that Q is P(v) or N ( v ) and that L is

accordingly N(v) or P(v); and this completes the proof of (1).
(2 ) Every element in 0 is a linear transformation o f determinant ± 1.
By (G.0) every element in the S*-group 03A6 is a product of two

involutions. Involutions are by (1) linear transformations whose
determinant is clearly :1: 1. This proves (2). - We note that the
commutativity of F makes it possible to speak of the determinant
of linear transformations.

It is clear that - 1 does not belong to 0. Thus we may form
the direct product  = 03A6 ~ {- 1}. It is clear that all the linear
transformations in  have déterminant 4- 1, since thé same holds
for 03A6; and that thé mapping 03C0 of transformations in E upon the
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induced auto-projectivities is a homomorphism of  upon ̂  = 03A603C0

with kernel {- 1}. The totality 0 of transformations in

with determinant + 1 is clearly a subgroup of  such that
E = 03A6 ~ {-1} = e ~ {- 1} and such thàt x induces an iso-
morphism of 0398 upon A.

(3) Il v is an involution in e, then P(v) is a point and N(v) is a line.

Since the determinant of the involution v is + 1, the rank of

N(v) is even. Since the rank of A is 3, and since v ~ 1, it follows
that N(v) has rank 2; and P(v) is consequently a point.

(4) O is an L-group of linear transformations.

Suppose that 03C3 ~ 1 is an element in O. If Q is an involution,
then P(a) is a point by (3). Suppose therefore that a2 e 1. It
follows from (G.0) [which may be applied, since O is isomorphic
to the S*-group A] that there exist involutions oc, f3 in O such
that = ocf3. Since n is an isomorphism, we may deduce from § 4,
Lemma 2 that 03B103C0 and f3n are reflections in ^ whereas e is not a
reflection in ^ [nor is it 1]. We deduce from § 4, Lemma 3 that
a(03B103C0) ~a(03B203C0) is the one and only one fixed point of Qa; and it
follows from (3) that a(03B103C0) = N(03B1) and a(03B203C0) = N(f3). This

makes it obvious that the one and only one fixed point of Q is
a(e) ~ a(03B203C0)  P(ocf3) = P(03C3). Since every point on P(a) is a

fixed point of a, it is clear now that P(03C3) is a point. Thus ( L.1 )
is satisfied by e.

It follows from (E.2) that there exists to every’point Q in ( F, A )
one and only one reflection  in ^ with center Q. There exists
one and only one involution v in 0 such that ie = (l, since n is
an isomorphism. It follows from (3) that P(v) is the center Q of é.
This shows the validity of (L.2); and completes the proof of (4).
Thus we have shown the existence of an L-group 0 of linear

transformations of (F, A ) such that 03A6 ~ {1} = 0398~{-1};
and this completes the proof of Proposition 2.

REMARK 3: Suppose that 0 is an L-group of linear transfor-
mations. Then there exists a natural one to one correspondence
between the totality of subgroups of index 2 of 0 and the totality
of groups 0 of linear transformations which satisfy 0 ~ {- 1} =
0 Q9 {- 1}. The totality of subgroups of index 2 of an S*-group
and in particular conditions for their non-existence will be dis-
cussed in § 8.
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8. The group of squares and the Pythagorean case.

We begin by proving the following facts which may or may not
be new.

LEMMA 1: Suppose that G is an S*-group.
(a ) I f a and b are conjugate involutions in G, then there exists an
involution j in G such that jaj = b.
(b) Products o f squares in G are squares in G.

PROOF : Suppose that a and b are conjugate involutions in G. Then
there exists an élément g in G such that b = g-1ag. There is

nothing to prove if a = b [let j - a]. Thus we assume that a ~ b.
If g* wrere a, then a and g would commute so that a = b which is
impossible. Hence g* ~ a ; and it follows from (G.1 ) and (G.3)
that the involution t = (g*a)* = J[J(g*a)] = J(g*) ~ J(a)=
J(g) ~ J(a). Consequently tg = j is an involution and ta = at.
Hence

and this proves (a).
Consider next two elements g and h in G. We want to show that

g2h2 is a square; and so we may assume without loss in generality
that neither g2 nor h2 is 1. Applying (G.2) and (G.3) again we find

and hence there exists always at least one involution z in

J(g) ~ J(h). Then g’ - gz and h’ = zh are involutions. Then
2c = g’zg’ is an involution too. Since h’zh’ = (g’h’)-lu(g’h’) wTe

infer from (a) the existence of an involution i in G such that
h’zh’ = juj. Now g2h2 = g’zg’z zh’zh’ = g’zg’ h’zh’ = u juj = (uj)2;
and this proves (b).

PROPOSITION 1: If G’ is the commutator subgi-oup of the S*-group
G, then G’ is f irstly exactly the totality o f all squares of elements in
G and G’ is secondly exactly the totality o f all commutators in G.

PROOF: Denote by G2 the totality of all elements of the form
g2 for g in G. Then it follows from Lemma 1, (b) that G2 is a

characteristic subgroup of G. Denote by W the set of all commu-
tators [x, y] for x, y in G. If g is an element in G, then there exist
involutions a, b in G such that g = ab [by (G.0)]. Hence g2 =
abab = [a, b] so that G2  W  G’. On the other hand it is well
known that GIG2 is abelian, since all its elements, not 1, are in-
volutions. Hence G’ ~ G2 so that G2 = W = G’, as we claimed.
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PROPOSITION 2: Suppose that G is an S*-group. Then the line
from 1 to the involution j [in the derived geoînetrical structure D(G)]
carries a point which is on its canonical polar i f , and only il, j
belongs to G2.

PROOF: If the involution j is in G2, then there exists an element
g in G such that j - g2. Clearly the point g is on the plane g.
Suppose that the line from 1 to g is on the plane h. Then h is an
involution, since 1 is on h; and gh is an involution so that

gh = hg-1, (jh)2 = g2 hg2h = hg-2g2h = 1, j ~ h.

Hence j is on every plane through the line from 1 to g so that
1, g, j are collinear, showing the sufficiency of our condition.
Assume conversely that the line from 1 to j carries a point p

which is on its own canonical polar. The last statement is equi-
valent to the assertion that p2 is an involution. There exist in-
volutions a, b such that p = ab [by (G.0)]. Since 1, j and p are
collinear, we have p* = j. But it follows from (G.2) and (G.3)
that j = p* = J[J(p)] = J(a) ~J(b). Next we note that ap2 =
aabab = bab = baba a = p-2a = p2a since p2 is an involution;
and likewise we see that bp2 = p2b. Thus the involution p2 belongs
to J(a) ~ J(b) too; and this shows p2 = j. This completes the
proof.
We have shown a little more than we intended to prove, namely

the following fact which will be useful later on.
COROLLARY 1: Suppose that G is an S*-group, j an involution

in G. Then the point p in D(G) is both on its canonical polar and on
the line f rom 1 to j if, and only i f , j - p2.
We are now ready to characterize the special class of S*-group

which is the object of this section.
PROPOSITION 3: The following properties o f the S*-group G are

équivalent.
(i) G = G’ == G2 [so that every element in G is a commutator and

a square].
(ii) Every involution in G is a square [or J ~ G2].
(iii) Any Two commuting involutions in Gare conjugate in G.
(iv) Any Two involutions are conjugate in G.
PROOF: We shall make use both of the geometrical properties

of the derived geometrical structure D(G) [which is a three di-
mensional projective space by § 7, Theorem 1] and of the charac-
teristic group theoretical properties (G.1 ) to (G.4). We note that
the equivalence of the various properties condensed in (i) is a

consequence of Proposition 1.
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It is clear that (i) implies (ii). Assume now the validity of (ii)
and consider two different, but commuting involutions a and b
in G. Then ab = j is an involution in G; and we deduce from (ii)
the existence of an element g in G such that j = g2. It follows,
from Corollary 1 that g is a point on the line from 1 to j [in D(G)].
Since ja = b and jb = a are different involutions, the line from
1 to j is on the two planes a and b. Hence g is on these two planes
so tliat ga and gb are involutions. Hence

Thus (iii) is a consequence of (ii).
Assume now the validity of (iii) and consider any two different

involutions and b. Then it follows from (G.3) that the involution
i - (ab)* = J(a) ~ J(b). Since i commutes with a and with b,
there exist [by (iii)] elements g and h in G such that g-lag = j
and h-1jh = b. Hence (gh)-1a(gh) = b so that (iv) is a consequence
of (iii).
Assume finally the validity of (iv); and consider an element

g ~ 1 in G. It follow from (G.0) that there exist involutions a, b
in G such that g = ab. We deduce from (iv) and Lemma 1, (a)
tlie existence of an involution y such that b = jaj. Then g =
ab = a(jaj) - (aj)2 so that (i) is a consequence of (iv).
COROLLARY 2: The S*-gi-oitp G satisfies G = G2 i f , and only i f ,

evey line through the point 1 [in D(G)] carries a point which is on
its canonical polar.

This is an immédiate conséquence of Corollary 1 and Proposi-
tion 3.

LEMMA 2: Il ^ is ait elliptic group of auto-projectivities of the
plane II, il Q is a point in Il and a a transformation in II, then there
exists a oeflectiou in 41 uiiieh interehanges the points Q and Qa.
PROOF: There exists by (E.2) one and only one reflection 

with center Q in /1. Since A is an S*-group [by § 4, Theorem],
we infer from Lemma 1, (a) the existence of an involution v in A
such that a-lea = vv. It is a conséquence of § 4, Lemma 2 that
v too is a reflection. Using tlie définition of center of a reflection
we find tliat

and the reflection i, in ^ eonseqllently interchanges Q and Qor.
PROPOSITION 4: 1’he follolving properties of the elliptic group il

o f auto-projectivities o f the plane 03A0 are equivalent.
(i) ^ = A2.

(ii) The group ^ is transitive on thi? points [lines-’ 1 in Il.
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(iii) There exists a reflection in A which interchanges the points
Q and R in II whenever there exists a reflection in A with
center Q a-nd axis through R.

(iv) If the group 0 ol semi-linear transformatinns induces A iso-
morphically, then 0 is an L-group ollinear trans f ormations.

(v) If A is induced by the group 03A6 o f all the motions o f the elliptic
plane (F, A, 1), then

(a) 1 + t2 f or t in F is a square, not 0, o f an element in F [so that
F is a formally real, Pythagorean field] and

(b) f(x, x) is asquare o f an element, not 0, in F f or every x ~ 0
[so that 1 is positive definite].

NOTE: In order to obtain (b) it is necessary to make the nor-
malization hypothesis § 2, (F.g) assuring the existence of an ele-
ment e in A such that f(e, e) = 1. Without such a hypothesis one
could only assert that f(x, x) f(y, y)-1, for x and y not 0 in A, is a
square in F.

PROOF: We note first that ^ is an S*-group so that we may
make use of all the results of this section. Assume first the validity
of (i). If Q and R are different points in II, then there exist by
(E.2) uniquely determined reflections oc and P in ^ with centers
Q and R respectively. It is a consequence of Proposition 3 and
hypothesis (i) that a and pare conjugate in A. Hence there exists
a transformation a in ^ such that 03C3-103B103C3 = P. It follows from the
properties of the center of a reflection that

Hence (ii) is a consequence of (i); and it is a fairly immediate
consequence of Lemma 2 that (ii) implies (iii).
Assume now the validity of (iii) and consider two different, but

commuting involutions a and f3 in A. It is a consequence of § 4,
Lemma 1 and 2 that a and f3 are reflections and that C(03B1) is on
a(f3). We infer now from condition (iii) the existence of a reflection
e in ̂  interchanging C(03B1) and C(03B2). Hence C(03B2) = C(03B2) = C(03B1)
so that the reflections a and ef3e have the same center. It follows
from (E.2) that a = 03B2; and thus we have shown that ^ meets
requirement (iv) of Proposition 3. But then ^ = A 2 by Propo-
sition 3. Hence (i) is a consequence of (iii); and we have shown
the équivalence of conditions (i) to (iii).
Assume now the validity of (i); and assume that 0 is a group

of semi-linear transformations of (F, A ) which induces ^ iso-
morphically - note that the linear manifold (F, A ) represents
the projective plane II. We deduce from § 7, Proposition 2 the
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existence of an L-group 5’ of linear transformations of (F, A )
such that 0 ~ {- 1} = E ~ P- 1}. It follows from condition (i)
that 0 does not possess subgroups of index 2; and this implies
that every element in the group 0 of linear transformations has
determinant + 1. Hence 03A6 = ; and we have shown that (iv)
is a consequence of (i).
Assume next that (i) is false. Then it follows [using Proposition

1] that ̂  possesses a subgroup of index 2. We note that ̂  is iso-

morphically induced by the group 0 of all the motions of the
elliptic plane (F, A, f ) [§ 7, Proposition 2 and § 7, Corollary 2].
Since 0 and ̂  are isomorphie, 0 possesses a subgroup T of index
2. Denote by 0 the group of linear transformations consisting of
all the i in T and all the -v for v in 0, but not in T. The two
groups 0 and 0 both induce A isomorphically. Since every element
in 0 has determinant + 1, not every element in 0 has determinant

+ 1. Hence 0 is not an L-group of linear transformations [§ 2,
Corollary 5]. Thus (iv) is false if (i) is false so that (iv) implies (i).

Suppose next that 0 is the group of all the motions of the

elliptic plane (F, A, f ) and that 03A6 induces A. Assume the validity
of the equivalent conditions (i) to (iv). Consider any a ~ 0 in A.
There exists by (ii) a transformation v in 0 which maps the point
Fa upon the point Fe [where e is such that f(e, e ) = 1]. Then there
exists a number t ~ 0 in F such that av = te. Since v preserves f,
we have

and this proves the validity of (v.b). One proves readily the
existence of an element d in A such that f (d, d) = 1, f(e, d) =
f(d, e ) - 0. If x is any number in F, then

and (v.a) is seen to be a consequence of (v.b).
Assume conversely the validity of (v). If Q and R are different

points, then there exist by (v.b) elements q and r such that
Q = Fq, R = Fr and 1 = f(q, q ) = f(r. r). Since 0 is an L-group
of linear transformations [§ 3, Theorem], there exists an involution
v in 0 which interchanges q and r [by Property (L.3) derived
during the proof of § 3, Theorem] ; and this involution v inter-
changes the points Q and R. Thus ̂  has property (ii); and this
completes thé proof.
REMARK 1: Condition (iv) may be restated as follows.

(iv*) There exists one and essentially only one group o f semi-
linear transformations which induces A isomoi-phically.
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Thus the validity of a Uniqueness Theorem is characteristic
for this class of groups [see § 7, Remark 2].
REMARK 2: The S*-groups G satisfying G = G2 may be termed

Pythagorean because of the characteristic property (v) of Propo-
sition 4. The question arises which S*-groups may be imbedded
into Pythagorean S*-groups. In this respect one proves without
much difficulty the following result.

The group 0 of all the motions o f the elliptic plane ( F, A, f ) may
be imbedded into a Pythagorean S*-group i f , and only i f , there exists
an algebraical order of the field F with the property :
(PD) 0  f(x, x ) f or every x ~ 0 in A
Naturally this presupposes that f is subjected to the normali-

zation f(e, e) = 1 for some e.

It is interesting to note that the above result ceases to be true
once we omit the condition ( PD), as may be seen from the follow-
ing example. F is the field of all rational numbers, A the group ol
all triplets (xo, x1. x2) with rational coefficients xi and

f(x, y ) = xoyo + 3xlyi - 2X2Y2’
It is not difficult to verify that f(x, x ) ~ 0 for x ~ 0. Thus (F, A, f j
is an elliptic plane. But it is clear that f does not satisfy ( PD ). Thus
the group of motions of (F, A, f ) cannot be imbedded into a
Pythagorean group in spite of the fact that F admits of one and
only one algebraical order

This example is interesting for another reason. The points Fa,
such that f(x, x )  0 form a hyperbolic plane; and the group of
motions of the elliptic plane ( F, A, f ) is at the same time the group
of motions of the hyperbolic plane just defined.
REMARK 3: Suppose that P is a Pythagorean field [in the sensf

of Proposition 4, (v.a)]. Then one may show that the field F o
all formal power series in one indeterminate with coefficients frorr

P is likewise Pythagorean. We form a linear manifold (F, A ) o
rank 3 over F and consider a positive definite, symmetrical bi
linear form f(x, y ) [in the sense of Proposition 4, (v.b)]. The groul
OE of all the motions of the elliptic plane ( F, A, f ) is known not t
be simple [Dieudonné [1 ], p. 35] ; but it follows from Propositiol
4 that 0 is an S*-group which satisfies 0 = 02. We see thereforc
that the equivalent conditions (i) to (iv) of Proposition 3 do no.
imply simplicity of the S*-group G, though simplicity of G cer
tainly implies G = G2.
REMARK 4: Reidemeister-Podehl [1, § 11] have shown that the

property (v) is a consequence of the possibility of "bisecting righ1
angles" which is essentially the same as our condition (iii).
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