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On Exceptional Values of Entire Functions
by
S. M. Shah.

1. Let f(z) be an entire function of finite order g. A value «
is said to be an exceptional value (e.v.) B if?!)

+
log n(r, «)

liﬂ e P oix) <o
e.v. N if [1,78—107; 2, 254—269]
i N(r, oc)
6(x) = 1 —lim su s
) na® T
and e.v. V (in the sense of Valiron 2) if
N(r,
4() = 1 —lim inf ](f(:)‘) > o.

2. Let E denote the set of positive non-decreasing functions
¢(z) such that 3)
® de
zp(z)
is convergent. It is known that for functions of non-integral and
zero order and for a class of functions of integral order, including
all functions of maximum or minimum type, we have [4 (i), (ii)]
. . . log M(r)
liminf ———— =
o (1, a)p(r)
where ¢(z) is any function of E, for every a. Hence it is natural
to define a value « (0 < | a| < ) e. E for f(z) if

L. log M(r)
1) b o, ()

1) For notations see [1] chapter 1.

%) See [9] where further references will be found. It is known that §(«) is not
invariant with respect to a change of the origin [12]. To overcome this difficulty
Valiron has suggested another definition for d(«) [13].

3) In what follows, 4 denotes a positive constant not necessarily the same
at each occurrence.
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for some ¢ C E. Let n,(r, o) denote the number of simple zeros
of f—ain|z| < r. We define « to be an e.v. E for simple zeros if

log M
Ry(«) = lim inf —2& ()
r>0 M(r, )p(r)
for some ¢ C E, and normal E for simple zeros if R,(«) = 0 for
every ¢ CE.

3. We prove the following results. Theorem 1 generalises a
well known result of Borel [5,279]. Theorems 2,3 and 4 give
results analogus to those [3,75—78] for a v.e. B for simple zeros.
We note however that a v.e. B for simple zeros may not be a
v.e. E for simple zeros1!).

THEOREM 1. (i) If a is a v.e. B then it is also a v.e. E bul the
converse is not true.

(ii) If « ¢s a v.e. E, then it is also a v.e. N but the converse is not
true.

(iii) If f(2) has a v.e. E, then g is mecessarily an integer and
f(2) s of perfectly regular growth order g; also f(z) can have no
other v.e. E or N.

THEOREM 2. If for a function, the deficiency sum (excluding
a = o0) X d(a) = 1, then there cannot be two values e. E for simple
2eros.

CoroLLARY. If a function has a v.e. E for the whole aggregate
of zeros, then there can be no other v.e. E for simple zeros.

THEOREM 8. Let f(2) be of order o and suppose that either o is
non-tnieger, or when g is integer or zero then f(z) satisfies the con-
dition

) log M(r)
@ 2P ey <
where L(r) is any positive continuous and monotone function for
all large r and satisfies the condition L(kr) o L(r), as r — oo, for
any fized positive k. If o = 0, suppose further that log r = o(L(r)).
Then there cannot be more than two values e. E for simple zeros.

THEOREM 4. Let f(z) satisfy the conditions of Theorem 8. Then
there cannot be more than one v.e. E for the joint sequence of simple
and double zeros and if such a value exists, the sequence of simple
zeros is normal E for every other value.

It is known that a v.e. N for a proper meromorphic function
f(2) (that is, n(r, c0) > 0) may not be an asymptotic value of

1) See § 7 below.
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f(z) [14]. If f(2) be an entire function and («) > 0 for f(z), then
it is not known whether « is necessarily an asymptotic value of
f(2). For a v.e. E we have
THEOREM 5. (i) If « is @ v.e. E for an entire function f(z), then
it is also an asymptotic value but the converse is not true.
(ii) 4 v.e. E is “invariant’ with respect to the displacement of the
origin; that is, if
log M
lim inf 28 M@
w1, a)p(r)
for some ¢ C E, and if M ,(r), n,(r, ) refer to another ‘origin’
A then
log M
lim inf 28 M) _
r>o  Na(r, )p(r)
We now give two theorems of a different type. Theorem 6 extends
a result of Polya and Pfluger [7].
THEOREM 6. If a function of finite order ¢ has a v.e. E, its power
series has a density equal to one of the fractions

1 2 0

e’ e 7 e
THEOREM 7. Suppose f(z) is of order 1 and has a v.e. E. If1)
lim log M(r)/r = T and if f(z) has an asymptotic period f then

| 8| = 2#/T.

We suppose here § to be Whittaker [6,84] period. If we follow
the definition of an asymptotic period as given by S. S. Macintyre
(15] then | 8| = =/T.

4. Proor oF THEOREM 1. (i) If « is a v.e. B then log M(r)co Tv?
(0 < T < ) and g,(x) < o. Hence

lim log M (r)
r—>on(r, oc)rﬂ

To show that the converse is not true, we consider

=0, 0 < B <e—ex)

hed 2
(3) ]‘(z)=eP(z)=el;[{l+m};a=0.

(ii) If o > 0 is non-integer then [38,69]
log M(r)

liminf ——— < 4
oo N7 &)

1) This limit exists. See Theorem 1 (iii) above.
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for every a. If o = 0 then [4(i), 29—380]

1 A
lim inf log M(r, /) _ 0
r—>o n(r, 0)(])(”')
and hence
log M
lim inf "8 1) _ o,
o 07, a)p(r)

Hence if « is a v.e. E, ¢ must be integer and we will have

(4) /() — @ = 2" exp {Q(2, «)} P(z, «)

where Q(z, «) is a. polynomial of degree g(«) (say) and P(2, «)
is the canonical product (c.p.) of genus p(«) (say). We have
either [4 (ii) 186—187] g,(«) < g or p,(a) = g(ot) = p; p(a) =p—1.
In either case we have log M(r) o Tr@ (0 << T < o0) for we have

LeEMMA. If f(z) = 2Me?® P(2) is of order g, o integer and q¢ = o,
p = p90—1, then

(5) : log M(r,f) oTr® (0 < T < o0)
Proor. Let Q(z) = a®® + ..., | a| = T. Then
log M(r, f) < O(logr) 4+ (T + O(1))r€ + 0(r2) ~ T72.
Suppose if possible

lim inf 28 1)

=l<T
r—>o 1'9 <

and let I< L <T,1<k< (T/L)I/". Then for a sequence of
values of r =r, (n=1,2,...), log M(r, f) < L.
For'any R, (n = 1,2,...) such that r,/k =< R, < r, we have

log M(R,, f) < log M (r,, f) < L1 < LkeRe.

Further log M(r, P) = 0(r¢) and there is always a circle | z| = R,
in the annulus r,/k <|z| <r, on which [3,89]

| P(z)| > {M(kr, P)}".
Hence for r = R, (n > N,)

log ! < Hlog M(kr, P) < H € k%®
P(z)
. 1(z)
e{RO(=)} — D) < exp {Lk?RC + 2H ¢ k?R?}.
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Hence

max R{Q(z)}

———— < LK°.
> R = Li

n

But the left hand expression has the limit T° > keL.
Hence we have a contradiction and so ! = T which proves

the lemma.
If « is a v.e. E, then log M(r) ~ T7€ and so

T(r) > Alog M(r) > An(r, &)p(r)
and since log r = o(¢(r)) we have
(6) lim T(r)/N(r, «) = o0; é(a) = A(a) = 1.
r—> w0
To show that §(x) may be equal to unity but « may not be a
v.e. E we need consider the c.p. P(z) defined in (8). For this
c.p. 6(0) =1 and
log M(r)
>0 (7, 0)p(r)

(iii) To complete the proof of (iii) we note that X d(a) <1
the summation being over all finite values of a. Since d(x) =1
there can be no other v.e. N and a fortiori e. E.

5. PROOF OF THEOREM 2. Since X §(a) = 1, g is integer [8,92—94]
Let o(r) be a proximate order. Then

lim o(r) = g, lim ro’(r) logr =0
r<®

< r—>

log M(r) < 7" for all r > r,
= ¢ for an infinity of r.
Further [8,94] N(r, f') = o(re").
If « and B (« 7% B) be v.e. E for simple zeros then
N(r, ) + N(r, B) > A(k)log M(r[k) > Are™
for an infinity of r, say r = r,. Also if N, refers to simple zeros
then
Ny(r, @) + Ny(r, B) + 4N(r, ') + O(log r) > N(r, &) + N(r, )
and so for r =r, (n > n,)
Ny(r, @) + Ny(r, p) > Are".
Now
log M(r) > Any(r, a)gs(r), ¢u(r) C E, > R,
log M(r) > Any(r, B)pa(r)s ¢a(r) C E, r > R,
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Let ¢(z) = min {@,(z), @,(x)}. Then it is easily seen that
¢(z) C E and we have for r > R,

log M(r) > A{ny(r, «) + ny(r, B)g(r).
Hence for r =r, (n > Ny > n,)
) 2 log M(r) > Af{ny(r, @) + ny(r, B)}e(r)

ﬁi;g(i){Nl(", «) + Ny(r, B)} > ww(')'
log r

= log r

Hence we have a contradiction and so the theorem is proved.

Proor of CoroLLARY. Let a be a value exceptional E for the
whole aggregate of zeros. Then é(x) = 1 and so by the theorem
there cannot be two values e. E for simple zeros. Since « is a fortiori
a v.e. E for simple zeros, there can be no other v.e. E for simple
Zeros.

6. Proor oF THEOREM 8. Suppose if possible there are three
such values a, b, ¢ (@ #b #¢). Let P(z,a) = P, denote the
c.p. formed with the simple zeros of f(z) — a and denote by
py(a) its genus and by g,,(a) its order. Similarly for P(z, b) and
P(z, ¢). Then

o) P(z, a)P(z, b)P(z, c){f'(2)}?

~ k) — aH{i(x) — b}{f(z) — ¢}

is an entire function. [3,76].
(i) Consider first when p > 0 is non-integer. We have

Alog M(r,f) _ Are®
@(r) @(r)

A

(7) ny(r, a) < , T > T

We prove that

(8) log M(r, P,) = o(re").

If p,3(a) < o then (8) follows. Suppose therefore g,,(a) = o,
pi(a) < o <1 + py(a). Writing p,(a) = p and n(2, a) = n(zx)
we have

(9) log M(r,P,) < 4 {rrf' Ot ., faon(t)dt}.
0

{1 tr+2
Now for all z > z,, p < g(z) < 1 + p and so 22®-? is increasing
and 22®-?-1 i5 decreasing for @ > x,. Hence from (7) and (9)
we obtain (8). Similarly for P, and P,. Let the zeros of f —a,
f—0b, f—c be respectively

(@75 (075 (ea)1's
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and denote by S the set of circles

lz—a,|=|a.|™ |z—ba|=|b.[" |z—c.|=]ca|™
(|a.| =1, |b.| 2L |e,| =1, h>p)

Then in the domain D exterior to the circles S we have [8,74]
for r > r,

f'(z)
if(z)—b

f'(z)
f(z) —a

' <,"2K

and hence in D
log M{r, (f — ¢)0} = o(r2”) + O(log ) = o(r2").
Similarly for (f — )0 and hence in D
log M(r, 6) = o(re™").
Now
log M(r, f —¢) > Are™

for a sequence of values of r = r, - c0. Let k > 1 be a fixed
positive constant and let », < r < kr,. Then for n > n,

log M(r,f—c) = log M(r,, f—c¢) > A2 > Are™,
Further
log M(r,f—c¢) < AT(2r, f —¢)

= A[T{2r, (f—ec)o} + T{2r, %}]
=< A [log M{2r, (f—c)0} + log M (2r, 0) + O(1)]
< ere®

for all r > R;, such that 2r CD. Let r, > R,, n > n, Since
we can always draw a circle |z| =r in the annulus r, <|z| < kr,
such that 2r C D, we have for a sequence of values of r — oo,

Are" < log M(r, f —c) < ere?

which leads to a contradiction and so the theorem is proved.
(ii) o integer. We prove first that

(10) log M(r, P,) = o(r¢ L(r)).
We have

AreL(r)
o(r)

ny(r, a) = n(r) (say) <
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It is known that [10] 7°L(r) — oo, r~°L(r) — O, for every constant
¢ >0, as r — oo. Further

[ Lt orLir), [Ty2L(t)dt coriL(r).
1 r

If o,,(a) < o then (10) is obvious. Suppose therefore

ou(a) = o, pi(a) = p (say) = o —1 or o.

(a) Consider first when p = p—1 and L(r) | . We divide
the interval of integration (0, 7) of the first integral on the right
hand side of (9) in the intervals (0, 4/7), (1/7, r). Then each of
these three integrals is o(r¢L(7)).

(b) p—e—1 L(r) 4.
Here log M(r, P,) = o(r?) = o(r°L(r))

(e) p=o, L(r) %u . We choose 4 = A(r), (0 < A <r) tending
to infinity with r so slowly that L(A(r)) = o(L(r)) and divide
the interval of integration (0, r) in the intervals (0, 1) (4, r).
Then each of these three integrals is o(r2L(r)).

A

(d) p=o9, L(r) ¥ or | . This alternative is not possible
since it would make the integral f {n(x/x*+')}dz convergent.
1
Hence in all cases (10) holds and the rest of the argument is
similar to that given in (i).
(iii) ¢ = 0. The proof is similar to that given in (i). The proof
of Theorem 4 is similar to that of Theorem 3.

7. Example. Let G(2) be any entire function of order o > 1
and lower order 4 <1 and let

1(z) = {G(2)}*P(2)

where P(z) is c.p. defined in (8). Then it is easily seen that 0
is a v.e. B for the simple zeros of f(z). But

n,y(r, 0) corflog?r
log M(r, f) < 2log M(r, G) + log M(r, P).
Hence for a sequence of values of r tending to infinity we have
log M(r, f) < Ar/logr,

log M
lim inf S X1 _
> My(7, 0)p(r)
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Hence 0 is not a v.e. E for simple zeros of f(z).
8. Proor or THEOREM 5. (i) From (4) we have
| #(z) —a| = rme®® @ | Pz, o) |

Let Q(z,a) = a2 + Q ,(3); a= Te'b, 0.(z) a polynomial of
degree < o — 1. Then

log | f(z) — & | = Tr@ cos(gf + B) + RQ,() + log | P(z, «) |
Let 0 < 6 < =10 and 6, be such that

S oS+ pt2knsat ——0

(k integer or zero); and let 0 < e < — (T/4) cos (08, + B),

z = retdo,

Choose 7, so large that for all r > r, and all
RQ:i(z) < e, nlogr < er?, log| Pz, a)| < ere.
Then for z = reo, r > To-
log | #(z) — & | < r8{T cos(gy + B) + 8¢} >— 0 as r — co.

Hence f(z) -« as z = re % > c0; that is « is an asymptotic
value.

To show that the converse is not true, we consider [2,160—161]
f(z) = J.'e“edt o integer, 2 < p < 0.
0

Let
2umi

)f edr, n=0,1,2,...,0—1.
0

Then for a = a,, a,, . . ., a1

Ap? . log M(r)

log 7’ 15w n(r, a)p(r)

a, = exp (

T(r) o -::Q-; n(r, a) >

Hence each of these numbers ay, a, . . ., @y, is an asymptotic
value but not a value exceptional E.

(i) We may suppose that the new ‘origin’ 4 is on the real
positive axis at a distance h from 0. Then since

log M(r) ~ Tre (0<T< )
M(r—h) < Ma(r) < M(r + h)
t follows that log M ,(r) lies between A,® and Ay € for all
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r > 74(k). Further
n(r—h,a) < ny(r,a) < n(r + h, «)
n(r + h, a)p(r + b) < Agre.
Hence
ny(r, @)p(r) < n(r + b, a)p(r + h) < Agr® < Aglog M 4(7).
1
lim inf —28 Ma(")_
r—>o nA(r’ oc)tp(r)
We omit the proofs of Theorems 6 an 7 which can be proved by
following the argument given by Whittaker [6,61—62; 84—87].
9. Meromorphic Functions. Let F(z) be a meromorphic function

of finite order p. We define a number « (0 < | a| < ) to be
an e.v. E for F(z) if

> 0.

. T(r)
(11) lim inf ——

o {0(r, 2)@(r)}
for some ¢ C E. It is easily seen that the two definitions of values
e. E for entire functions are equivalent. Obviously o is a v.e. E
for entire functions according to (1) or (11). We can also prove
that if « is a v.e. E for a meromorphic function F(z) then it is
a v.e. N, with deficiency 6(a) =1 and A(x) = 1. To see that
the converse is not true we consider the meromorphic function
[1,91—93]

2A—1

falz) = Eon”f(n"z)

where 1 > 1is an odd integer, n = exp. (w¢/4) and f(z) = &*/(e*—)1.
This function f;(2) is a meromorphic function of order 1 and has
24 valuese. N; g« (v =0, 1, 2, .. ., 24 — 1) each with deficiency
1 (1 n) 1
T\ cos 22 <1

Hence none of these 24 values can be a v.e. E.

We note also that if « be a v.e. B for a meromorphic function
F(z) then it may not be a v.e. E. In fact Valiron has shown that
(18] a value « e. B may have deficiency d(a) = 0.

THEOREM 8. If F(2) is a meromorphic function of finite order o,
then there cannot be more than two values e. E for F(z) and if F(3)
has two values e. E then o is necessarily an integer and T (r, F)/re
tends to a finite non-zero limit as r tends to infinity.

Proor. If « be a v.e. E then §(x) = 1. Since Zé(«x) < 2 there
cannot be more than two values e. E. Suppose then «, # (« # 8,
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0=|a| =< o0,0=]|f| = ) be two values e. E. Then for all
r>7,

T(r)> é{n(r, a) +n(r, B)}p(r) > 6,{N(r, «) + N(r, B)} l‘f)gi,
N(r, «) + N(r, B) < log r
I(r) dyp(r)
But if ¢ > 0 is non-integer then [1,51—54]
lim sup N, a)T_(t,;v(r’ A) >0

and if o = 0 then [11,67—69]
N(r, a) + N(r, B)

WS =7 ="
Hence ¢ must be integer. Further since
AF + B)
T\r, ———=) =T ,
(n S=p) = T¢) + 0q)

we may suppose that 0 and oo are values e.E. Write
F(z) = 2% P;(2)/ Py()

where P, is c.p. of genus p, (say) formed with zeros a,(| a, | > 0)
of F(z) and P, is c.p. of genus p, (say) formed with poles b,
(| .| > 0) of F(z). Q(z) is a polynomial of degree g (say). We
know that [4 (ii) 188]
T(r, F
lim inf nF) ____,
r—>m {n(r, 0) + 'n(r, 00)} ‘P(")

for every ¢ C E, except when ¢ > max (p,, p;)- Hence ¢ = g,
P1 <0 pz<e- So

T(r, P ) leg M(r, P,
limsup—(ir?—“—)_é_hmsupgur—)=0; a=12.

r— r—> 00 rg
T(r, F T(r, 0
tim L F) o T eh)

r—>o 8 r—>w

Now T(r) o~ Max N(r, a). Hence if Q(z) = b2 + ...

then
| b]

o TG 1]

T(r, %) o lim —=5 -

and the theorem is proved.
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