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On Exceptional Values of Entire Functions

by

S. M. Shah.

1. Let f(z) be an entire function of finite order e. A value oc

is said to be an exceptional value (e.v.) B if 1)

e.v. N if [1,78-107 ; 2, 254-269]

and e.v. V (in the sense of Valiron 2) if

2. Let E denote the set of positive non-decreasing functions
~(x) such that 3)

is convergent. It is known that for functions of non-integral and
zero order and for a class of functions of integral order, including
all functions of maximum or minimum type, we have [4 (i), (ii)]

where ~(x) is any function of E, for every 03B1. Hence it is natural

to define a value 03B1 (0 ~ |03B1|  oo) e. E for f(z) if

1) For notations see [1] chapter 1.

2) See [9] where further references will be found. It is known that d(m) is not
invariant with respect to a change of the origin [12]. To overcome this difficulty
Valiron has suggested another definition for 03B4(03B1) [13].

a ) In what follows, A denotes a positive constant not necessarily the same
at each occurrence.
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for some ~ C E. Let ni(r, a) denote the number of simple zeros
of f - a in 1 z |~r. We define ce to be an e.v. E for simple zeros if

for some ~ C E, and normal E for simple zeros if R1(03B1) = 0 for
every ~ C E.

3. We prove the following results. Theorem 1 generalises a
well known result of Borel [5,279]. Theorems 2,3 and 4 give
results analogus to those [3,75-78] for a v.e. B for simple zeros.
We note however that a v.e. B for simple zeros may not be a
v.e. E for simple zeros 1).
THEOREM 1. (i) 1 f a is a v.e. B then it is also a v.e. E but the

converse is not true.

(ii) If « is a v.e. E, then it is also a v.e. N but the converse is not
true.

(iii) If f(z) has a v.e. E, then e is necessarily an integer and
/(z) is of perfectly regular grozvth order e; also f(z) can have no
other v.e.- E or N.

THEOREM 2. If for a funetron, the deficiency sum (excluding
oc = (~) 03A3 03B4(03B1) = 1, then there cannot be tzvo values e. E for simple
zeros.

COROLLARY. If a function has a v.e. E for the whole aggregate
o f zeros, then there can be no other v.e. E for simple zeros.
THEOREM 3. Let f(z) be of order e and suppose that either e is

non-integer, or zvhen e is integer or zero then /(z) satisfies the con-
dition

where L(r) is any positive continuous and monotone function for
all large rand satis f ies the condition L(kr)  L(r), as r - oo, f or
any fixed positive k. Il 9 = 0, suppose further that log r = o(L(r)).
Then there cannot be more than two values e. E f or simple zeros.
THEOREM 4. Let f(z) satisfy the conditions of Theorem 3. Then

there cannot be more than one v.e. E for the joint sequence of simple
and double zeros and i f such a value exists, the sequence o f simple
zeros is normal E f or every other value.

It is known that a v.e. N for a proper meromorphic function
f(z) (that is, n(r, oo) &#x3E; 0) may not be an asymptotic value of

1) See § 7 below.
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f(z) [14]. If f(x) be an entire function and 03B4(03B1) &#x3E; 0 for f(z), then
it is not known whether a is necessarily an asymptotic value of
f(z). For a v.e. E we have
THEOREM 5. (i) Il oc is a v.e. E for an entire function f(z), then

it is also an asymptotic value but the converse is not true.
(ii) A v.e. E is ’invariant’ with respect to the displacement o f the

origin; that is, i f

f or some q C E, and i f lVI A (r), nA (r, oc) refer to another ’origin’
A then

We now give two theorems of a different type. Theorem 6 extends
a result of Polya and Pfluger [7].
THEOREM 6. If a function of finite order P has a v.e. E, its power

series has a density equal to one o f the fractions

THEOREM 7. Suppose f(z) is of order 1 and has a v.e. E. If 1)
lim log M(r)Jr = T and if f(z) has an asymptotic period P then,
w

1 PI | ? 2n/T.
We suppose here P to be Whittaker [6,84] period. If we follow

the definition of an asymptotic period as given by S. S. Macintyre
[15] then 1 PI | &#x3E; nIT.

4. PROOF OF THEOREM 1. (i) If 03B1 is a v.e. B then log M(r) N Tre
(0  T  oo) and e1(ex)  e. Hence

To show that the converse is not true, we consider

(ii) If e &#x3E; 0 is non-integer then [3,69]

1) This limit exists. See Theorem 1 (iii) above.
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for every 03B1. If e = 0 then [4(i), 29-30]

and hence

Hence if a is a v.e. E, p must be integer and we will have

where Q(z, 03B1) is a. polynomial of degree q(03B1) (say) and P(z, 03B1)
is the canonical product (c.p.) of genus p(a) (say). We have
either [4 (ii) 186-187] 1(03B1)  e or 1(03B1) = q(03B1) = e; p(a) =-1.
In either case we have log M(r)  Tre (0  T  oo) for we have
LEMMA. If f(z) = zNeQ(I) P(z) is of order ,  integer and q = o,

p~-1, then.

PROOF. Let Q(z) = az + ..., 1 a 1 = T. Then

log M(r, f )  0(log r) + (T + 0(1 ))re + 0(re) N Tr.

Suppose if possible

and let 1  L  T, 1  k  (T/L)1/. Then for a sequence of
values of r = rn (n = 1, 2, ... ), log l!I (r, f )  Lre.

For any Rn (n = 1, 2, ... ) such that rn/k ~ Rn ~ rn we have

Further log M(r, P) = 0(re) and there is always a circle 1 z | = Rn
in the annulus rn/k ~ | z 1 ~ rn on which [3,89J

Hence for r = Rn (n &#x3E; N0)



231

Hence

But the left hand expression has the limit T &#x3E; kL.
Hence we have a contradiction and so 1 = T which proves

the lemma.
If oc is a v.e. E, then log M(r) N TrfJ and so

and since log r = o(~(r)) we have

To show that 03B4(03B1) may be equal to unity but oc may not be a

v.e. E we need consider the c.p. P(z) defined in (3). For this
c.p. â(o) = 1 and

(iii) To complete the proof of (iii) we note that 03A303B4(03B1)  1

the summation being over all finite values of a. Since 03B4(03B1) = 1
there can be no other v.e. N and a fortiori e. E.

5. PROOF oF THEOREM 2. Since 1 03B4(03B1) = 1,  is integer [8,92-94]
Let (r) be a proximate order. Then

Further [8,94] N(r, f’) = o(re("».
If a and P (03B1 ~ 03B2) be v.e. E for simple zeros then

for an infinity of r, say r = r.. Also if Ni refers to simple zeros
then

and so for r = r n (n &#x3E; no)

Now
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Let 99(x) = min {~1(x), ~2(x)}. Then it is easily seen that

~(x) C E and we have for r &#x3E; Ro

Hence for r = rn (n &#x3E; N2 &#x3E; n0)

Hence we have a contradiction and so the theorem is proved.
PROOF of COROLLARY. Let ce be a value exceptional E for the

whole aggregate of zeros. Then 03B4(03B1) = 1 and so by the theorem
there cannot be two values e. E for simple zeros. Since ce is a fortiori
a v.e. E for simple zeros, there can be no other v.e. E for simple
zeros.

6. PROOF OF THEOREM 3. Suppose if possible there are three
such values a, b, c- (a ~ b ~ c). Let P(z, a ) - P. denote the
c.p. formed with the simple zeros of f(z) a and denote by
P1(a) its genus and by 11(a) its order. Similarly for P(z, b ) and
P(z, c). Then

is an entire function. [3,76].
(i) Consider first when e &#x3E; 0 is non-integer. We have

We prove that

If e11(a)   then (8) follows. Suppose therefore oll(a) = e,
pl(a)    1 + pl(a). Writing pl(a) = p and ni(x, a) = n(x)
we have

Now for all x &#x3E; xo, p  (x)  1 + p and so aee(ae)-p is increasing
and x(x)-p-1 is decreasing for x &#x3E; xl. Hence from (7) and (9)
we obtain (8). Similarly for Pb and P,. Let the zeros of f - a,
f - b, f - c be respectively
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and denote by S the set of circles

Then in the domain D exterior to the circles S we have [3,74]
for r &#x3E; r0

and hence in D

Similarly for (f-b)03B8 and hence in D

Now

for a sequence of values of r = rn ~ oo. Let k &#x3E; 1 be a fixed

positive constant and let rn ~ r  kr n. Then for n &#x3E; no

Further

for all r &#x3E; Rl, such that 2r C D. Let rn &#x3E; R1, n &#x3E; no. Since

we can always draw a circle |z| = r in the annulus rn~|z|~krn
such that 2r C D, we have for a sequence of values of r ~ oo,

which leads to a contradiction and so the theorem is proved.
(ii) e integer. We prove first that

We have
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It is known that [10] rcL(r) - oo, r-cL(r) - 0, for every constant
c &#x3E; 0, as r ~ oo. Further

If Pll(a)   then (10) is obvious. Suppose therefore

(a) Consider first when p = O-1 and L(r) ~. We divide
the interval of integration ’(0, r) of the first integral on the right
hand side of (9) in the intervals (0, Jr), (r, r). Then each of
these three integrals is o(reL(r)).

Here log M(r, Pa) = o(r°) = o(reL(r))

(c) p = o, L(r) t . We choose A = Â(r), (0  Â  r) tending
to infinity with r so slowly that L(A(r)) = o(L(r)) and divide
the interval of intégration (0, r) in the intervals (0, A) (Â, r).
Then each of these three integrals is o(reL(r)).

A

(d) p = , L(r) t or This alternative is not possible
since it would make the integral ~{n(x/xp+1)}dx convergent.

i

Hence in all cases (10) holds and the rest of the argument is
similar to that given in (i).

(iii) (2 = 0. The proof is similar to that given in (i). The proof
of Theorem 4 is similar to that of Theorem 3.

7. Example. Let G(z) be any entire function of order o &#x3E; 1

and lôwer order A  1 and let

where P(z) is c.p. defined in (3). Then it is easily seen that 0
is a v.e. B for the simple zeros of f(z). But

Hence for a sequence of values of r tending to infinity we have
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Hence 0 is not a v.e. E for simple zeros of f(z).

8. PROOF oF THEOREM 5. (i) From (4) we have

Let Q(z, oc) == az’P + e i(z); a = Tü’P, Ql(z) a polynomial of

degree ~ e - 1. Then

(k integer or zéro) ; and let 0  ~  - (T/4) cos (03B80 + 03B2),
z = rel8o. Choose ro so large that for all r &#x3E; ro and all 0

Then for z = rei03B80, r &#x3E; ro.

Hence f(z) ~ 03B1 as z = re i03B80 - 00; that is a is an asymptotic
value.

To show that the converse is not true, we consider [2,160-161]

Let

Then for a = ao, al, ..., a-1.

Hence each of these numbers ao, a1, ..., a-1 is an asymptotic
value but not a value exceptional E. 

(ii) We may suppose that the new ’origin’ A is on the real

positive axis at a distance h from 0. Then since

t follows that log MA(r) lies between AIre and A2re for all
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r &#x3E; ro(h). Further

Hence

We omit the proofs of Theorems 6 an 7 which can be proved by
following the argument given by Whittaker [6,61-62; 84-87].

9. Meromorphic Functions. Let F(z) be a meromorphic function
of finite order (l. We define a number ce (0 ~ |03B1| ~ co) to be
an e.v. E for F(z) if

for some p C E. It is easily seen that the two definitions of values
e. E for entire functions are equivalent. Obviously oo is a v.e. E
for entire functions according to (1) or (11). We can also prove
that if a is a v.e. E for a meromorphic function F(z) then it is
a v.e. N, with deficiency 03B4(03B1) = 1 and 0394(03B1) = 1. To see that
the converse is not true we consider the meromorphic function
[1,91-93]

where &#x3E; 1 is a.n odd integer, ~ = exp. (03C0i/03BB) and f(z) = ez/(ez-)1.
This function f03BB(z) is a meromorphic function of order 1 and has
203BB values e. N ; ~03BD03B1 ( v = 0, 1, 2, ..., 203BB -1) each with deficiency

Hence none of these 2A values can be a v.e. E.

We note also that if a be a v.e. B for a meromorphic function
F(z) then it may not be a v.e. E. In fact Valiron has shown that
[13] a value a e. B may have deficiency 03B4(03B1) = 0.
THEOREM 8. If F(z ) is a meromorphic function o f f inite order e,

then there cannot be more than two values e. E for F(z) and i f F(z)
has Two values e. E then e is necessarily an integer and T(r, F)/r
tends to a finite non-zero limit as r tends to in f inity.
PROOF. If a be a v.e. E then 03B4(03B1) = 1. Since 03A303B4(03B1) ~ 2 there

cannot be more than two values e. E. Suppose then ce, fl (oc =1= f3,
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0 ~ 1 oc |  00,0 1 1 fJ’ | ~ ~) be two values e. E. Then for all
r &#x3E; r0

But if e &#x3E; 0 is non-integer then [1,51-54]

and if  = 0 then [11,67-69]

Hence e must be integer. Further since

we may suppose that 0 and oo are values e.E. Write

where Pl is c.p. of genus pl (say) formed with zeros an(1 an 1 &#x3E; 0)
of F(z) and P2 is c.p. of genus P2 (say) formed with poles bn
(j bn 1 &#x3E; 0) of F(z). Q(z) is a polynomial of degree q (say). We
know that [4 (ii) 188]

for every 99 C E, except when q &#x3E; max (pl, p2). Hence q = e,
W  e, p2  e. So

Now T(r) vo Max N(r, a). Hence if Q(z) = bzo + ...
a

then

and the theorem is proved.
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