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A class of completely monotonic Functions
by

C. G. G. van Herk.

Apeldoorn

Non-negative integers will be denoted by i, j, ..., n ; real num-
bers by t, u, v, x, y, a, T, an, cn; positive numbers that are ar-
bitrarily small by E, El; complex values by z = x + iy, w = u + iv,
s = Q +ir. It will be understood that

(0.01) zva = exp (s log|w| 1 + is arg w),
where the value of arg zv has to be fixed. 1 shall write x = Re z,

y = Im z, etc. The letter X will stand for a bounded non-decreasing
function of a non-negative argument; y will be normalized by
the conditions

and the same will apply to ~n, X, ln. If ~(t + 03B5) &#x3E; ~(t 2013 03B5) for
a fixed value of t and for every 03B5 &#x3E; 0, t will be called a point of
incrément of ~. An open interval a  x  b will be denoted by
(a, b), a closed interval a ~ x ~ b by Ca, b). An empty sum will
be put equal to zero, an empty product equal to unity. If different
integrals of the same integrand occur in the same formula, the
integrand may be written only once.
A function f(x) is said to be completely monotonie in (a, b)

if it has derivatives of all orders there, and if 
,

f is said to be completely monotonie in a, b) if it is continuous
in (a, b&#x3E; and completely monotonie in (a, b).
For the sake of concision no attempt has been made to make

this paper correct in the sense of intuistionistic mathematics. 1
shall speak e.g. of the class {F} of all functions F, while one
might doubt whether this is quite correct. Yet I have tried to
make proofs correct in this respect wherever 1 could. Thus, the
use of a well-known theorem of Helly [1] 1) has been avoided;
but, to achieve this, a much longer proof of Theorem 33 had to

1) Numbers in brackets refer to the bibliography.



2

be given. On the contrary, the theorem of Porter-Vitali has been
used throughout. In the proofs where it has been applied (of
Theorems 1, 31, 33), it would have been easy to deduce the
uniform convergence of a certain sequence {fn(z)}~1 within a

fixed domain of the z-plane by giving explicit upper bounds
of |fn(z)-fn+v(z)|, but 1 left this out, as it seemed to be of

little interest. Properly speaking, we could do without this

theorem.
1 am indebted to Prof. van der Corput for Lemma 2, which

greatly simplified my own proof of Lemma 3. My thanks are also
due to Prof. van der Waerden for his critical remarks. With the

exception of Theorems 8-16 and 42-47, this paper was finished
in 1943, when it has been discussed with Prof. van der Corput;
by various circumstances publication has been delayed till now.

§ 1. Introduction.

The main problem of this paper belongs to the field of inter-
polation theory or rather to that of integral equations of the first
kind. This problem is a special case of the next one:

Problem (a). Let {xn}~1 and {an}~1 be two given sequences. Let

(1.01) x1 &#x3E; 0; xn+l &#x3E; xn (n = 1, 2, ... ) ; xn ~ oo as n - oo;

an &#x3E; 0 (n = 1, 2, ... ).
Let K(x, t) be a given kernel, and let K &#x3E; 0 for x &#x3E; 0,

0 ~ t ~ 1. Put

To détermine the funetioiis y that satisfy the set of equations

Several cases of problem (a) have been treated in literature.
I mention the following, including the one that is dealt with here,
but 1 am not sure the list is complete.

Problem (b). If xn = n, K(x, t) = (t-l-1)Z, we have a problem
that is equivalent to the moment problem of Stieltjes [1].

Problem (c). If xn = n, K(x, t) = tx, the problem is equivalent
to the moment problern of Hausdorff [1], [2].

Problem (d). If we only add to (1.01) the condition
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and if K(x, t) = tx, we get a generalization of (c) that has been
treated by Hausdorff [1] and Feller [1].

Problem (e). If the sequence {xn}~1 is subjected to no other
conditions than (1.01), and if K(x, t) = (1 -t + tx)-1, we get
the problem that will occupy us here. In this particular case

will be written instead of (1.02). The integral (1.05) is convergent
for all values of z, with the possible exception of the values
z  0. For the present, the f unction F will be made one-valued
by excluding the values z  0, so that F(z) can always be represen-
ted by (1.05). The class of all functions F will be denoted by {F}.

The next problem, which has been solved by R. Nevanlinna [1],
is closely related to the type (a), though somewhat different
from it.

Problem (f). Let {zn}~1 and {wn}~1 be two given sequences of

complex numbers. Let 1 Zn |  1, |wn1  1 (n = 1, 2, ...). To
determine the functions w(z) holomorphic in the interior of the
unit circle, which satisfy the conditions

Obviously the theory of the cases (b) ... (e) will have many
traits in common. A necessary and sufficient condition for the
existence of at least one solution consists, in each of these cases,
of a set of inequalities

In the cases (c) and (d) there are, in addition to (1.01), n - 1
inequalities (1.06) that correspond to a single value n. In the
cases (b) and (e) there is just one such inequality required for
every value of n. The explicit conditions (1.06) that correspond
to problem (e) will be given later; these will be shown to be
necessary (§ 3) as well as sufficient (§ 5).

Stieltjes distinguished a determined moment problem, which has
a unique solution, from an indeterntinate one with an infinity of
solutions. The terms have also been applied by R. Nevanlinna
in tlie case (f). The same distinction will be made here. Ifsolvable,
the problems (c) and (d) are always determined. The solvable
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cases (b) and (e) may be either determined or indeterminate.
Perhaps this second resemblance between (b) and (e) points to
a deeper analogy; at any rate, the discussions of §§ 4-6 are

much like corresponding ones of Stieltjes. A necessary and
sufficient condition for the uniqueness of a solution of (e) will
be given in § 6, where a further classification of the determined
cases of problem (e) will be made too.

Different connections between the problems (b), ..., (f) can be
stated:

(oc) If all numbers xn tend to a given value x &#x3E; 0, (d) tends
to the moment problem of Stieltjes as a limit case.

(p) If all numbers zn tend to a given value zo = exp (qi), (f)
tends to a problem equivalent to Hamburger’s generalization of
the moment problem of Stieltjes. As Nevanlinna [1] has shown,
the solutions of the moment problem of Hamburger [1], [2] can
be obtained from tlie theory of (f).

(y) If all numbers x. tend to a given value x &#x3E; 0, (e) tends
to the moment problem of Hausdorff as a limit case.

Since various problems are contained in Nevanlinna’s problem
(f), the question must be raised whether (e) is also in some way
contained in it. The question is too vague to be denied with

certainty, but as yet I see no way to solve (e) by means of Nevan-
linna’s formulae. On the other hand, if we add to problem (e) the
condition 1 F(z) 1 ~ 1 for z - 1 I  1, we get a problem that is
certainly contained in (f). For, let f(w) be holomorphic and
1 f(w) 1 S 1 within the circle |w|  1; let f also be real when
w is real. Then, by the transformation

there is a one-to-one correspondence between the functions f
and F (Wall [1 ).
Now, the condition |w(z)| ~ 1 in problem (f) has been replaced

by Lokki [1] by the less restrictive one

and it may well be that problem (e) can be subsumed under
Lokki’s, or even that the two problems are equivalent. This is a
question that still has to be decided. However, it is most probable
that generalizations of problem (e) can be treated by the method
of Stieltjes used hère. If we replace the particular functions F
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in the expressions (3.27)... (3.30) by more general functions f
as defined by (1.02), results might be obtained that are analogous
to the basic Theorem 17, but 1 am sorry I had as yet no oppor-
tunity of investigating this question. Of course all these problems
are very closely related, but it still remains doubtful whether the
methods of Nevanlinna and Stieltjes are equally powerful, or
which of these is the most powerful.

In connection with his moment problem, Stieltjes examined
integrals of the type

where ~(~)  oo. By the transformation

we get an integral of the type (1.05). Hence the functions (1.07)
belong to the class {F}, and they are characterized by

As it has been shown by Feller [1], the Newton series represents
the solution of problem (d). The same holds in certain cases of
(e), and Theorem 48 states a result that is much like Feller’s.
There is also a remarkable similarity between the determinants,
defined in (3.44)... (3.51), and those studied by Barkley Rosser
[1], and one might be inclined to look for more general connec-
tions here.
A solution of problem (a) will be called degenerate, if Z only

increases for a finite number of values t, and the problem (a)
itself will be called so if it has a degenerate solution. Perhaps the
study of degenerate problems is not quite uninteresting. In the
case of a degenerate moment problem of Stieltjes, only a finite
number of the usual expressions A (xl, ... an ) in (1.06) is positive.
On the contrary, the solution of a degenerate moment problem
of Hausdorff satisfies a set of inequalities (1.06) with all left hand
members positive, except for the very special case when x only
increases for the value t = 1. A degenerate solution of problem
(e) is rational. Conversely, it will be shown that any rational
solution of (e) is degenerate (Theorem 16). The degenerate
cases of (b) and (e) are always determined.
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Without loss of generality we can add to (e) the conditions

For, if we put

the sequences {xn}~1, {an}~1 will satisfy (1.01) and (1.10). Now
if F(x) is a solution of (e), and if we put

the function

will satisfy the conditions F(xn) = an (n = 1, 2, ...). For this
reason the restrictions (1.10) will always be made, unless the
contrary is expressed. By (0.01) (1.05) and (1.10) we then have

(1.13) x(1) = 1.

Before solving problem (e), some generalities concerning the
functions F will be discussed in the next section.

§ 2. Elementary Properties of the Functions F.

Any function F(z) is bounded in a half plane x ~ 03BE &#x3E; 0. It
is easy to prove that F is bounded in a much bigger part of the
z-plane.

1

Fig. 1.

LEMMA 1. Let the closed région G(03B5, e) in the z-plane be
defined by thé inequalities.
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where z = x + iy - r exp (~i), 0  a  , e &#x3E; 0. Let
2

0 ~ t ~ 1. Then

for any z in G.

PROOF. The lemma is true when t = 0; let us first take

0  t ~ l. By (2.01) we have cos ~ ~ - cos s; hence, if 03BB &#x3E; 0,
we have

and

or, putting A = t-1 - 1,

hence the lemma is true. Next, take -1  t ~ 1. If x ~ 0 we
have

by (2.02); if x &#x3E; 0 we have

by (2.03); hence the lemma is true again.
THEOREM 1. The functions F(z) are uniformly bounded in a

given domain G(03B5, e). We have

PROOF. By Lemma 1 and by (1.13) we have, for any z in
G (e, e),

THEOREM 2. Any function F is holomorphic for all values of
z, with the possible exception of the values z ~ 0.

PROOF. If we put
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the sequence {Fn(z)}~1 converges uniformly, by the Porter-Vitali
thcorem, in any domain G(s, ). For, this sequence converges to
F(z ) for any z different from the values z  0, and the expressions
Fn(z) belong to the class {F}, hence they are uniformly bounded
in G(E, ).

Since F(k)n(z) ~ F(k)(z) as n - oo we also have

for every z different from the values z  0.
THEOREM 3. Any function F(x) is completely monotonie for

x &#x3E; 0.

PROOF. By (2.04) we have (-)k F(k)(x) &#x3E; 0 for any k and

x &#x3E; 0.

The converse of this theorem does not hold. The inequality

yields F(2x) ~ 1F(x) for any function F. Now, when f(x) = x-2,
we have f(2x) = 1 4f(x). Hence f does not belong to {F}, though
it is completely monotonie for x &#x3E; 0.

THEOREM 4. In order that a function f(z) be contained in the
class {F}, it is necessary and sufficient that an expansion

where

be valid within the circle |z - 1 |  1.

PROOF. First let f belong to {F}. Since f(z) will be holomorphic
within the circle 1 z - 1 |  1, it can be expanded in a Taylor
series (2.05), where
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Now (2.06) will hold, by (2.04); hence the conditions are

necessary. Next, let (2.05) and (2.06) hold. Substituting we have

hence the conditions are sufficient.
THEOREM 5. The function x(t) in (1.05) is uniquely determined

by F(z).
PROOF. According to (2.05) the sequence {ck}~0 is uniquely

determined by F(z). Now, by (2.06), {ck}~0 is a sequence of

moments of Hausdorff, and the corresponding moment problem is
determined.

Hence there is a one-to-one correspondence between the func-
tions F and y. Two functions F and Z, connected by (1.05), will
henceforth be called corresponding.
THEOREM 6. Im F(z)  0 for y &#x3E; 0, unless F(z) = 1.
PROOF. Since

Im

the theorem holds whenever the integral in the right hand member
differs from zero. Now this integral can only be equal to zero if
x(t) is a constant for t &#x3E; 0, or, by (1.13), if ~(t) = 1 for t &#x3E; 0,
i.e. if F(z) == 1.

On the other hand, a function may be contained in the class I
of Nevanlinna [1 ], i.e. be holomorphic and satisfy Im f(z) ~ 0
in the upper half plane, without belonging to {F}. An example is
furnished by f(z) = z-1-z. Hence {F} is a subclass in the

strict sense of I, and this also points to a difference between the
problems (e) and (f).
By Theorem 6, a function F that is not identically unity can

take no real values in both half planes y &#x3E; 0 and y  0. Since
F(z) is positive if z &#x3E; 0, we have as a special case:
THEOREM 7. Any function F(z) is different from zero outside

the half line z ~ 0.

Another proof of this theorem is as follows. It will be shown
in § 7 that to any function F there is a function F* of {F} with
the property F(z)F*(z-1) = 1. Now F*(z-1) is holomorphic for
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all values of z outside the half line z-1 ~ 0, i.e. outside the half
line z ~ 0. Hence F can have no zeros for these values of z.

1 now proceed to the inversion of (1.05). Any algorithm that
solves the moment problem of Hausdorff will yield an inversion
formula, which is clear by the proof of Theorem 5. However,
~() can only be expressed in this way by means of the values
F(k)(1) (k = 0, 1, ...). Of course the formulae may be transformed
afterwards into results of a more general type. The formulae
given here are of a different kind. Theorems 8 and 9 are results
of Stieltjes [1] and Hilbert 2 ), extended to the class {F}. Though
Theorem 9 may be considered as a limit case of Theorem 8, an

independent proof of Theorem 9 will be given.
THEOREM 8. If 0  r  oo, 0 = (1 -f- 7-)-B then

for any function F; the limit in the right hand member exists
for any r.

PROOF. Using the proof of Theorem 2, it can immediately be
shown that the inversion of the order of integrations:

is legitimate. Hence we may write

Putting

we have, by (2.07),

1) A. WINTNER [1 ], while speaking of the "Hilbertsche Residuenformel",
probably refers to Hilbert [1].
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Let the integrals in the right hand member of (2.09) be denoted
by jl, ..., J. If t  ~, we have, by (2.08),

and hence

We also have ~(t, 03B5)  03C0, hence2

By (2.08) we have

and this may be written, by (0.01),

If t &#x3E; ~, we have ~(t, a)  03C0, hence

If in addition we have (1 + 03B5) ~ ~ t  1 - 03B5, then

Now
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hence

and

Finally we have

Now by (2.09)... (2.16) we obtain

which proves the theorem.

Fig. 2.

The proof of Theorem 8 was based on an estimation of the
integral
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extended along the path AB + CD (fig. 2). If this path is replaced
by CEB, a slightly simpler result can be obtained, viz.

The proof can best be given in a direct way.
THEOREM 9. Suppose (0.02) to hold for 0  t  1 only, and

define z(1 + 0) = ~(1). Now if 0  r  ~, and if we put
~ = (1 + r)-1, then

The limit in the right hand member exists for any r.
PROOF. First take r &#x3E; 0. Putting

we have, by (1.05),

Let the integrals in the right hand member of (2.19) be denoted
by J1...J5. If 

we have, by (2.18),

hence 11JJ (t, 03B5)| 1 ~ VE and

Next, if e is constant, |03C8 (t, 03B5)| is a maximum in 0 ~ t ~ 1
when
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hence

Finally, if

and we have

and since y(t, 03B5) = O(1) as e -&#x3E; 0 we now obtain

hence

or

Now, by (2.19)... (2.22) we have

which proves the theorem if r &#x3E; 0. If r = 0 the proof is similar.

Using (2.17), we can now discuss some elementary properties
of the functions F on the half line z ~ 0. If, in the folowing
theorems, F(z) is investigated within a domain D of the z-plane
that also contains a set of values z ~ 0, it will be understood
that appropriate intervals of the half line z  0 have been ex-
luded from D in order to make F one-valued.

THEOREM 10. Let 0 ~ r1  r2 ~ 00, ~1 = (1 -f- T1)-1,
~2 = (1 + r2 )-1, and hence 0 ~ ~2  ~1 ~ 1. In order that F(z)
be holomorphic in the interval ( r2, - r1) it is necessary and
sufficient that z(t) be constant in (02, ~1).
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PROOF. First let F be holomorphic in (- r2, - rl). Take
rl  r  r2 and put ~ = (1 + r)-1. By (2.17) we have

where the integral in the right hand member is taken in the
positive sense. This integral must be independent of r, hence

~(t) is constant if e2  t  ~1. The converse is an immediate

consequence of the definition of the Stieltjes integral.
THEOREM 11. Let ri &#x3E; 0, 01 = (1 + r1)-1. In order that

F(z ) bc holomorphic within the circle |z| 1  r1 it is necessary
and sufficient that Z(t) be constant in (-Dl’ 1&#x3E;.
PROOF. First let F be holomorphic when |z|  rl. Take

0  r C rl and put ~ = (1 + r)-1. According to the former

proof, (2.23) holds; hence

whicli proves the condition to be necessary. The converse is trivial.

THEOREM 12. Let r &#x3E; 0, ~ = (1 + r)-l. In order that F(z)
be holomorphic when |z| 1 &#x3E; r, it is necessary and sufficient that

~(t) bc constant in (0, ~).
PROOF. According to Theorem 10 the condition is necessary.

Next, if z(t) is constant in (0, ~), we can write, by (1.05),

Since the integral in the right hand member is holomorphic
for |z| &#x3E; r, the condition is sufficient.
THEOREM 13. Let 0 ~ r  oo. Put 0 = (1 + r)-l and

~(1 + 0) = ~(1). As in Theorem 9, (0.02) is supposed to be
valid only for 0  t  1. In order that the value z = r be a

pole of F, it is necessary and sufficient that t 0 be an isolated
point of incrément of x.
PROOF. First suppose r &#x3E; 0. When z = -r is a pole, the

function F is holomorphic in the intervals ( r E, - 1.) and
(- r, - r + 03B5), if a is sufficiently small. According to

Theorem 10, ~(t) can have no points of increment, say in
an interval (0 - 03B51, ~ + 03B51), and different from t = ~. We then
have, by (1.05),
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v -u-tbl

Since both integrals in thé right hand member are holomorphic
in the point z = - r, the remaining term must have a pole there.
Hence Z increases when t = e, so the condition is necessary. The
converse is trivial.
For r = 0 the proof is similar.
THEOREM 14. Any pole of F(z) is of the first order with a

positive residue. 
PROOF. Let z = - r be a pole of F ; by Theorem 2 we have

r a 0. If we put t9 (1 + r )-1, the value t = ~ will be an isolated
point of increment of ~(t), by Theorem 13. Hence (2.24) holds,
which proves that z = - r is a pole of the first order with a
residue {~(~ + 0)-~(~-0)}~-1, which is positive.
TIIEOREM 15. In order that F(z) be meromorphic it is necessary

and sufficient that tlie set of points of increment of X be denum-
brable and have a single cluster point t = 0. The formula

On = (1 + rn)-’, rn = zn determines a one-to-one corres-

potldence between the poles zn of F and tlie points of incrément
On of x.

PROOF. If F is meromorphic, F has an infinity of poles
zn (n = 1, 2, ... ) on the half line z ~ 0, and the séquence {zn}~1
has the value z = oo as a siligle cluster point. According to
Theorem 13, a jump of y(t) for the value t == z9. = (1 + rn)-1
corresponds to the pole zn - rn, and tlie value t = 0 is a single
cluster point of the sequence {~n}~1. According to Theorem 10,
x increases for no other values of t. Hence the condition is neces-

sary. The converse is trivial.

THEOREM. 16. Any function F that is meromorphic can be
represented by the series

where the summation has to be extended over all poles zn = r,,
of F, and where 0,, = (1 + rn)-1, Z(l + 0) - ~(1).
PROOF. The theorem is an immediate consequence of Theorem

15, and of the notion of Stieltjes integral.

The series (2.25) converges absolutely and uniformly in any
domain D of the z-plane, if we exclude terms that have a pole
in D. Evidently the representation (2.25) also holds when F is
rational. Hence any rational solution of problem (e) is degenerate.
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§ 3. Existence of a Solution: necessary Conditions.

Let us first discuss the determinants

The following formulae hold:
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where 0 ~ k  m, except in (3.07), where 0  k  m + 1, and
where the expressions dn(k), dri(k) are defined by

The proof will be given by induction; (3.05) is true when k = 0;
let (3.05) hold for an arbitrary value of k. By putting factors
outside the determinants and by repeated substraction of columns
we get



19

hence (3.05) is true for any k. The formulae (3.06)... (3.08)
can be proved in a similar way. Giving k its maximum value
m or m + 1 we get
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Let (kl, ... ke) be a permutation of the set (1, 2, ... ), and
let sgn (k1 ... k) be equal to 1 or - 1, whenever the permutation
(ki, ... ke) is even or odd. The product

is transformed by the permutation

Hence we have, by (3.13)... (3.16),

Let 03A3 be a summation extended over ait permutations (k1, ... ka)
(Q) 

of the numbers (1, 2, ... e). According to the définition of a deter-
minant we have
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Hence, putting (, 03B6, ?y) equal to (m, 1, 0 ), (m, 0, 1 ), (m + 1, 0, 0 ),
(m, 1, 1) successively, we obtaiu
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From these identities it is easy to obtain a set of necessary
conditions for the existence of a solution of problem (e).

TIiEOREai 17. Let N = N(x) denote the number of values,
for which the corresponding funetion x of F increases; hence
N  co if and only if F(z) is rational. If N  oo, tlie set {03C4i}Ni=1
of values t = 03C4i, where ~(t) increases, is supposed to be decreasing:
(3.25) 1 &#x3E; 03C41 &#x3E; 03C42 &#x3E; ... &#x3E; 03C4N ~ o.
Let

If no anlbiguity is to be fearcd, we shall write

We tlien have tlie equalities



23

and in particular

Moreover, if

we have the inequalities

in all cases different from (3.36) ... (3.39).
PROOF. By (1.05), (3.26), (3.27) and (3.31) we have

where k1, ..., km can be any numbers. Hence

where the summation is extended over all permutations (kt-.. km)
of the numbers (1 ... m). The right hand member can be written
as an m-fold Stieltjes integral:

hence, by (3.01) and (3.21) we obtain (3.32). The proof of (3.33)...
(3.35) is similar.
The integrals in the right hand members of (3.32) ... (3.35)

are non-negative. They can only be equal to zero (as they actually
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are), if the corresponding integrands vanish for all combinations
(tl .. tm) = (ii ... 03C4im), where -r,, ... 03C4im are any values, dif-

ferent from one another or not, for which ~(t) increases. This is
always true, whether F is rational or not. If N(x)  m, every
combination of m values T must contain at least two of them that

are equal, hence, owing to the factor n(tA-t,u)2, these integrands
vanish for all combinations (03C4i1...03C4im), which yields (3.36 ),
If N(~) ~ ln, there are always possible combinations where the
values -r are different from one another. In this case, it is only
owing to a factor IltA or 03A0(1 - tA) that an integrand can vanish
for such a combination (03C4i,... 03C4im), and this requires that one
value ï be equal to zero or unity. Evidently this leads to the cases
(3.37) ... (3.39). In all other cases (3.40) implies (3.41).

1 now return to the conditions (1.01) and F(aen) = an (n = 1,
2, ... ) of problem (e). In the rest of this section the notations
of Theorem 17 will be used throughout. Let F(x) be a solution
of (e), and let us put

where the expressions Pn, ..., Q* denote the following poly-
nomials :
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THEOREM 18. If F(x) is a non-degenerate solution of problem
(e), we have, for any n &#x3E; 0,

where either x  xi, k = 0, or xk  x  xk+1 (k = 1, ..., n-1),
or x.  x, k = n. In particular we have, for any n &#x3E; 1,

If F(x) is a rational solution of problem (e), the expressions
Dra and D* satisfy (3.52), the following. cases excepted:

A rational solution F(x) is unique; hence a degenerate problem
(e) is always determined.
PROOF. If F(x) is not rational we have N(~) = oo, hence the

inequality (3.41) can be applied to the expressions d (x, xl, ..., xn)
and 0394*(x, xl, ..., xn) as soon as the values x, xl, ..., Xn are so
re-arranged as to form an increasing sequence, which can be
effected by a permutation of the rows of the determinants LI and
Li*. In this way (3.52), and (3.53) as a special case, can be ob-
tained.
The inequalities (3.41) can also be applied when F is rational,

and hence (3.52) generally holds, except if we have to do with
one of the cases (3.36) ... (3.39), which yields (3.54).
Now, by (1.03), the expressions Dn(xv 1 F) and D*(x,, | F) are

independent of the choice of the solution F. Thus it follows from
(3.52) and (3.54) that problem (e) cannot have both a rational
and a non-rational solution. Moreover, two rational solutions FI
and F2 would satisfy the equations F1(xn) = F2(xn) (n=l, 2,...),
hence they would be identical.

§ 4. Discussion of the Polynomials PD, ..., Q*n. Degenerate
Solutions.

A further analysis of problem (e) requires a more detailed dis-
cussion of the polynomials Pn, ..., Q*n, defined by (3.44)...(3.51).
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We begin by supposing that the values xn are different from one
another and different from zero, and that the values an are quite
arbitrary. By elementary properties of determinants we have

and

THEOREM 19. The following recurrence formulae hold for

n &#x3E; 1:
n* 1 n. 

Hence the expressions P,,, (x), ... Qn(x) are uniquely deter-
mined by (4.01), (4.03), ... (4.07) if and only if

PROOF. Let the rows and the columns of an n-rowed deter-
minant A be successively denoted by the numbers 1, 2, ... n.

Suppose n &#x3E; 1, and let, for p  n,

Let A  be the subdeterminant obtained from A by leaving
out the rows ,ul, ... PP and the columns v1, ... vp, and let

A1...n1...n = 1. We then have the well-known identity

If 03BC1 = 1, 03BC2 = 2m + 1, v1 = m + 1, v2 = 2m + 1, and

this yields
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hence, by (3.44)... (3.51),

Next, if we put 03BC1 = 1, P2 = 2m + 21 Vl = m + 1, v2 = m+2,
and

we obtain, by (4.09),

hence (4.04) is right. In the same way (4.05) can be obtained,
both for even and odd values of n, by putting III = 1, 03BC2 = 2m + 1,
v1 = m + 1, V2 ==2m+l and

resp. by putting 03BC1 = 1, /.l2 = 2m + 2, vl = m + 1, v2 = m + 2 and

The equalities (4.06) and (4.07) too can be obtained as par-
ticular cases of (4.09). However, they can also be deduced from
the recurrence formulae for Pn and Qn by means of a transfor-
mation, which will also be useful afterwards. Let p be a function
of a1, ... an (which may also depend of xl, ... xn), and put

We then have

Moreover, if q is independent of an, we have
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Now we have, as an immediate consequence of (3.44)... (3.51),
and both for even and odd values of n:

and hence, by (4.11),

By effecting the transformation U"T" on the equalities (4.04)
and (4.05), we thus obtain the recurrence formulae for P* and Q:.
The condition (4.08) is evident.
THEOREM 20. The following equalities hold for -n &#x3E; 1 (and

(4.15) for n = 1):

PROOF. First (4.15) will be proved by induction. When n = 1
(4.15) holds; let (4.15) hold when n is replaced by n - 1. We
then have, by (4.04) ... (4.07),

hence, if P*n-1(0)n-1(0) ~ 0, (4.15) holds for the given value n..

Thus (4.15) holds for any n that satisfies (4.08). Since (4.15)
is an identity between polynomials, which is true for arbitrary
values of xi, ... Xn, al, ... a,, that satisfy (4.08), the equality
also holds if (4.08) is not satisfied.
Moreover we have, by (3.44)... (3.49), (4.15),
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hence (4.16) is true if Qn-1(0) ~ 0, and consequently if Qn-1(0)=0.
The equalities (4.17) ... (4.19) can be obtained in the same way.
THEOREM 21. If there is a least value n for which P*n(0)Qn(0) = 0,

the expressions Pn(0) and Q"(0) cannot both be zero.
PROOF. The theorem is true when n = 1; so let n &#x3E; 1. First

suppose Pl* (0) = 0. By (4.03) we then have

since the values xi are all supposed to be different from zero.
Now, according to our assumptions, P*n-1(0)n-1(0) ~ 0. Hence
we have, by (4.15),

or, by (4.20),

hence Qn(0) ~ 0 by (4.03). If Qn(0) = 0 we obtain P*n(0) ~ 0
in the same way.
THEOREM 22. If, in addition to the assumptions made on

the sequence {xn}~1 in the beginning of this section, the values
xl, ... xn and al are positive, and if

(4.21) Pk(0) &#x3E; 0, Qk(0) &#x3E; 0 (k = 2, 3, ... n),
the following properties hold:

(a) The polynomials Pn(x), ... Qn(x) are positive for x ~ 0;
the values a2, ... an are also positive.

(b) The degrees of these polynomials are determined, for

n = 2m resp. n = 2m + 1, by

(c) The zeros of these polynomials are simple and negative.
In what follows the zeros of P n, Q n, P* and Qn will be denoted
by (03B1n,i), (03B2n,i), (03B1*n,i) and (03B2*n,i) respectively, and, if we take
i = 1, 2, ..., the absolute values of the zeros will be supposed
to form an increasing sequence.
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(d) The zeros of Pn as well as those of Q*n are separated both
by the zeros of Pn and by those of Qn; conversely, the zeros of
Pn as well as those of Q n are separated by the zeros of Pn and
of Q*. Compared to Pn and Q:, the polynomials Pn and Qn have
the zeros with the least absolute values:

PROOF. By (4.01) the properties (a) and (b) hold when n = 1.
By induction they hold for any n, which is evident by (4.04), ...
(4.07), (4.21) and (4.02).

If n = 1 the statements (c) and (d) are meaningless. If n = 2,
(c) is true by (a) and (b), and (d) is also true, since there is a

single zero of P* and of Q2, and no zero of P2 or Q2. Let us take
n &#x3E; 2 and assume that (c) and (d) hold for n - 1. By hypothesis,
there will be at least one zero 03B1*n-1,1 of P* n-ji, and we have, ac-
cording to (4.23),

hence, by (4r.04) and (4.06),

If n = 2m, we have P2m(O) &#x3E; 0, P*2m(0) &#x3E; 0 by (a), hence

P2m(x) changes sign in at least in - 2 points, and P2 (x ) in at
least m - 1 points of the interval (03B1*2m-1, m-1, 0). If n = 2m + 1,
we obtain in the same way that P2m+1 changes sign in at least
m - 1 points, and P*2m+1 in at least m points of (03B1*2m, m, 0). Since
P n and Pn are positive if x &#x3E; 0, the coefficient of the highest
power of x of these polynomials must be positive. This yields,
for x  0 and x I sufficiently large, and for even resp. odd values
of n,

Comparing this result with (4.24) we obtain that P2 m and

P2 change sign at least once in (-~, 03B1*2m-1, m-1), and that

P2m+l changes sign at least once in (- oo, 03B1*2m, m). Hence, if we
denote the number of negative zeros of a polynomial f by v(f),
we have, for even resp. for odd values of n,

and, by (4.22), all zeros of P n and Pri will be simple and negative.
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Now the recurrence formulae (4.04)... (4.07) are invariant,
by (4.13) and (4.14), for the transformation UnTn. Moreover,
by (4.10), (4.13) and (4.14), we have for k  n:

and since the values a, and xi are all positive, the set of inequali-
ties (4.21) is also invariant for the transformation UnT n. Hence
the zeros of the polynomials

are simple and negative, which completes the proof of (c) for
the value n.

Next we prove that the zeros of Pn and Pn separate one another,
and that (03B1*n,1, 0) contains no zeros of P n. In the particular case
n = 3, P3 as wel as P*3 have a single zero, and, by (4.24), we have

hence our statement is true. If n &#x3E; 3 there is at least one zero
of Pn-1, and we have, in virtue of our hypothesis,

hence, by (4.04) and (4.06),

If n = 2m, both P2 m and P2 will change sign at least m 1
times in the interval (03B12m-1, m-1,, 0); if n = 2m -f- 1, both P2m+l
and P*2m+1 will do so at least m-1 times in,(cx2m, m-l’ 0). Com-
paring (4.26) for n = 2m and i = m 1 with (4.25), we obtain
that P2 changes sign at least once in ( ~, 03B12 m-1, m-1); the
same holds for P 2 m+l and P*2m+1 with respect to the interval
( ~, cx2m, w-i)’ Now, by (4.22), we can infer that both the
zeros of Pn and of P*n are separated by those of Pn-1, hence

Moreover, it follows from (4.24) and (4.25) that both the zeros
of Pn and of Pn are separated by those of P*n-1, hence

and by (4.27)

which proves the statement. Applying the transformation U nT fi
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to the polynomials P n and Pn, we get the result that the zeros
of Qn and Qn also separate one another, and that Qn has the zero
with the smallest absolute value.
From (4.15) we get, by putting x = 03B1n,i,

and since we have just shown

we also have

Since Qn has at most one zero more than Pn, the zeros of P"
and Q n separate one another, and evidently Qn has the zero with
the least absolute value. Applying the transformation Unl n we
get the corresponding property for the zeros of P*n and Q*, which
completes the proof of (d) for the value n.

From now on it will again be supposed that (1.01) and (1.10)
hold, which implies, by (4.01),

Let us put

hence, by (4.28),

and, by (4.02),

in all cases where these expressions are not indeterminate.
THEOREM 23. The following statements are consequences of

(4.21 ):
(a) Rn and R* are positive for x &#x3E; 0.

(b) Putting xo = 0 we have

while

for Xk  x  xk+1 (k = 0, 1,...,n-2), or xn-1  x, k = n - 1.
(c) Rn and R* belong to the class {F}.
(d) R n and R: are increasing functions of a n for x &#x3E; xn-1.
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PROOF.
Ad (a). According to Theorem (22a), the polynomials

Pn, ... Q* are positive when x &#x3E; 0. Hence Rn and R* are
positive, by (4.29).
Ad (b). We get (4.32) and (4.33) as immediate consequences

of (4.15), (4.16), (4.19) and (4.21).
Ad (c). According to Theorem 22(c), the zeros Pn, i and 03B2*n,i

of Q n and Q* are simple and negative; according to Theorem
22(d), P fi and Q,, have no zeros in common, nor have P* and
Qn. Hence the poles of Rn and R* are of the first order, and, except
for a pole of Rn in the origin, they coincide with the zeros of Q fi
resp. of QIJ. We thus obtain

where G. and Gn are polynomials, and where the residues An,i’
A*n,i must be positive, according to Theorem 22 (d ). If the degrees
of Pn, ..., Q* are taken into account, it is clear that Gn and

Gn are constants. Let them be denoted by Un and u*n. This

yields

hence

According to (a), these limits are non-negative, so now it fol-
lows from (4.34) that Rn and Rn can be represented by a
Stieltjes integral of the form (1.05). Finally we have, by (4.31)
and (1.10),

hence Rn and Rri belong to the class {F}.
Ad (d). By (4.03), (4.04) and (4.05) we have

hence, by (4.16) and (4.18),
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or

In the same way we obtain

which proves the statement.
THEOREM 24. The set of inequalities (4.21) is equivalent to

the system

(4.38) ak = ~kRk-1(xk) + ~*kR*k-1(xk), ~k + ~*k = 1, 0  ~k  1
(k = 2, 3, ..., n).

PROOF. First let (4.21) hold. According to theorem 22(a) the
polynomials Pk,..., Q*k are positive for k = 2, 3, ... n and

x ~ 0. We thus have, by (4.03),

sgn {Rk-1(xk) - ak} = (-)k, sgn {R*k-1(xk) - ak} = (-)k+1,
hence ak is included in the strict sense between Rk-1(xk) and
R:-1 (xk), which yields (4.38).
The converse can be proved by induction. If (4.38) holds, we

have, for k = 2,

and, since x2 &#x3E; 1, 

Moreover we have, by (4.03) and (4.28),

hence (4.21) holds for k = 2. Let (4.21) hold for k ~ v-1, where
v ~ n. By Theorem 23(a) the functions Rv-1 (03B1) and R*v-1 (x)
arc positive for x &#x3E; 0, while, by (4.32),
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and, by (4.38),

Hence we have

and, by (4.03),

which completes the proof.

The necessary conditions for the existence of a solution of pro-
blem (e), which have been obtained in the preceding section, can
now be expressed in a somewhat different way, and the explicit
solution of a degenerate problem can be given.
THEOREM 25. If problem (e) has a solution, all values

are positive, except for the following cases, where the problem
is degenerate:

Here the values N, ri and tN have the same meaning as in Theo-
rem 17.

PROOF. By (3.43) and (4.03) we have, for any solution F
of problem (e),

Hence, by Theorem 18, the values P*n(0) and Qn(0) are positive,
except for the cases (03B1) ... (03B4).

According to Theorem 16, any rational function of the class {F}
can be represented by an expression of the form

If this representation contains n positive parameters u, t, I
shall denote F(x) by rn(x) if the origin is a regular point, and
by r*n(x) if it is a pole. This agrees with the notation of the func-
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tions R.(x) and R:(x): if these belong to {F}, they depend, by
(4.22), of exactly n positive parameters.
THEOREM 26. If a rational function rn(x) of the class {F}

satisfies the equalities
rn(xx) = ak (k = 1, 2, ..., n),

(4.38) holds for k = 2, 3, ... n, and we have identically
rn(x) = Rn(x).

PROOF. First let n = 2rrt. Since rn(x) satisfies (1.03) foi
k = 1, 2, ..., n, we can apply the preceding theorem, where

N = m, Tl  1, zN &#x3E; 0.

Hence (4.21) holds, and, by Theorem 24, the inequalities
(4.38) liold also. Moreover, by (3.43) and Theorem 18, we have

which proves the identity of r2m and R2m. If n = 2m + 1, we
have in the same way

which yields (4.21) and (4.38), whereas

which proves that r2m+1 and R2m+1 are identical.
THEOREM 27. Let a rational function r*n(x) of the class {F}

satisfy the equalities

Then (4.38) holds for k = 2, 3, ..., n, and r*n(x) ~ R*n(x).
PROOF. It is similar to the preceding one.
THEOREM 28. If problem (e) has a non-degenerate solution,

all values 0. and t9*, defined by
(4.40) an = ~nRn-1(xn) + ~*nR*n-1(xn), ~n + -0: = 1 (n = 2,3 ...),

for a definite value of n. According as e. = 0 or ~*n - 0, the
solution of the problem is R*n-1(x) or Rn-1(x).

PROOF. If the problem is solvable and non-degenerate, all
values P:(O), Q n (0) are positive, by Theorem 25. Hence all

values t9., ~*n are positive, by Theorem 24.
If the problem is degenerate, we have, for a definite value of n,
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In particular we have, by Theorem 25, P*n(0) = 0 if il  1,
and Qn(0) = 0 if r, = 1. Hence the solution of the problem can
be represented by rv(x) in the first case and by rv(x) in the second
one, where v has still to be determined. In both cases we have,
by Theorem 24,

hence, by Theorem 23,

Thus we can always write

Now by (4.03) we have

hence ~*n = 0 or 0. = 0 according as P*n(0) = 0 or Qn(o ) = 0.
In other words: the degenerate problem (e) has either a solution
r,((x) when ~*n = 0, or a solution r*v(x) when On = 0. In both
cases we have v  n, by Theorems 26 and 27, and, by the same
theorems, the solution is equal to Rv(x) resp. to R*v(x). On the
contrary, the equations a.-l = Rv(xn-1) resp. an-l = R*v(xn-1)
are incompatible, by Theorem 23, with 0  ~k  1 (k = 2, 3, ...,
n - 1 ) and v  n - 1. Hence v = n - 1, which proves the
theorem.

THEOREM 29. In order that problem (e) be degenerate it is

necessary and sufficient that

and either

or

for a definite number n &#x3E; 1. In the first case the solution of the

problem is Rn-1(x), while ~*n = 0; in the second case it is R*n-1 (x),
while ~n = o.
PROOF. By Theorem 28 the conditions are necessary; by

(4.31) and Theorems 23 and 24 they are sufficient.

From now on 1 shall leave degenerate problems out of con-
sideration; so henceforth a solution of problem (e ) will always be
supposed to be non-rational.
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§ 5. Existence of a Solution: sufficient Conditions.

In Theorem 28 the conditions

have been shown to be necessary for the existence of a solution
of problem (e). We shall now prove that these conditions are also
sufficient. So in this section it will always be supposed that (5.01)
holds; lvince (4.41) is also true for any n &#x3E; 1.

THEOREM 30. For any x &#x3E; 0 the séquences {R*n(x)}~n=1 and
{R*n(x)}~n=1 are monotonic and bounded; hence tlie limits

exist (for the présent only for x &#x3E; 0). Moreover we hâve

and

A solution F(x) of problem (e) satisfies tlie inequalities

hence any solution is included (in the wide sense) between R
and R* (for x &#x3E; 0).

PROOF. According to (5.01) and Theorem 24 the conditions
of Theorem 23 hold for any n. We thus have

hence the sequences {Rn(x)}~n=1 and {R*n(x)}~n=1 are monotonic and
bounded, which proves (5.02). In particular, when x is different
from xl, x2, ..., there is always one sequence increasing and tlie
other one decreasing.

Moreover, (5.03) holds by (4.31), and (5.04) by (4.33). Finally
(5.05) holds by (3.43), (3.52) and (4.29).
THEOREM 31. For all complex values of z, with the possible

exception of a set of values on the half line z  0, the functions
R(z) and R*(z) are holomorphie, while
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holds uniformly in any domain G(03B5, ), such as it has been defined
in Lemma 1.

PROOF. By Theorems 1 and 23, the functions Rn and R:
are uniformly bounded in any domain G(03B5, ). Hence the theorem
is an immediate consequence of (5.02) and of the Porter-Vitali
theorem.

By (5.03) the functions R and R* have the required value ax
when x = xk, for every k &#x3E; 1. Hence, if we show that Rand. R*
belong to {F}, we are sure that the conditions (5.01) are sufficient
for the existence of a solution of problem (e), since there will
be at least one solution indeed ( R and R* may be identical).
This will be done by means of Theorem 33. The real difficulty
of this theorem, however, is how to prove (5.16). The formula
(5.16) can be obtained in a very elegant way by means of a
theorem of Helly [1 ], which has also served to overcome a similar
difficulty in the theory of continued fractions 3). Yet, the theorem
of Helly is based on Zermelo’s axiom of choice, and the well-
known objections can be raised against it. For this reason 1 shall
proceed in another, though more complicated way.
THEOREM 32. Let x be the corresponding function of F, and

We then have

if we put

along the path of integration.
PROOF. By the theory of residues we have

for, if we shift the path of integration to the left, we only pass
the pôle 2=1 - t-1. Moreover we have, along the path of in-
tegration in (5.08),

3) See e.g. J. GROMMFR [1].
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and

if we put s = a + ir. Hence

where the value al is independent of t. By (5.09) we thus have

uniformly for 0 ~ t  1. By (5.07) we obtain

which yields (5.08).
LEMMA 2. If

we have

PROOF. The lemma is true when n = 1, so let ?i &#x3E; 1.

(a) Since ay ~ 1, 03B2v ~ 1 ( v = 1, 2, ... n ), we have 0 ~ 03B5 ~ 1.
When e = 0 or e = 1 the lemma is trivial. Hence we can take
0  03B5  1, which implies that at least one product 03B1v03B2v is different
from zero, and that A and B are positive.

(b) Putting

we have
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hence we may confine ourselves to the case oc,, = 03B2v ( v=1, 2,...n),
which implies A = B.

(c) Let the restrictions of (a) and (b) hold. Putting

we have

Now

would yield

so if the lemma were true for the set (03B1’1, ... an ), it would also

be true for the set (03B11, ... 03B1n). Hence we may confine ourselves
to the case A = 1.

(d) So now we can put

This yields

hence

which proves the lemma.

It can easily be shown that in the preceding lemma the equality

can hold only if e = n-2 (n = 1, 2, ...).
LEMMA 3. Let 99(u) be of limited variation in (0, 1). Let

and let the total variation of ç be limited by

We then have
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PROOF. Without loss of generality we may suppose that tlie
range 0, 1&#x3E; can so be divided into a finite number of subintervals
il, i2, ... in, that either ~ ~ 0 or ~ ~ 0 within each i,, while p
takes a different sign in every pair of consecutive intervals

iv, iv+1. For, as easily can be shown, any function 0(u) of limited
variation in 0, 1&#x3E; is the limit of a sequence of functions ~k(u)
with the property just mentioned.
Let w be the length of iv, and put

Hence (1..vfJ,,,  2s, by (5.11). Moreover we have 1 P,, = 1. Ob-
viously (1.." is equal to the maximum value of |~| in iv at the
utmost, and, since ~(0) = ç(1 ) = 0, the expression 203A303B1v is equal
to the total variation of ç in 0, 1&#x3E; at most, hence, by (5.12),

Now it follows from Lemma 2:

By (5.11) and (5.12) we have e ~ 1. Now put

where t9j and e2 are defined by

and where 99 is defined, in the remaining points of the segment
(0,1), by

This example shows that the coefficient 2 in (5.13) cannot
be replaced by a smaller one. For, the integral
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attains its maximum value

when ç is the function just mentioned, and here the expression
19,1 + ~22 - ~1 - ~2 is bounded and negative (hence equality is

only possible in (5.13) when e = 0). 1 leave out the proof which
is rather long.
Of course Lemma 3 can be given in a less restricted form, where

the total variation of p has an arbitrary positive value.
THEOREM 33. Let,E1c &#x3E; 0 for k = 1, 2, ..., and let 03BEk ~ 03BE &#x3E; 1 2

for k ~ oo. Let the functions Fn all belong to the class {F}, and
let the limits

exist for k = 1, 2, ... We then have

uniformly in any domain G(e, ) as defined in Lemma 1. The
limit F belongs to {F}, while the corresponding function
satisfies

(The theorem also holds when ek and e are arbitrary complex
numbers, different from the values z ~ 0, but we need not use
this generalization, which requires less elementary estimations
in part (a) of the proof).

PROOF.

(a) By Theorem 1, the functions Fn are uniformly bounded
within a given domain G(03B5, Lo). Moreover, if e  e, which can

always be supposed, the sequence {Fn(z)}~n=1 converges in an

infinite set of G. By the Porter-Vitali theorem (5.15) holds

uniformly in G.
(b) Putting

we have, by (2.04),

By the uniform convergence of the sequence {Fn(z)}~n=1 we have
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hence the limits

exist. According to the theory of the Hausdorff moment problem,
the sequences {cn(k)}~k=0 are completely monotonie, i.e. the

inequalities

hold for any N &#x3E; 0, k &#x3E; 0 and n &#x3E; 1. Hence, by (5.18), the
sequence {c(k)}~k=0 is also completely monotonie, which implies
that the moment problem

has a uniquely determined non-decreasing solution ~. Since

c"(0) = 1 for any n &#x3E; 1, we have also c(0) = 1 and x(1) = 1.
Now it follows from Theorem 4 and (5.18) that F(z) belongs
to the class {F}.

(c) The expression (5.07) is bounded in the half plane Q ~ 0,
since I c(s) 1 ~ c(03C3)  1; it is also holomorphic in the half plane
a &#x3E; 0. The same holds for the expressions cn(s). Moreover we can
prove

uniformly in any rectangle 0  Qo ~ Q ~ 03C31, |03C4| ~ 03C40. For, let

0  oc  1. Since the sequence {Fn(z)}~1 converges uniformly
on the line Re z = a, we can assign to any e &#x3E; 0 a N(s) such that

for n &#x3E; N and z = oc + iy. Hence, by (5.08) and (5.10)

which proves (5.19).
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(d) Now (5.16) remains to be proved. According to Burkill [1],
the transformation of Mellin can be applied to the integral (5.07),
which yields 

If we replace d~(u) in this formula by ud~(u), and next replace
s by s - 1, we obtain

Since

we have, by applying (5.20) and (5.21),

hence, by (5.17),

Now the integrand in the right hand member is holomorphic
for a &#x3E; 0, with the exception of the pole s = 1. Since c(s) - c"(s)
is bounded for a &#x3E; 0, this integrand is 0(a-2) as 1 r 1 ~ oo, uni-
formly in a strip 1  a  2. By a change of the path of integration
we thus get

The integral round about the point s = 1 can be evaluated,
which yields

According to (c) we have, for any e &#x3E; 0 and T &#x3E; 0,
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for

for E ~ 0, T -&#x3E; oo and 0  t  1. Putting T = 03B5-1 we thus
obtain

for 0  t  1 and n &#x3E; N(E, 03B5-1). Since the left hand member is
continuous for t = 0, (5.23) also holds for 0 ~ t ~ 1, which
yields

where A is a positive constant, and n &#x3E; N(03B5, 03B5-1). Now

while the total variation of x(t)-xn(t) in 0, 1&#x3E; is equal to 2
at the utmost. Hence, by Lemma 3,

so (5.16) is true.

Using the theorem of Helly, we would have obtained

for every t where X is continuous. It can easily be shown that this
result is equivalent to (5.16), but 1 prefer the latter statement
from the standpoint of intuistionistic mathematics.
THEOREM 34. The functions R and R*, defined by (5.02),

bclong to the class {F}.
PROOF. All functions Rn and Rn belong to {F}. Hence the

thcorem is right, by (5.02) and Theorem 33.
THEOREM 35. The conditions (5.01) are sufficient for the

existence of a solution of problem (e).
PROOF. By Theorem 34 the functions R and R* are solutions

of problem (e), hence there is at least one solution.
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§ 6. Questions of Uniqueness.

In this section it will always be supposed that problem (e) is
solvable, i.e. that (5.01) holds. If the solutions R and R* are
identical, the problem is determined, by (5.05); if not, the in-

determinacy of the problem is a tautology. Hence the question
whether a problem (e) is determined or not comes to the question
whether R(x) - R*(x) is identically zero.

1 begin by replacing the polynomials Pn, ... Q*n of § 3 by
other ones, which satisfy recurrence formulae that are somewhat
simpler. Let

for n &#x3E; 1, hence, by (4.41),

The first factor in the right hand member is positive, and
independent of e,,; hence iî,, &#x3E; 0. The converse also holds: to any
set {~n}~2 of positive values there is a corresponding set of values
~n that satisfy 0  ~n  1. Putting

we have, by (4.28),

Moreover, the recurrence formula

can be obtained from (4.04) ... (4.07) for any n &#x3E; 1. By (4.15)
we have

while (4.29) yields

hence
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By Theorem 31 we now have

for all values of z, except the values z ~ 0.
LEMMA 4. Let A1 = B1 = 1;let an &#x3E; 0, bn &#x3E; 0 for n=2, 3,...;

let

We then have

(A confusion with the values an = F(xn) might be excluded).
PROOF. The lemma is true for n = 1. Assuming the lemma

holds for n - 1, we have

LEMMA 5. Let the assumptions of the former lemma hold; let

We then have AnBn ~ oo as n - oo.
PROOF. According to Lemma 4 we have

hence AnBn increases indefinitely as n ~ oo.
THEOREM 36. If the series

diverges, problem (e) is determined.

PROOF. According to our assumption, at least one of the series
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is divergent, hence

for a given positive value of x. Putting

we have, by Lemma 5,

Moreover, if n - oo, the product

tends to a finite limit, which is either zero or different from zero.
In both cases the right hand member in (6.08) will be zero for
z = x &#x3E; 0.
THEOREM 37. If

the problem (e) is determined.

PROOF. Since

(6.10) implies the series (6.09) to be divergent.

Since problem (e) is determined if (6.10) holds, it will so much
the more be determined if

This is a special case of a well-known result of Hausdorff and
Feller, which has already been mentioned in the introduction.
LEMMA 6. Let Ai = BI = 1; let an and bn be arbitrary com-

plex numbers; let

for n = 2, 3, ... We then have

PROOF. If -rt = 1 the lemma is true. Assuming the lemma is
true for n-1, we have
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and similarly for 1 Bn|.
LEMMA 7. Let the assumptions of the former lemma hold. We

then have

for m ~ n ~ 1.
PROOF. If m = n the lemma holds; suppose it holds for

(m - 1, n), where m - 1 ~ n. According to the former lemma
we have

and similarly for | Bm-Bn|.
THEOREM 38. If thé series (6.09) converges, the sequences

{~n(z)}~n=1,... {03C8*n(z)}~n=1 are uniformly convergent within any
circle |z| ~ . The limits

are entire transcendental functions of z.

PROOF. Putting

we have, by Lemma 7,

where m &#x3E; n. For |z| ~  the first factor in the right hand mem-
ber of thèse inequalities is uniformly bounded, since

For the same reason the second factor tends to zero as n - oo,
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which proves the uniform convergence of the sequences {~n}
and {~*n}. Hence ç and 99* are entire functions. The statements
concerning {03C8n} and (yll) can be obtained in the same way.
By (6.05) the functions 99(x), ..., 03C8*(x) are increasing more

rapidly than any polynomial of arbitrarily given degree, when
x - cc; hence these functions are transcendental.

THEOREM 39. If the series (6.09) converges, the functions R
and R* are meromorphic and not identical.
PROOF. If the series (6.09) is convergent, we have, by Theo-

rems 31 and 38,

for all z except the values z ~ 0. By analytic continuation (6.12)
holds for any z, so R and R* must be meromorphic. Moreover
we have, by (6.08),

Since

the product

is not identically zero, hence R and R* are not identical.

Summarizing the results of Theorems 36 and 39 we can now say:
THEOREM 40. In order that problem (e) be determined, a

necessary and sufficient condition is

Some remarks on the indeterminate case may be inserted here.
Evidently there is no criterion which, analogous to Theorem

37, only depends on the values xn, and which implies the indeter-
minacy of problem (e). For, whatever the values xn may be,
we can always take
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which implies a determined problem, according to Theorem 40.
By Theorem 40 it is also evident that both the determined and

the indeterminate case of problem (e) can occur. Hence, if we

change our problem by requiring that solutions only have to be
completely monotonie, and thus leave the condition (1.05) out,
this new problem can still more be indeterminate. I do not know
whether nn example of this case is known, but at any rate an

explicit example of an indeterminate problem (e) will be given
in the next section.

THEOREM 41. The zeros of ~(z),... 03C8*(z) are simple and

negative. The zeros of ~, as well as those of 1p*, are separated both
by the zeros of ~* and by those of y, and conversely. Compared
to 99 and y*, the functions ç* and y have the zeros with the least
absolute values. The funetions 99, ... 03C8* are of genus zero.

PROOF. By (6.03) the zeros of ~n,...03C8*n coincide with those
of Pn, ... Q*n; they will be denoted as in Theorem 22. According
to the proof of this theorem we have

Hence the limits

exist; they are all real and ~ 0. Moreover it is evident, by (6.14),
that the values 03B1i,... pi and the eluster points of the sets

{03B1n,i},... {03B2*n,i} are identical. Hence, by a well-known theorem
of Hurwitz [1 ], the values az, ... f3: coincide with all zeros of
~,...~*.
Next we have, by (4.23) and (6.15),

Now, by (6.12) and (6.13),

and since the right hand member is different from zero for z ~ 0,
the expressions ~*(z)03C8(z) and zgg(z)y*(z) cannot be zero at the
same time when z ~ 0. Hence (6.16) implies

which proves that the zeros of lp, ... y* are simple. Moreover
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(6.18) proves that the statements about the separation of the zeros
hold, and that ~* and y have the zeros with the least absolute
value. Putting z = 0 we have, by (6.17),

hence ai  0 and 03B21  0, hence all zeros of ~,... y* are negative.
We still have to discuss the genus of ~, ... 03C8*. Take x &#x3E; 0.

By (6.14) we have |03B1n,i1 &#x3E; 1 oc.,,,i 1, hence

which implies that the product

is an increasing function both of n and j. Since

we thus obtain

where the infinite product in the right hand member is convergent.
Ilence

and the funetioii p must be of gepus zero. For similar reasons y,
~* and 1p* are of genus zero.

We thus have, for any finite value of z,

where, by (6.04) and (6.05),

An indeterminate problem (e) remains indeterminate, if one of
the conditions F(x.) = a,. is left out. This leads to the question
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what becomes of an indeterminate problem, if a condition F(03BE)=03B1,
where e is positive and different from all values xn, is added. 1

begin with
LEMMA 8. Let the polynomials 03A6n(x), 03A6*n(x), t?n(x) and 03A8*n(x)

satisfy 

and

for n &#x3E; 1, where and it,, are arbitrary positive values. We then
liave :

(a) the zeros of these polynomials are simple and negative;
( b ) the zeros Of On as well as those of tp: are separated both

by the zeros of l/J: and by those of 03A8n; conversely, the zeros of
0* and 03A8n are separated by those of 03A6n and tp:; compared to
the zeros of 0, and tp:, the polynomials 03A6*n and 1J1 n have the
zeros with the leàst absolute values.

PROOF. The proof is nearly the same as that of Theorems 22,
which is only a particular case of the présent lemma.
THEOREM 42. Let the condition F(03BE) - a be added to an

indeterminate probleiii of type (e), where e is positive and diffe-
rent from ail values xn. If oc is included (in the strict sense)
between R(03BE) and R*(03BE), the new problem will still be indeter-

minate. If oc is equal to R(03BE) or to R*(03BE), the new problem has a
unique solution R(x) resp. R*(x).
PROOF. Since a is included in the strict sense between R(1)

and R*(03BE), it will still more be included between Rn(03BE) and
R*n(03BE), by Theorem 30. Hence the value

must be finite and positive. Now we can introduce a set of poly-
nomials ~n(x), ... 03C8*n(x) by putting

By (4.31) and (6.07) we have

while, by (6.21),
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Hence, if we put

the functions R n and R*n take the values required for the argu-
ments xl, ... x. and e. By (6.22) and Lemma 8 these functions
belong to the class {F}. Now, if n ~ ~, C n tends to a positive
value C, since both ,the numerator and the denominator in (6.21 )
tend to finite values different from zero. Thus the limits

exist for all values of z. Putting

we have R,. (x) --* R(x), R*n(x) ~ R*(x) for any x &#x3E; 0 and

n - co. Hence, by Theorem 33, Rand R* belong to {F}. The
functions R and R* are solutions of the original problem (e);
by (6.23) they also satisfy the condition

Finally, R and R* cannot be identical, which is immediately
evident by (6.06) and (6.22). Hence the first part of the theorem
is true.

As to the second part, we may suppose 03B1 = R(03BE) and x2l  03BE x2l+1
in order to fix the ideas; the other cases can be treated in the same

way. Now, if we add the condition F(03BE) = a, the problem
remains solvable, since F = R is a solution. By Theorem 30 any
solution of the new problem will be included (in the wide sense)
between two such solutions R(x) and R*(x), whether these be
identical or not. Hence, by Theorem 30,

Now R and R* are solutions of the original problem too. Hence

which yields
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Since R, Rand R* are holomorphic for x &#x3E; 0, these functions
are identical, which proves the statement.

Theorem 42 contains a slight improvement of Theorem 30. For
we now have:

THEOREM 43. Any solution F(x) of an indeterminate problem
of type (e), which is not identical with R or R*, is included (in
the strict sense) between R(x) and R*(x), for any positive x
different from the values x,,.

The results of Theorem 42 can be extended without difficulty
to the case where a finite number of conditions F(03BEv) = oc,, (v=1,
2, ... N) is added. Yet, the fact that there are special cases,

where an indeterminate problem becomes determined if a single
condition is added, only leaves room for generalizations of l’heorem
42 that are rather culnbrous. Perhaps it is useful to introduce a
notion here which seems to be new. If a determined problem of
type (e) can be made indeterminate by leaving out a certain set
of N conditions F(xv) = av ( v = vl, V2, ... vN), but not by leaving
out less than N conditions, the number N will be called the degree
of deliniteness of the problem.
THEOREM 44. Let a problem of degree 1 become indeterminate

when the condition F(x03BC) = 03B103BC is left out. The problem will

also become indeterminate when any condition F(xv) = av is

left out.

PROOF. In what follows any problem of type (e) will be

denoted by P(x), where (x) is the set of the values x for which
F(x) is given. Moreover, it will always be supposed that the
sequence {xn}~1 belongs to (x); for the sake of concision the xn
will be dropped in the notation. Thus, in the case of P(03BE1, 03BE2)
the values of F will be prescribed for x = xl, X2, ... 9 eli, e2e
whereas in the case of P these values are given for x = x1, x2, ...
only. It will also be supposed that the arguments xi, x2, ..., 

el’ .. are all different and positive. Finally we shall put
F(03BEi) = 03B1i whenever the value F(03BEi) is given.
Now let P(el, 03BE2) be determined, and let P(03BE1) be indeterminate.

In order to prove the theorem it will suffice to show that P(03BE2)
is indeterminate. Since P(03BE1) is indeterminate, P will be still

more so. Hence all solutions of P will be included (in the wide
sense) between two non-identical solutions R(x) and R*(x) of
P, and in the same way all solutioiis of P(03BE1) are included between
R(x) and R*(x). According to Theorem 42, 03B11 must be included
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in the strict sense between R(03BE1) and R*(03BE1). Hence R and R*
cannot be identical with R and R*, so it follows from Theorem
43 that R(03BE2) and R*(03BE2) are included in the strict sense between
R(03BE2) and R*(03BE2). Now P($1, 03BE2) is determined, while P(03BE1) is

indeterminate; hence, by Theorem 42, OC2 must be equal either
to R(03BE2) or to R*(03BE2), so a2 is also included in the strict sense

between R(03BE2) and R*(03BE2). Now P(03BE2) must be indeterminate,
again by Theorem 42, since P is indeterminate.
THEOREM 45. A problem of degree N becomes indeterminate

if N arbitrarily chosen conditions F(xv) = av are left out.
PROOF. According to the former theorem the statement is

true when N = 1; let it hold for any degree  N. Using our
previous notation, we can suppose, without loss of generality,
that P(03BE1, ... 03BE2N) is of degree N, and that P(03BE1, ... eN) is in-

determinate.
Let 1  k  N. According to our assumptions and to the defi-

nition of degree, P(03BE1, ..., eN, 03BEN+k+1,..., 03BE2N) is of degree
N - k, hence P(03BE1,..., eke 03BEN+k+1,..., 03BE2N) is indeterminate

(according to our hypothesis). Hence it remains to show that

P(03BEN+1, ..., E2N) is indeterminate.

Now P(03BE1,... e2N-1) is of degree N --- 1 (according to the
definition of degree), hence P(03BE1, 03BEN+1, ... 03BE2N-1) is indeterminate
(according to our hypothesis), while P(03BE1, eN+11 ... 03BE2N) is deter-
mined (according to the definition of degree), hence P(03BEN+1,... 03BE2N)
is indeterminate (according to Theorem 44).

Now it is natural to extend the notion of degree of definiteness
to all problems of type (e). According to this generalized notion
of degree, indeterminate problems are of zero degree, while
determined problems are either of (finite) positive or of infinite
degree. An introduction of negative degrees is not to the purpose,
since a further classification of the indeterminate problems of
type (e) seems to be impossible. Any indeterminate problem can
be made determined by the addition of an arbitrary number,
or even of an infinite number, of appropriate conditions F(03BEk) = 03B1k,
which is immediately evident by Theorem 42.

In the case of a positive degree N, the number N -- 1 can be
interpreted, according to Theorem 45, as the number of super-
fluous equations of the system F(xn ) = an (n = 1, 2, ... ), which
determines F. One might connect the notion of degree with the
theory of infinite matrices, but this would give rise to questions
that are beyond the scope of this paper.
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THEOREM 46. The solution of a problem of type (e) of finite
positive degree is meromorphic. 
PROOF. Let N be the degree of the problem considered. First

leave N - 1 conditions F(xn) - an out. By Theorem 45, this

gives rise to a determined problem of unity degree, which has
tlie saine solution F as the original problem. Now this new problem
becomes indeterminate if one more condition is left out. This can

only liappen, by Theorem 42, if F is equal to one of the functions
li or R* that correspond to the final indeterminate problem. Since
thé latter are meromorphic., F must be meromorphic too.

Some questions concerning the notion of infinite degree must
still be viewed here.

ÏHEOREM 47. If a problem of type (e ) is of infinité degree, a
denumbrable set of conditions

can be left out, and still the problem remains determined.
PROOF. Lct, in the original problem P, {xn}~1 be the sequence

of abscissae x for which the values F(xn) = an are given. Since
1’ is supposed to be determined, the inequality

will hold for any 03B5 &#x3E; 0, x ~ 1 and n 2 N(03B5), if N(e) is an appro-
priate fumction of e. I’ut e = 2-1 and il = N(2-1) ;- 1, and leave
tlie condition F(xi1) - ail out, which gives rise to a new problem
Pl. Instead of the séquences {Rn}~1 and {R*n}~1 of functions that
limit the solution of P, there will be two other sequences {Rn,1}~1
and {R*n,1}~1 that correspond to P1. Evidently we have

According to our assumption, Pl is determined. Hence the

inequality

will hold for 03B5 &#x3E; 0, x ~ 1 and n ~ N1(03B5). if N1(03B5) is appropriately
chosen. Put 03B5 = 2-2 and i2 = N1(2-2) + 1, and leave the con-
dition F(Xi ) == ai out. This gives rise to a problem P2 with the
corresponding sequences {Rn,2}~1 and {R*n,2}~1. We now have
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This process can be carried on. After having left out k con-
ditions

where v = 1, 2, ... k and

we obtain a problem Pk with the corresponding sequences

{Rn,k}~n=1 and {R*n,k}~n=1, which satisfy

Let P. be the problem that comes into being if we leave out
the denumbrable set of conditions (6.24), where now v = 1, 2, ...
Evidently the solutions of P. are included between the elements
of equal order of the sequences {Rn}~1, {R*n}~1, where

for k = 1, 2, .... Hence P~ is determined, which proves the
theorem.

Next, the question must be put what becomes of a problem of
infinite degree, when a denumbrable set of conditions F(xn) = an
is left out. The degree of the new problem may be zero, positive
or infinite again. Evidently two cases can be distinguished here:
either a problem of infinite degree may be transformed into
another problem of positive degree by leaving out an appropriate
denumbrable set of conditions, or this may be impossible. The
problems of the first kind will be said to belong to the class A,
while those of the second kind will belong to the class B. Neither
of these two classes is empty; for, all problems that have a non-
meromorpliic solution belong to B, according to Theorem 46,
whereas the problems that arise from an indeterminate problem
by the addition of the conditions R(03BEv) = ot,, resp. R*(03BEv) = ce,,
where v = 1, 2, ..., all belong to the class A. One might conjec-
ture that the set of problems of infinitive degree, which have a
meromorphic solution, is identical with the class A. However, I
have not as yet solved this very interesting question.

It has already been said in the introduction that completely
monotonie functions can be represented by Newton series. If
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holds, any function f, which is completely monotonie in (x0, oo ),
wliere xo  xl, and wlieh satisfies the conditions f(xn) = a n
(n = 1, 2, ... ), can be represented by the expression

where the divided differemces [al, ... an] are defined by

Since the functions F are completely monotonie, (6.25) will

also represent F(x) if (1.04) holds, which implies that we have
to do with a determined case of problem (e). The question can
be put what becomes of the series (6.25) if we give up the con-
dition (1.04). An answer is given by
THEOREM 48. Let the problem F(xn) = an (n = 1, 2, ...)

bc solvable. The series

will then be convergent in the half plane Re z &#x3E; 0. In order

that the series represents a function of the class {F} it is necessary
and sufficient that (1.04) hold (in which case the series represents
tlie unique solution F).

PROOF. Let

be, a solution of the problem considered. We can exclude the
case where F is a constant; hence there will be at least one value
of t, different from zero, where X increases. For convenience put

Moreover, let

Now we obtain from (1.05) and (6.26), by induction,

hence we have, by (6.28),
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and here the integral in the right hand member converges in any
domain G(03B5, o) as n ~ oo, as can be easily seen (for the definition
of G see Lemma 1).
Now we must distinguish between the case where

diverges and the case where this series is convergent.
(a) If (6.30) diverges, the product

is divergent as n -&#x3E; oo, when Re z  0. When Re z &#x3E; 0, this

product converges and is equal to zero, hence

The series (6.27) is then convergent and, by (6.28), it represents
the unique solution F.

(b) If (6.30) is convergent, we have

for any z, if we exclude the values z  0 (since (6.30) holds in
any domain G). By (6.28), the series (6.27) will be convergent
again, even in any domain G. Yet, as e(z) cannot be identically
zero now, the series (6.27) cannot represent the solution F.

Now F(z) might be any solution of problem (e), hence (6.27)
represents no solution whatever of this problem.

We can replace (6.28) by

Since the Newton series is everywhere convergent in case (b),
the singularities of F and e on the half line z ~ 0 must neutralize
each other in the right hand member.
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§ 7. Applications.

In this section different questions will be treated that are in
some way connected with our subject. 1 begin by giving some
examples of functions that belong to {F}.

If 0  oc  1, the function z-’ provides such an example. For
we have; when lz-11 |  1,

while

hence, by Theorem 4,

Evidently this is a special case of well-known formulae in the
theory of the Gamma-function. Integrating (7.01) we obtain

where

Hence the function (7.02) also belongs to {F}. According to
Theorem 4 it can be expand°d in a series

valid for 1 z - 1 |  1. Hence we have

or

which yields
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Since the values c, are moments of Hausdorff, the sequence
{ck}~0 must be completely monotonie.

Taking x =- 1 we obtain from (7.01)

hence

where 0  t ~ 1 and where the square root in the left hand

member is to be taken positive when z &#x3E; 0. This being so, the
integral 

can be written in the form

where

Hence Fi belongs to {F} since Fi(1) = 1. A more elegant way
to obtain this result is as follows. If 1 z - 1 |  1, F1 can be
expressed by a Taylor series

where

Now we have

so the sequence {ck}~0 is a set of moments of Hausdorff. The
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same must hold for the sequence {ck}~0, hence FI belongs to {F}
by Theorem 4.

According to Theorem 40, a problem of type (e) will be deter-
mined if and only if

where

The case A. = 1 (n = 2, 3, ...) is easy. By (6.05) we have

hence, by (6.04),

which yields

and

so the functions Rn and Rz can be expressed by the formulae
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By (7.04) the problem will be determined if and only if

In this case we obviously have

On the other hand we have in the indeterminate case, by (7.06),

and these solutions can also be characterized by

Now let us consider the particular case

which corresponds to an indeterminate problem. Putting

where s &#x3E; 0 will be taken when z &#x3E; 0, we obtain

hence
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or

It is immediately evident, by the last formulae, that R (z ) and
R*(z) are meromorphic functions. R is holomorphic in the origin,
whereas R* has a pole of the first order there with a residue
6n-2. The other poles of R and R* are identical with the zeros
of the functions

According to Theorem 34 these must be simple and negative.
By (7.07), thèse zeros correspond to the roots of the equations

and, in order to compute the first, we thus can put s = (1 + i),
where e &#x3E; 0, which yields

If the increasing sequences of the positive roots of the equations
(7.08) are denoted by {n}~1 and {*n}~1, we evidently have

as n - oo. Of course more accurate asymptotic formulae can be
given.

If Fl, F2 belong to {F}, other functions with the same property
can be obtained by a transformation. Some of these transfor-
mations are trivial, e.g.:

Less trivial is

THEOREM 49. Let F, belong to {F}. Let

Then F belongs to {F}.
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PROOF. Let

Putting

which proves the theorem.
THEOREM 50. Let

When Fi belongs to {F}, the same will hold for F.
PROOF. First let F1(z) be a rational function, which, if represen-

ted by (4.39), contains n positive parameters. According to the
symbolism of § 4, F1 can be denoted either by rn(z), when F1 is
regular in the origin, or by r*n(z), when the origin is a pole. Let
{xk}n1 be an increasing sequence of arbitrary positive values;
put F1(xk) = ak (k = 1, 2, ...n). According to Theorems 26
and 27 the function Fi will then be identical with R.(z) resp.
with R*n(z).
By (7.10) we thus obtain the expressions

for F; it must be shown that these belong to {F}. Let us consider
the expressions

which have the following properties.
(a) pn, ... qn are polynomials of z, which are positive for

z = 0. This is an immediate consequence of Theorem 22(a) and(b).
(b) The degrees of pn, ... qn are equal to those of Pn, ... Q/J,

since Pn(0), ... Q*n(0) are positive and since

(c) The zeros of pn,...q*n are simple and negative, since these
are the reciprocals of the zeros of Pn, ... Q*n (in another arran-
gement ).
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(d) The zeros of Pn as well as those of q*n are separated both
by the zeros of pn and qn, and conversely. Compared to p. and
q*n, the polynomials p* and qn have the zeros with the least ab-
solute values. For, by Theorem 22(b) and (d), the following
couples of polynomials have zeros that separate one another:

In each of these cases the polynomial that has the zero with the
greatest absolute value has been underlined. We thus have, by
(7.11), the following set of corresponding couples whose zeros
separate one another:

where the underlined polynomials now have the zero with the least
absolute value, which proves the statement (d).

This being so, the expressions

must belong to {F}, for similar reasons as have been used in the
proof of Theorem 23(c). Hence the theorem is true when F1 is
rational.

In order to prove the theorem when Fi is non-rational, we can
take Xn = n and a n = F1 (n ). The corresponding problem (e) will
be solvable, since it has the solution Fi. Moreover it is deter-

mined, since

Hence we have at any rate

for z &#x3E; 0. Let

As it has just been shown, Sn(Z) belongs to {F} for any n.
Moreover, by (7.10) and (7.12), the limit
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exists for z &#x3E; 0. Hence F belongs to {F}, by Theorem 33.

The function

belongs to {F}. Hence

also belongs to {F}, in accordance with (7.02).

By Theorems 49 and 50 we also have the transformation

which provides other couples of functions belonging to {F}.
For the rest, (7.13) is substantially equivalent to a theorem of
Kaluza [1]. Now F can be expanded, by Theorem 4, in a Taylor
series

valid for 1 z - 1 |  1. Hence we have, by (1.13), (2.06) a.nd
(7.13),

Putting

we thus have, by (2.06),

Hence the sequence {An}~1 is a set of moments of Hausdorff,
which implies that it is completely monotonic.
As an example, we can take for FI the elliptic integral (7.03),

which belongs to {F}. Ilence, if we replace z in (7.14) by 1 - z,
we get the development

where the sequence of coefficients A fi must be completely mono-
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tonic. This is a generalization of a result of van Veen [1], who
proved that these coefficients are positive and decreasing.

If, in (7.10), we requirc F = F1, we obtain the functional
equation

(7.15) F(z)F(z-1) - 1,
which is satisfied by

It would be interesting to know whether there are other solu-
tions F of (7.15), but as yet 1 have not solved this problem.

No use has been made, in the preceding investigation, of con-
tinued fractions. Of course we could have done so, since the

expressions Rn(z) and R*n(z) are approximants of odd resp. of

even order of ’the continued fraction

whieh is an immediate consequence of (6.04), (6.05) and (6.07).
If the corresponding problem (e) has a unique solution F, (7.16)
obviously converges for any z, different from the values z ~ 0;
there will also be convergence within the open intervals of the
half line z ~ 0, where F is holomorphic.
When the corresponding problem (e) is indeterminate, (7.16)

diverges, except for the values z = xn (n = 1, 2, ... ). However,
by contraction of (7.16) we can obtain the continued fractions

which have the sequences of approximants {Rn(z)}~n=1 and

{R*n(z)}~n=1 respectively, and thus converge for every z, the poles
of R resp. of R* excepted. Evidently (7.17) and (7.18) will

diverge, as a rule, for ait values z ~ 0 when the problem (c) is
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determined. These continued fractions can also be obtained

as an immediate consequence of the recurrence formulae

which in their turn follow from (6.05). Properly speaking, (7.17)
and (7.18) are only another way of writing the system (7.19).

Conversely, for any increasing sequence {xn}~1, where xl = 1
and xn ~ oo as n ~ ~, and for any positive sequence {~n}~2, the
continued fractions (7.17) and (7.18) represent a function F,
and so does (7.16) if it is convergent. Since there are always
determined problems (e) that have an arbitrarily given function
F as a unique solution, the following theorem holds:
THEOREM 51. Any function F(z) can be represented for any

z, save perhaps for the values z ~ 0, and even in an infinity of
ways, by continued fractions of the types (7.16), ... (7.18).

If F(z) is given along a line Re z = oc (0  oc  1), we can state
an explicit formula for Z, thus solving the problem of the inver-
sion of (1.05) in a stricter sense than it had be done in Theorem 8
and (2.17). For, combining (5.08) and (5.20) we have

for 0  t  1. 1 have not succeeded in finding an expression for
x that contained only one integration.

Next, some remarks concerning the limit

may be added. Apart from the trivial case F(x) ~ 1 we evidently
have 0  u  1, and any value u contained in 0, 1) actually
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occurs. Besides, all solutions F of a problem of type (e) have the
same limit value u, since

For any value of u there are corresponding problems (e) that
are determined. On the other hand, we have shown by an example
that an indeterminate problem can correspond to u = 0. Now
it is clear by the transformation

that at least one indeterminate problem (e) corresponds to any
given u. Hence the question whether a problem of type (e) has
a unique solution, has nothing to do with the value of u.
While stating problem (e) in the beginning of this paper, we

have used the sequences {xn}~1 and {an}~1. Now it is possible,
by the transformations (6.02) and (7.05), to express the same
problem in terms of the sequences {xn}~1 and {03BBn}~2, and we
can ask what becomes of the condition u = 0 in this new for-
mulation. The answer is contained in the following theorem:
THEOREM 52. Let

In order that a problem of type (e) be determined, it is necessary
and sufficient that

In order that its solutions tend to zero as x ~ ~, it is necessary
and sufficient that

PROOF. Evidently tlie first statement is only a transcription
of (7.04). In order to prove the second part of the theorem, we
need an expression for the limits Un and u*n defined by (4.35).
By (4.22) we have

so wte can confine our attention to the limits U2m+l and u2 . Let
.. 03C8*n be the coefficients of the highest powers of x in

~n(x), ... 03C8*n(x). By (4.22) and (6.05) we obtain the equations
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Hence, by (6.07),

Siiice all values in thèse formulae are positive, we have

u2m-1 &#x3E; u*2m &#x3E; U2-+l (m = 1, 2, ...),
whereas it is obvious that

Using the notations (7.05) and (7.22), we have, by (7.24),

hence, by (6.04),

By (7.05), (7.22), (7.25) and (7.27) we have

or

since ul = 1. Now, by (7.26) and (7.28), the condition u = 0
and the statement (7.23) are obviously equivalent.
THEOREM 53. In order that a function F admits an asymptotic

expansion 
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valid in any domain ) arg z | ~ ~  03C0 as |z| 1 ~ ~, it is necessary
and sufficient that

and

PROOF. First let the moineiits (7.30) be finite, and (7.31) hold.
Since

vve liave

hence

Now, in any domain | arg z | ~ ~  03C0 either Im z ~ ~ or

Re z ~ oo as |z| - oo; hencc the intégral in the right hand
member is smaller than

where k only dépends on ~. By (7.30) tlie expression (7.34) is

finite; it tends to zero as |z| ~ co, and thus our conditions are
sufficient. 

Conversely, let (7.29) hold. It will suffice to suppose that (7.29)
is valid if z tends to infinity along the half line r &#x3E; 0. First we

have, by (7.32),
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Now, for x &#x3E; 1 and for any E &#x3E; 0,

Since both integrals in the right hand member can be made
arbitrarily small by an appropriate choice of a and x, the left
hand integral tends to zero as x ~ oo. Hence do = X( + 0 ). Next
we have, by (7.29),

Since the integrand is positive we get, for any E &#x3E; 0,

hence, as E ~ 0,

and by (7.35)

Since the limit in the right hand member is non-negative, we
obtain

Now, let do, dl, ... d n be expressed by (7.31). Hence (7.33)
holds, and consequemtly we have

or
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Since the integrands in the right hand member is positive, we
get, for any e &#x3E; 0,

hence, as E ~ 0,

and by (7.36)

Since the limit in the right hand meniber is non-négative, we get

Hence the conditions (7.30) and (7.31) are necessary.

Evidently one part of Theorem 53, where the conditions are
said to be sufficient, is a transcription of a result of Stieltjes 4).
As to the other part, this is closely related to a theorem of Ham-
burger 6) and R. Nevanlinna [2], if and only if

for else the transformation (1.08) does not apply to F.
From (7.29) we obtain, by the transformation (1.08), the

asymptotic development of Stieltjes

where the moments c. are finite:

THEOREM 54. Let {03BEi}~1 be an increasing séquence. Let 03BE1 = 1
and e, -&#x3E; oo as i ~ 00. Furthermore, let

4) STIELTJES [1 ], pp. 436, 498.
5) HAMBURGER [1], p. 268
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There are functions F that satisfy

PROOF. The proof is based on the construction of a problem
of type (e), which is characterized by two sequences {xn}~1 and
{an}~1, defined for the purpose; so in particular we must put
xl = al = 1. The functions Rn(x) and Rn(x) will have the same
meaning as before, while an will be included, in the strict sense
and for any n &#x3E; 1, between Rn-1(xn) and R*n-1(xn). Thus Rn
and Rn belong to F fôr any n, and our’ problem (e) is solvable.

In order to avoid the necessity of distinguishing at every turn
even and odd values of n, 1 shall write (Rn, Rn) instead of
(Rn, R*n), where Rn(x) is the function of the couple (Rn, R*n) that
tends to zero, while Rn(x) is the one that tends to a positive value
as x ~ co. If we have, for a certain value of n,

our theorem is obviously true. Henceforth this case will be ex-
cluded.

Next, an increasing sequence {j(n)}~n=1 of indices will be defined,
where j(1) = 1, while we shall take xn = 03BEj(n). Hence Xi - 1,
whereas the sequence {xn}~1 is increasing, and xn ~ oo as n - 00,
as it is required. Moreover the following conditions, where n &#x3E; 1,
can be fulfilled:

Evidently (7.37) can be satisfied if n = 2. For, if we assign
to x2 and ~2 any provisional values (provided X2 &#x3E; 1 and

0  ~2  1). and if we put, as before,

there can only- be a finite set of values cc, such that 03B1i &#x3E; R*2(03BEi) =
R2(03BEi). Now, by Theorem 23(d), R2 is an increasing function of
a2, and hence of t92. Thus by an appropriate choice of e2 (while
x2 remains fixed, though arbitrary), the inequalities

will hold. On the other hand, there must be an infinite set of
indices i such that (1..i &#x3E; R*1(03BEi), according to the assumption just
made. Hence 02 can so be chosen that (7.38) holds, while at the
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same, time there is an index i = j(2) among the latter set that
satisfies

Since 03BEj(2) = X2 we have R2(03BEj(2)) = a2, so our statement is true.
Now let (7.37) hold for an arbitrary value of n. The argument

is the same as in the case n = 2. For any provisional couple of
values (Xn+1’ ~n+1) thcre is a f inite set of indices i &#x3E; j(n) such
that ai &#x3E; Rn+1(03BEi), whereas therc is an infinite set of these in-
dices such that ai &#x3E; Rn(03BEi). Hence, by an appropriate choice
of -Dn+1 (while xn+1 remains constant, though it still has an ar-

bitrary value &#x3E; xn), we can obtain oej  Rn+1(03BEi) for all i &#x3E; j(n),
whereas there is a particular index 1 = j(n + 1) such that

Rn(03BEi)  xi  Rn+1{03BEi)  2ai. In this way (7.37) can be satisfied
for n + 1, and hence for any value of n.

By (7.37) we have a,  R{03BEi) for 1  i  j(n) (since R is
included in thè strict sensé between Rn and Rn), i.e. we have

ai  R(03BEi) for any value of i. Now R(x) tends to zero as x - oo,
since ai - 0 as i ~ oo, hence tlie thcorem is true.

It was the aim of this paper to get some information about

completely monotonic functions that decrease arbitrarily slow
as x -&#x3E; oo. The resmlts, as scen from this point of view, are rather
scanty, and no doubt much work on this subject remains to
bc done.
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