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Existence and equivalence of finite binary
projective groups1)

by

W. Peremans

§ 1. Introduction.

In another paper 2 ) the author has treated the finite binary
projective groups over an arbitrary commutative basic field.

There, however, extensions of the basic field, if they were neces-
sary for an easy treatment, were assumed to be performed. In
this paper we discuss some problems concerning these groups
without this assumption.

First of all we discuss the existence of different types of groups.
In B.P. we have set up a list of all possible finite subgroups of
the binary projective group 3). Moreover we have proved there,
that, besides some obvious restrictions concerning the characteris-
tic of the basic field, the existence of all those possible groups
can be established by a suitable extension of the basic field. We
shall investigate now, which groups exist over a given com-
mutative field without extension. This discussion constitutes

part I of this paper. The problem causes difficulties only in the
case of the tetrahedral, octahedral and icosahedral groups. Apart
from the lowest values (2, 3 and 5) of the field characteristic, the
condition for the existence of these 3 groups is, that the field
must be a splitting field of the quaternions, which means that the
equation x2 + y2 + z2 = 0 must have a non-trivial solution in
the field. (Moreover, in the case of the icosahedral group, 5 must
be a square.) This condition will be considered somewhat more in
detail, especially in the case, when the basic field is an algebraic
number field.
Another question, which may be posed is, whether two groups

of the same type may be transformed into one another by linear

1) Part 1 of this paper contains results of the last section of the author’s thesis,
part II is new.

2) Finite binary projective groups, Comp. Math. 9, 97-129 ; in the following
we shall refer to this paper with B.P.

3) This list will be reproduced in § 2 of this paper.
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transformation. We may express this question alsa by asking
whether two such groups are conjugate in the whole projective
group, or wliether they are équivalent in the sense of represen-
tation theory. In B.P. the method, by which this problem was
treated, consisted in transforming generators of the group under
discussion into some canonical form. This canonical form and the
transformations which leaded to it, were permitted to belong to
the projective group over an extension of the basic field. In part II
of this paper tlis extension will not be allowed. The results about
thé existence show us already, that a fixed canonical form,
independent of the choice of the basic field, cannot be expected
in all cases, because there exist splitting fields of the quaternions,
which have only the field of rational numbers in common, which
is not a splitting field of the quaternions. So we must try to trans-
form directly one group into another. The resulting conditions,
under which all groups are conjugate, are simple in most of the
cases. Ooly for the dihedral groups they are rather involved.

§ 2. Some results of B.P.

Throughout the whole paper K denotes the basic field and p
its characteristic. The following finite binary projective groups
are possible:
Groups without parabolic elements:
A. Cyclic groups of order N.
B. I)ihedral groups of order 2n.
C. Tetrahedrat group (order 12).
D. Octahedral group (order 24).
E. Icosahedral group (order 60).
Groups witl parabolic elements in fields of characteristic p:
I. Additive groups of order p m ( m arbitrary).

II. Diliedral groups of order 2d2 (p = 2, d2 odd).
III. Tetrahedral group (p == 3).
IV. Mctacyclic groups of order d1pm (m arbitrary, dll p m - 1).
V. Thé gênerai projective group PGL(2, pm), pm ~ 2.
VI. Tlie special projective group PSL(2, pm), p ~ 2, pm =1= 3.

VII. Icosahedral group (p = 3).
The groups without parabolic éléments exist in a suitable

extension of K, if p is no divisor of the order of the group. Similarly
tlie groups witl parabolic elements exist if p has the prescribed
value. In tlie follow-iy we tacitly assume that these conditions
are fulfilled.
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If the conditions for the existence of the groups without parabolic
elements are not fulfilled, these groups may nevertheless exist
as a group with parabolic elements in the following cases:
Cyclic groups: if p = N, as additive groups with m = 1 (case I ).
Dihedral groups: if p = 2, n odd, as case II.

if p = n = 2, as an additive group with p = 2,
m = 2 (case I ).
if p = n ~ 2, as metacyclic groups with m = 1,
dl = 2 (case IV).

Tetrahedral group: if A = 2, as a metacyclic group with p = 2,
m = 2, d1 = 3 (case IV).
if p = 3, as case III.

Octahedral group: if p = 3, as PGL(2,3) (case V).
Icosahedral group: if p = 2, as PGL(2,4) (case V).

if p = 3, as case VII.
if p = 5, as PSL(2,5) (case VI).

Two isomorphic groups are always conjugate in the projective
group over an extended basic field, except for additive groups
if m &#x3E; 1, and for metacyclic groups if d1|pk -1 with k  m.

Part I.

EXISTENCE.

§ 3. Cyclic and dihedral groups without parabolic elements.

A fixed point (pole) of a binary projective transformation is

a root of a quadratic equation, and so needs not belong to K.
Since we are not allowed to extend K we cannot always make
use of the poles. This constitutes the main difference with the
treatment in B.P. More general forms than the diagonal form of
the matrix of the transformation must be considered.

We first consider non-parabolic cyclic groups of order N.

Since a matrix of order 2 always exists, we may assume N ~ 2.

Every two-rowed matrix, which is not a Inultiple of identity, may
be reduced to the canonical form:

N ~ 2 gives y ~ 0. By transforming with



172

the matrix takes the form

with a = - y2/z.
The characteristic polynomial of this matrix is

In a field which contains the poles of A (K or a quadratic ex-
tension of K), the poles may be brought to 0 and oo and the
matrix assumes the form

If A has order N, r must be a primitive Nth root of unity 03B6. As
the quotient of the characteristic roots is invariant under linear
transformation the roots xl, x2 of f(x) - 0 satisfy

We now have

so our matrix becomes

with k = 03B6 + 03B6-1 + 2. Conversely if A has this form, it has

order N. So we get
THEOREM 3.1. Necessary and sufficient in order that in a

field K a non-parabolic matrix of order N exists is that
1° N is not divisible by the characteristic.
2° 03B6 + 03B6-1 lies in K, if 03B6 denotes a primitive Nth root of unity 4).
It is clear that the theorem also holds in the originally excluded
case N = 2. From this theorem it follows, that 03B6 must lie in K
or in a quadratic extension of K. In the latter case it must be
conjugate to Ç-1 with respect to K.
Because the cyclotomic polynomials of orders 2, 3, 4 and 6

are of the first or second degree, matrices of those orders exist
in every field, e.g.

4) 1 owe this proof, which is much simpler than that given in my thesis, to
Prof. B. L. VAN DER WAERDEN.
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For N = 5 our condition 2° requires that oc = 03B6 + 03B6-1, a root
of the quadratic equation

lies in the field K. If p = 2, a is a third root of unity; in all other
cases we have

We must remember, that k = C + C-1 + 2 depends on the
choice of the primitive root of unity, C.
From now on we suppose that we know, whether a cyclic group

of any given order exists in K or not. In considering any type
of non-cyclic group, we shall assume that for all orders of non-
parabolic cyclic subgroups the conditions of Theorem 3.1 are
satisfied. If not, the group cannot exist.
To prove the existence of the dihedral group of order 2n

without parabolic elements (n ~ 2) we bring an element of order
n into the form

An element of order 2 must have the form

Now

must have order 2. This gives ak -E- c - bk = 0, c = bk - ak,

Here a and b may be chosen at will, provided the matrix is not
singular, e.g. a = 0, b = 1 (we know k ~ 0). From (AB)2 = E
and B2 = E follows by induction (A kB )2 = E. A k and AkB form
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a dihedral group. So the dihedral group exists as soon as the

cyclic group of order n exists.
For p = 2 and n odd, the same reasoning holds and yields the

existence of the dihedral group of case II with parabolic elements,
provided the cyclic group of order n exists in the field under
consideration.

If 1t = 2, the dihedral group always exists:

So we have
THEOREM 3.2. Dihedral groups of order 2n without parabolic

éléments exist if and only if p ~ 2 and a non-parabolic group
of order n exists (cf. theorem 3.1).
The tetrahedral, octahedral and icosahedral groups without

parabolic elements being the most difficult to treat, they will be
put off to the last.

§ 4. Parabolic groups.

For groups with parabolic elements the treatment is simpler
because, apart froin the case p == 2, the pole of an additive trans-
formation always lies in K. For sueli a pole is a double root of a
quadratie equation with coefficients in K and therefore must

belong itself to K. This conclusion does not hold if p == 2. Until
further notice we assume p ~ 2.
For the additive group of order pm the common pole can be

brought to oo; the transformations then get the form

where b runs through an additive group in K. Such an additive
group only exists if the order of K is pm at least. In the case
of the metacyclic group we have the saine condition for the

additive subgroup. In B.P. § 11 we have found that the dlth
roots of unity must lie in K. If this is the case we may form an
additive group of order pm with respect to the field GF(pr) of
the dlth roots of the unity over GF(p), and then also the meta-
cyclic group. Necessary and sufficient for the existence of the
metacyclic group is, that K contains the dith roots of unity and
has an order not smaller than pm.
The p"’ + 1 poles of parabolic transformations of PGL(2, pm)

and PSZ(2, pm) certainly lie in K. Hence they may as exposed
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in B.P. § 11 be transformed into the points of the space over
GF(pm) by bringing three of them to 0, 1 and oo. Necessary
for the existence of these groups is, that K contains GF(pm) as
a subfield. Obviously this is also sufficient.
The tetrahedral group (case III) always exists as PSL(2,3)

for p = 3.
For the existence of the icosahedral group for p = 3 (case

VII) all non-parabolic cyclic subgroups, i.e. those of orders 2
and 5, must exist. Cyclic groups of order 2 always exist; for
those of order 5 we have deduced the condition, that the roots
of the equation

x2 + x - 1 = 0

are in K. This is an irreducible, separable equation in GF(3),
having its roots in the quadratic extension GF(9). Necessary and
sufficient for the existence of a matrix of order 5 is that K contains

GF(9). If we call e a fifth root of unity in GF(81), we have
e + e-1 = a, where a is a root of x2 + x - 1 = 0.
We put

Tlie existence of the icosahedral group then follows from the
existence of a matrix B of order 3 such that A B has order 2

(cf. B.P. § 6).
Put

then

Condition for order 2 is aq q + s - ar + r = 0, s = (r-q)(03B1-1).
Then

B has order 3 means B is parabolic. We may obtain this by
putting e.g. r = 0, q = t = 1 (both poles in 0); then the trans-
formation is certainly not singular. This proves the existence of
the icosahedral group in a field K of characteristic 3 if and only
if K contains GF(9).

Finally we must consider the case p = 2. If the poles of the
parabolic transformations lie in K all remains the same and so
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we need only investigate whether the conditions for existence

mentioned above can be weakened by using parabolic elements
with poles not lying in K. Such a parabolic element has the form

The équation for the poles of this matrix reads

and is irreducible if c is not a square. Thus a transformation of

order 2 with its pole not in K (of characteristic 2) exists if and
only if K is not perfect (,,volll,-ommen" in the sense of Steinitz).

If the group contains a non-parabolic cyclic group such that
one of the pair of poles coincides with the pole of an arbitrary
parabolic transformation of the group, the latter must lie in K.
We therefore may restrict ourselves to the cases in which p

can be 2, and in which no non-parabolic cyclic groups with poles
in the’ poles of additive groups occur, viz. cases I and II (cf.
B.P. § 12; the condition there reads dl = 1). But the condition
of case 1 that the order of K is ~ 2 m, is certainly necessary, all
finite fields being perfect. The condition of case II, that the

cyclic group of order d2 exists, obviously is necessary too.
So we get
THEOREM 4.1. For the existence without extension of the

basic field K of the groups with parabolic elements we must add
to the requirement that p has the prescribed value the following
necessary and sufficient conditions:

case I: additive group of order p m: order of K is &#x3E; p m,
case II: dihedral group of order 2d2: cyclic group of order d2

exists (cf. theorem 3.1),
case III: tetrahedral groupe for p = 3: no condition,

case IV: metacyclic group of order d1pm: order of K ~ pm and
K contains the d1th roots of unity,

case V: PGL(2, pm): K contains GF(pm),
case VI: PSL(2, pm): K contains GF(pm),
case VII: icosahedral group for p = 3: K contains GF(9).
We are left with the tetrahedral, octahedral and icosahedral

groups without parabolic elements. They will be treated in the
next section.
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§ 5. The tetrahedral, octahedral and icosahedral groups
without parabolic elements.

Necessary and sufficient for the existence of these groups is,
that there is an element A of order resp. 3, 4 and 5 and an element
B of order 3, whose product has order 2 (cf. B.P. § 6).

If e denotes respectively a third, fourth or fifth root of unity,
we may bring A into the form

Let B be

Their product is

This must have order 2, so kx + z - ky = 0, or z = k(y - x).
The first condition now becomes

(5.1) x2 + xu + u2 + k(y - x)y = 0.]
We must add to this the condition of non-singularity for the

matrix of order 3:

Since

this condition may be written as

The equation (5.1) may be brought into a simpler form by a
non-singular homogeneous linear transformation in the basic field.
We do this for the three groups separately.
1. Tetrahedral group. k = 1. We may write the equation

By the transformation

this becomes if we omit the accents
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2. Octahedral group. k = 2. We may write the equation.

By the transformation

this becomes

3. Icosahedral group. Here k fulfills k2 - 3k + 1 = 0. By the
transformation

In the three cases the form of the equation now is the same.
The conditions for non-singularity now read as follows in the

three cases:

These conditions may be replaced by the condition, that x,
u and y are not all = 0 (i.e. that the solution is non-trivial).

If in case 1 ° a non-trivial solution exists, for which x + y + u = 0,
we replace the value of one variable, which is ~ 0, by its opposite.
In case 2° by permutation of the values of the variables x may
be made ~ 0. In the same way in case 3° u may be made ~ 0;
if then (k -1)x -f- u = 0, we replace u by - u.

It is well known that in a field in which

has a non-trivial solution, also

has a non-trivial solution. For if 03BE21 + 03BE22 + 03BE23 + 03BE24 = 0,
03BE4 ~ 0, we need only take 5) (03BE103BE3 - 03BE203BE4, 03BE103BE4 + 03BE203BE3, 03BE23 + 03BE24)
if - 1 is not a square in K and (y- 1, 1, 0) if -1 is a square
in K.

b) This expression may be found with use of the famous identity of EULER.
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Now the fields in which (5.2) has non-trivial solutions are
exactly the splitting fields of the ordinary quaternions (cf. Van
der Waerden [6], Kap. 16).
We remark that fields, which contain the third, fourth or fifth

roots of unity, are splitting fields of the quaternions; for the
third and fourth this follows immediately from their defining
equation: 0 = 03B52 + 03B5 + 1 = 03B52 + (e2)2 + 12 , respectively 0 = 03B52 + 1
= 03B52 + 12, for the fifth we shall show it later on.

Finally we remember that the condition that the fifth roots
of unity are at most quadratic over K is the same as the con-
dition that 5 is a square in K. Collecting our results, we obtain
the following theorem:
THEOREM 5.1. The tetrahedral, octahedral and icosahedral

groups are realisable as groups of binary projective transfor-
mations without parabolic elements in those and only those fields
K, which fulfill the following conditions:
1 ° the characteristic of K is ~ 2 and ~ 3 and for the icosahedral

group also ~ 5,
2° only for the icosahédral group: 5 is a square in K,
3 ° K is a splitting field of the ordinary quaternion system.

Finally we write down the conditions for existence of the types
of groups discussed before in the cases in which they occur as
groups with parabolic elements. These conditions are found im-
mediately by means of the list in § 2 and theorem 4.1:
cyclic groups; if p = N, no condition.
dihedral groups; if p = 2, n odd, same condition as in case B.

if p = n = 2, order of K is ~ 4.
if p = n ~ 2, no condition.

tetrahedral group; if p = 2, K contains the third roots of unity
(i.e. K contains GF(4)).

if p = 3, no condition.
octahedral group; if p = 3, no condition.

icosahedral group; if p = 2, K contains GF(4).
if p = 3, K contains GF(9).
if p = 5, no condition.

The conditions for the icosahedral group correspond to the
condition that the fifth roots of unity are quadratic over K.
New conditions, which do not appear for the groups without

parabolic elements, occur only in the cases of the dihedral group
for p = n = 2 (four-group for p = 2 ), GF(2) being excluded,
and the tetrahedral group for p = 2, because K must contain
the third roots of unity.
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§ 6. Which fields are splitting fields of the quaternions?

To this question we may apply the results of the theory of
algebras.
The case that the characteristic of the field is ~ 0 is immediately

solved as follows

THEOREM 6.1. All fields of characteristic p are splitting fields
of the quaternion system.
PROOF: It is sufficient to consider the prime fields. These

however are finite and the quaternion system with such a field
as basic field also, but finite non-commutative fields do not

exist, so they must be splitted. The proof does not hold if p = 2,
the quaternion system then being commutative. A commutative
field is impossible, because x2 -f - 1 = 0 has more than two
solutions in the quaternion system and this proves the theorem
for p = 2.

If K is an algebraic number field it is possible to apply arith-
metical methods to characterize the splitting fields. We consider
this case somewhat more in detail. For the results from the arith-
metic theory of hypercomplex systems, which are used in the
following, cf. e.g. DEURiNG [1 ], Kap. 6 and 7.

If R is the field of the rational numbers and K an algebraic
numberfield, the necessary and sufficient condition for K to be a

splitting field of an algebra A over R, is that all p-adic extensions

Kp of K, belonging to a prime ideal p in K are splitting fields of
the p-adic extended algebra Ap, in which p is the prime number,
which is multiple of p, and the same for the (real or complex)
extensions belonging to the infinite prime places. Cf. for this
Hasse [3] and Kôthe [4].
Now for a simple algebra over a p-adic numberfield the splitting

fields are those whose degrees are multiples of the index of the
algebra.
The p-index of an algebra however is ~ 1 only if p is divisor

of the discriminant of the algebra. So a condition arises only
from the prime divisors of the discriminant, and from the infinite
places.
The discriminant of the quaternion system is - 16.
We therefore need only consider oo and the prime divisors

of 2. Now oo gives the condition that K is not formally real:
the rank of the perfect extension of K must be &#x3E; 1 over the

real closed field contained in it. This condition is obvious, for in
a real field a sum of squares never may be zero non-trivially.
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The prime divisors of 2 give raise to p-adie extensions of K,
which are found as follows (cf. Van der Waerden [5] § 76):
resolve the defining equation of K into 2-adic irreducible factors.
Let those factors have degrees gl, ..., gr. Then the p-adic exten-
sions of K, which belong to prime divisors of 2 have also degrees
g1, ..., gr.
We may also resolve 2 in K into powers of prime ideals

Let p, i have degree f i. Then

The p-adic extensions of degrees gl, ..., gr are on account of the
theorem just mentioned splitting fields of the quaternion algebra
only if their degrees gl, ..., g,. are all even. We thus get the
following criterion:
THEOREM 6.2. Necessary and sufficient for a number field K

to be a splitting field of the quaternions is:
1° that K is not formally real, i.e. has no real conjugate,
2° that in the resolution of 2 into powers of prime ideals the

products eifi of exponents and degrees are all even.
We may also formulate this criterion by using the defining

equation of K:
THEOREM 6.3. Necessary and sufficient for a number field K

to be a splitting field of the quaternions is, that the defining
equation of K has only even prime factors both over the fields
of real and of 2-adic numbers.

We shall illustrate this by some examples. First of all we show
that every field of characteristic 5 which contains the fifth
roots of unity, is a splitting field of the quaternions. It will be
sufficient to do this for the fields of the fifth roots of unity over
the prime fields. The finite prime fields are splitting fields them-
selves ; only the case of R, the field of rational numbers, remains.
This is treated with the above-mentioned arithmetic conditions

as follows. The equation
x4 + x3 + x2 + x + 1 = 0

has no real roots, and therefore it resolves into two quadratic
factors in the field of real numbers; further it is unsolvable as a

congruence mod 2 and therefore cannot be resolved into 2-adic

factors of odd degree. The field therefore is a splitting field. The
result may also be obtained easily with use of the following well-
known theorem of number theory (cf. Hecke [2], Satz 92): If
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the prime number p is no divisor of tïi and f denotes the smallest
exponent for which p+ - 1(m), then p is in the field of the rntk

1.00tS of unity tlie product of exactly ~(m)/f different prime ideals
of degree 1. In our case is nî = 5, p == 2, so f = 4 and 2 is prime
in the field of the fifth roots of unity. Since 4 is even, the field
is a splitting field.
We now treat the case of the quadratic number fields R(D),

in which D is a square-free rational integer. The defining equation
reads

This must be resolved in the real and the 2-adic field. The field

will be splitting field if (6.1) remains irreducible in both cases.
For real numbers this is the case if and only if D  0. Fôr the
2-adic case we first consider:

This congruence is solvable only if D - 0 (4) or D ~ 1 (8).
The case D - 0 (4) is excluded, because D has been assumed
to be square-free. If D ~ 1 (8), (6.2) is unsolvable, so (6.1) is

unsolvable, and hence irreducible in the field of 2-adic numbers.
If D - 1 (8) we put 1 - D = 8h and transform x by x = 2y + 1;

the equation becomes:

Now the polynomial

is a product of 2 relatively prime factors y and y + 1 modulo 2.
It follows that this is also the case in the field of 2-adic numbers

(cf. Van der Waerden [9], § 76 Reduzibilitätskriterium) and from
this the same thing follows for the original equation (6.1). In
this case K is no splitting field. So we find:
THEOREM 6.4. The quadratic number fields R(D), D square-

free, are splitting fields of the quaternions if and only if D  0
and D ~ 1( 8).
The field of the mth roots of unity R(03B6), cm = 1 is also easily

treated. For m = 4: R(i), i2 = - 1, the field naturally is a

splitting field, and the same holds if m is a quadruple. For m = 2h,
h odd, the field is identical with that of the hth roots of unity.
We may therefore restrict ourselves to m odd. But this case is
treated with use of the above-mentioned number theoretic theorem
as follows. Let f be the smallest positive integer for which 2f ==1 (m ),
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then the field of the mth roots of unity is splitting field of the

quaternions if and only if f is even.

Applying this criterion, we obtain the following theorem:
THEOREM 6.5. The field of the mth roots of unity over R is

splitting field of the quaternions if m is divisible by 4 or by an
odd prime factor p such that the smallest exponent f, for which
2f - 1(p), is even, and only in these cases.

Part II.

EQUIVALENCE. 

§ 7. Groups without parabolic elements.

We now consider the question whether two groups of the same
type and the same value of the constants N, n, p, m, di may
be transformed into one another by linear transformation (i.e.
are conjugate in the whole projective group).
A Cyclic group o f order N. We know that a non-parabolic

matrix of order N (N ~ 2) may be brought into the form

where 03B6 is a primitive Nth root of unity.
The element k = 03B6 - 03B6-1 + 2 is not uniquely determined by

N, because 03B6 may be replaced by any other primitive Nth root of
unity ,b. However, 03B6 is the quotient of the characteristic roots
of the matrix A. Hence, if we replace A by Ab, 03B6 will be replaced
by 03B6b.
So if N ~ 2, an arbitrary matrix of order N is conjugate to a

power of another arbitrary matrix of order N, hence all cyclic
groups of order N are conjugate.
Now the case N = 2. A matrix of order 2 may be brought

into the form

Two such matrices (with el and c2) are conjugate if and only
if clc21 is a square. So e.g. in the field of rational numbers the
square free integers give rise to infinitely many matrices of order
2 which are not mutually conjugate.
THEOREM 7.1. Non-parabolic cyclic groups of order N are al-

ways conjugate except if N = 2 and the basic field contains an
element which is not a square.
We now consider, which transformations let invariant the above
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mentioned canonical form of the matrices of order lV (N ~ 2), viz.

One finds by casy calculation that this is the matrix

B Dihedral group o f order 2n. We first assume n =1= 2. We get

So ka + c - kb = 0, and therefore we get

We try to bring the second element into the canonical form
(a= 1, b = 0):

by transformation with (7.1). This gives the following equation
for r and t:

which is solvable if kb 2-kab + a2 is a square. When this is
not the case we may not yet conclude that not all groups are

conjugate, for it would be possible that another element of order
2 might be transformed into the canonical form. Although there
exists an automorphism between two sets of generators, this

automorphism needs not be a linear transformation. However,
we need not distinguish between elements of order 2 which belong
to the same class of conjugates in the dihedral group, as they
are transformable into one another by linear transformation (that
the transformation incidentally belongs to the dihedral group does
not matter; moreover the transformation can be chosen in this

way that the elements of order n are invariant). If n is odd, all
elements of order 2 are conjugate; if n is even but ~ 2, there
are two classes of elements of order 2; if n = 2 there are three
classes (each of one element).

So for n odd we are ready and the groups are always conjugate
if a2 - kab + kb2 is a square for all choices of a and b. If such
a quadratic form can be splitted into two different linear factors,
which is the case if K contains the nth roots of unity:
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it may take all values of K and the condition is equivalent to the
condition that all elements of K are squares. If K does not contain
the nth roots of unity the quadratic form is the norm of an element
c + d03B6 of K(03B6) (a = c - d, b = - d), and the condition is equi-
valent to the condition that all norms of elements of K(03B6) are
squares in K.

If n is even we must also consider an element of order 2, which

belongs to the other class of conjugates. If A denotes an element
of order n and B an element of order 2, the two classes of elements
of order 2, viz. AhB, are those with h odd, resp. even. So we may
choose for the element of the other class the product A B.

This comes into the canonical form if B gets the form

This gives the following equation for r and t:

(k3b + 2k2b + k2a-ka)r2 + 2 (kb + ka - k2b ) rt + (a-kb)t2 = o,
which is solvable if k(kb2-kab -E- a2) is a square.
So the dihedral groups are all conjugate if for all choices of

a and b either a2 2013 kab + kb2 or k(a2 - kab + kb2) is a square.
If K contains the nth roots of unity this condition may be replaced
by the condition that for all choices of c either c or kc is a square
and this may be replaced by the condition that either c or Cc
is a square, because kÇ = (03B6 + 1 )2 is a square. If K does not

contain the nth roots of unity the condition is that for every
element of K(03B6) either the norm N or kN is a square.
To show that the second condition is not superfluous if n is

even and K contains the nth roots of unity we give an example
of a field in which not all elements are squares, but in which c

or 03B6c is always a square. To do this we choose a prime p, such

that n 1 p - 1 and p-1 n is odd. This is possible, , because the

arithmetic progression with first term n + 1 and difference 2n
contains an infinity of primes. If 03B5 denotes a primitive element

of GF(p), C is an odd power of e, viz. p-1 n. The elements of
GF(p) which are not squares are also odd powers of 03B5 and their

products with 03B6 are even powers of e and therefore squares.
To show that the second condition is not superfluous if n is

even and K does not contain the nth roots of unity, it suffices

to give an example of a field in which k is not a square, but in
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which c or kc is always a square. We choose a prime p, such

that n 1 and p+1 n is odd. This is possible, because (n-1,
2n) - 1. We have n ~ 2. Now GF(p) does not contain the nth
roots of unity but G F(p2 ) does, because p = - 1(n), p2 == 1(n).
In GF(p2) each element is conjugate with its plh power with

respect to GF(p). So the nth root of unity is conjugate with its
inverse (because p ~ -1(n)) and k belongs to GF(p). To show
that is not a square in GF(p) we remark that GF(p2) contains
also the 2nth roots of unity, because p ~ -1(n) and n even
imply p2 - 1(2n), but a 2nth root of unity is not conjugate with

its inverse with respect to GF(p), because p+1 n odd implies
p fl -(2n). So the sum of a 2nth root of unity and its inverse
does not belong to GF(p), but this is just a square root of k.
Now k is an odd power of a primitive element e of GF(p ) and the
elements of GF(p ) which are not squares too, and their products
with k are even powers of e and therefore squares.
We are left with the case n = 2 (four-group). We distinguish

tliree cases.

(i) At least two elements of the four-group have their poles
in K. If we bring the poles of one of them to 0 and oo, and a pole
of the other to 1 we get the canonical form

(ii) Only one element of the four-group has its poles in K. We get:

with neither c, nor - c a square.

(iii) No element of the four-group has its poles in K. We get:

with c + 03BBb = 0, and so:

with À no square, (a2 - Â.b2) no square, and 03BB(03BBb2 - a2) no square.
Case (i) is always possible. Some examples for the possibility

of the other cases: in the field of rational numbers all three cases
are possible; in GF(3) only (i) and (iii) are possible; in GF(5)



187

only (i) and (ii) are possible and in the field of real numbers only
(i) is possible.
Two four-groups belonging to different cases obviously are

not conjugate. So all four-groups are conjugate if and only if
cases (ii) and (iii) are impossible. Case (ii) gives that for every
c at least one of c and - c must be a square. If this is the case
and 03BB and (a2 - Â.b2) are not squares, (Âb2 - a2) is a square and
03BB(03BBb2 - a2 ) is not a square. So if À is not a square a2 -03BBb2 always
must be a square, but -03BB is also a square and a and b arbitrary.
So if there is an élément 03BB which is not a square every sum of

(two) squares must be a square. If all elements are squares this
is also the case. So the four-groups are all conjugate in those and
only those fields in which a sum of squares is a square and for
every c at least one of c and - c is a square.
THEOREM 7.2. The dihedral groups of order 2n without para-

bolic elements are conjugate in those and only those fields K
which meet the following requirements:
(03B6 denotes a primitive nth root of unity, k = 03B6 + Ç-1 + 2)
if n is odd and the field contains the nth roots of unity:
all elements of K are squares,
if n is odd and K does not contain the nth roots of unity:
the norms of all elements of K(~) are squares in K,
if n is even and ~ 2, and K contains the nth roots of unity:
x or 03B6x is a square for all x,
if n is even and ~ 2 and K does not contain the nth roots of unity :
for every element of K(03B6) the norm N or kN is a square in K,
if n = 2: every sum of squares is a square and x or -x is a square
for all x.

C, D, E. Tetrahedral, octahedral and icosahedral groups. We take
a product of an element of order 3, 4 or 5 with one of order 3
such that the product has order 2. We get

with ka + c - kb = 0, so

with a2 + ad + d2 kab + kb2 = 0.

For the tetrahedral group we have k = 1, for the octahedral

group k = 2, for the icosahedral group k is a root of k2-3k+l=0.
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We transform the second matrix with (7.1) and try to détermine
r and t such that the transformed matrix becomes

lyitli a’ + aid, -t-- di -ka1b1 + kb21 = 0 6).
This turns out to be possible with:

Thèse fractions are not all indefinite. (It is remarkable that
this holds whatever the value of k is, except k = 0 and k = 3).
So we have .

THEOREM 7.3. The tetrahedral, octahedral and icosahedral

groups without parabolic éléments are always conjugate.

§ 8. Groups with parabolic elements.

I. Additive group of order p m. If p ~ 2, the pole of tlie group
is in K and may be brought to oo. The matrices of the group
then read

and the only remaining possibility is a multiplication of all b
with the same factor y. So we may bring one of the elements
in the form

but this is possible in pm -- 1 ways, but at most pm-1 p-1 give

rise to different additive groups, because 1", 2,u, - - ., (p - 1 )p
give the same group. If m = 1, the additive group is the additive
group of GF(p) and so determined, and all groups are conjugate.
We now assume m &#x3E; 1.

If the field K is infinite there are infinitely many additive
groups of order pm, which contain 1, and so not all additive groups

g) Obviotisly a fixed canonical form is not obtainable in this case.
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are conjugate. In CF(p") (n &#x3E; m) the number of different ad-
ditive groups of order pm, which contain 1, is

If 2  m  n - 2, this obviously is &#x3E; pm-1 p-1; the additive

groups cannot all be çonjugate. If m = n, only one additive group
is possible. If m == n - 1 the number of possible additive groups

is pn-1-1 p-1. We show that the pn-1-1 p-1 groups obtained by
multiplication are all different. If two of them were identical,
this group would have a multiplier not belonging to GF(p). The
multipliers however, form a field GF(pk) with k|n - 1, but, as
GF(pk) is a subfield of GF(pn), also with k ! n. This is only
possible for k = 1 and this gives a contradiction. So we get the
result that the additive groups of order p m (ne &#x3E; 1) are conjugate
only in GF(pm) and GF(pm+1). For p == 2 this result also holds;
for GF(2m) and GF(2m+1), because these fields are perfect and
only groups with poles in the basic field are possible; for the
other fields a fortiori. If p = 2 and m = 1, the groups are all

conjugate if and only if all parabolic elements have their poles
in the basic field, i.e. in perfect fields. Thus we get
THEOREM 8.1. Additive groups of order pm are conjugate in

those and only those fields K which meet the following require-
ments :

for 1n = 1, p ~ 2: no requirement,
for m = 1, p = 2 : K is perfect,
for in &#x3E; 1 : K is GF(pm) or GF(pm+’).

I I. Dihedral groups of order 2d2 (p = 2, d2 odd). The discussion
is nearly the same as for case B (dihedral groups without parabolic
éléments). The equation for rand t now reads

(k2b + kb + ka )r2 ---- ,
which is solvable if and only if k2b2 + kb 2+ kab is a square.

This may be replaced by the condition that kb2 + kab is a

square. Taking a = 0, b = 1, we obtain the necessary condition,
that k is a square. If this is the case ab must be a square too.

If K contains an element u which is not a square, for a = 1,
b = u, ab is not a square. Thus all elements must be squares.
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THEOREM 8.2. The dihedral groups of order 2d2 (p = 2, d2 odd)
are all conjugate if and only if the basic field is perfect.

III. Tetrahedral group (p = 3). An element of order 3 has
its pole in K and may be brought into the form

So we get

and a + c + d = 0, so

with a2 + ad + d2 -ab -bd = 0.

By transformation with

the first matrix remains unchanged and the second turns into
the canonical form:

THEOREM 8.3. Tetrahedral groups in fields of characteristic

3 are always conjugate.
IV. Metacyclic groups o f order d1pm. We bring the pole of

the additive group to co, and transform one of the éléments by
multiplication into

A primitive element of order dl then reads

Transformation with

does not change all elements of the form

and transforms (8.1) into
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We know that -q is a multiplier of the additive group (B.P.
§ 9). If we denote by GF(pr) the field of the dlh roots of unity
over GF(p), the additive group must be an additive group with
respect to GF(pr), but for the rest is arbitrary. The rest of the
discussion runs along the same lines as in case 1 (additive groups).
The multiplication which turns an element into the form

is possible in pm-1 ways, but at most pm-1 pr-1 give rise to

different additive groups. If m = r, the additive group is the
additive group of GF(pr) and so determined and the metacyclic
groups are conjugate. We now assume m &#x3E; r. If the order of K
is infinite there are infinitely many additive groups of order p m
with respect to GF(pr) which contain 1, and not all metacyclic 
groups are conjugate. In GF(pn) (n &#x3E; m) the number of different
additive groups of order pm with respect to GF(pr), which con-
tain 1, is

If 2r  m  n - 2r, this obviously is &#x3E; pm-1 pr-1. If m = n

only one additive group is possible. If m = n - r the number

of possible additive groups is pn-4-1 p4-1. 
We show that the 

pn-r-1 pr-1
groups obtained by multiplication are all different. If two of them
were identical, this group would have a multiplier not belonging
to GF(pr). The field of multipliers GF(pk) would satisfy k | n-r,
k | n and k &#x3E; r. This is impossible.
THEOREM 8.4. Metacyclic groups of order d1pm are conjugate

for m = r always and for m &#x3E; r only in GF(pm) and GF(pm+r),
r denoting the least positive integer for which dl | pr-1

V, VI. PGL (2, p m) and PSL (2, pm). The poles of the additive
subgroups of these groups are always in K. By bringing three
of them to 0, 1 and oo we get a canonical form of the group, as
is already pointed out in BP § 11.
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THEOREM 8.5. The groups PGL(2, pm ) and PSL(2, pm ) are al-
ways conjugate.

VII. Icosahedral group (p = 3). The treatment of case E

(icosahedral group without parabolic elements) may be repeated
literally. So we have
THEOREM 8.6. Icosahedral groups in fields of characteristic 3

are always conjugate.
Finally we state the conditions for equivalence for the types

of groups without parabolic elements in the cases in which they
occur as groups with pardbolie elements. This gives:
Cyclic groups: if p = N ~ 2, no condition.

if p = N = 2, K is perfect, i.e. all elements

of K are squares.
Dihedral groups: if p - 2, n odd, all elements of K are squares.

if p = n --- 2, K is GF(4) or GF(8).
if p = n ~ 2, no condition.

Tetrahedral, octahedral and icosahedral groups: in all cases, no
condition. 

A new condition, which does not appear for the groups without

parabolic elements, occurs only for the four-group if p = 2.

Finally 1 wish to express my sincere thanks to Prof. B. L. van
der Waerden for his valuable advice on the subject of this paper.
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