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The classes of partially ordered groups
by

F. Loonstra
The Hague

§ 1. In 1907 H. Hahn published a paper: Uber die nicht-
archimedischen GroBensysteme ). It is a study of commutative
simply ordered groups, especially concerning the non-archimedean
groups.

Hahn uses the additive notation for the group operation, and
he defines the group G to be Archimedean, if the Archimedeap
postulate (A) is satisfied:

(A) -For each pair of positive elements a and b of G (a > 0,
b > 0), there exists a natural multiple n - a of a with the property
n+a > b, and conversely there is a natural multiple m - b of b
with the property m b > a.

If the postulate (A) is not satisfied for all pairs of positive
elements, we call the ordering of G non-archimedean.

Suppose G is a commutative simply ordered group, @ and b
positive elements, then there are only four mutually exclusive
possibilities:

I. For each natural multiple n - a of a there exists a natural
multiple 72 - b of b, so that m - b > n - a, and conversely for each
multiple 2) m’ - b of b there exists a multiple »’ - a of a, so that
n'-a>m'-b.

II. For each multiple n - a@ of a there exists a multiple m - b
of b with m-b > n-a, but not conversely.

III. For each multiple m'-b of b there exists a multiple
n' +a of a with n’-a > m'-b, but not conversely.

IV. Not for every multiple n - a of a does there exist a multiple
m-b of b with m-b > n-a, nor for every multiple m’-b of b
does there exist a multiple »’ - a of a with n’'-a > m’-b.

In case I we call @ and b of the same rank, written a ~ b. In
case II we call a of a lower rank than b, written ¢ < b or b > a.

1) Sitzungsberichte der Akademie der Wissenschaften, Math. Naturw. Kl
Band 116, 1907, Wien.
2) In the following ‘‘multiple” will stand for ‘‘natural multiple”.
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Therefore in case I11, b < aora >b. If a< b, it follows immediately
that n-a < b for all natural =.

In the case of simply ordered groups the possibility IV cannot
occur. For a << 0, b > 0 (resp. a << 0, b < 0) the relation between
a and b is defined in the same way as for — a and b (resp. —a
and — b).

Because of the fact that equality of rank is an equivalence-
relation, it is possible to divide G into classes, each class consisting
of those and only those elements having the same rank as a
given one; therefore two classes either coincide or they are disjunct.
If G is non-archimedean ordered, then G has at least two classes 4
and B different from the zero class (consisting only of the identity).
If A and B are two different classes of G and if for ae A, be B
therelation a < b holds, then it is easily proved that this relation
is valid for each pair of elements a’e 4, b" ¢ B.

Therefore Hahn defines the relation 4 < B for the classes 4
and B by a<b forae A, be B. For two different classes A and B
of G there exists one and only one of the order relations 4 < B
and B < A. Moreover 4 < B and B < C implies 4 < C.

The classes of a commutative simply ordered group G form a
simply ordered set A, the class-set of G, while the ordertype
of A is called the class-type of G. Conversely Hahn proves: if A4 is
a simply ordered set, then there exists always a commutative
simply ordered group G such that the class-type of G is equal the
ordertype of A.

§ 2. We shall try to find a similar partition into classes for
partially ordered groups. Though we have later on to restrict
ourselves to commutative lattice-ordered groups, for the present
we omit this restriction.

Definition: A partially ordered group is a set G satisfying the
following conditions:

a) G is a group with the additive notation for the group-
operation.

b) G is a partially ordered set.

¢) a=bimpliesc +a+ d <c+ b+ d for each pair ¢ and
d of G.

G is called a directed group, if G is a partially ordered group
with the property that for each pair a, b e G there exists an
element ce G with ¢ = a, ¢ = b.

G is called a lattice-ordered group if G is a lattice instead of a
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partially ordered set. Then each pair of elements @ and b of G

have a join aU b and a meet a N b.
Let G be a partially ordered group and G* the set of all elements

a, comparable with 0(a % 0). If a and b are two positive elements,

we have for a and b the four possibilities I, IT, ITIT and IV of § 1.
Likewise we define @ and b to be of the same rank (a ~ b) only
if the case I occurs.

If there is a natural number m,, so that n-a << mg- b for all
natural n, we shall call @ of a lower rank than b(a < b or b > a).
If the positive elements a and b are such that neithera ~b,a < b,
nor b < a, we call @ and b of incomparable rank. Fora < 0, b > 0
(resp. a < 0, b < 0) the relation between a and b is defined in
the same way as for — a and b (resp. — a and — b). It is easily
proved, that for any two elements a and b of G at most one of
the relations a ~ b, a < b, or b > a holds. If none of these relations
is satisfied, then @ and b are of incomparable rank. Thus we
obtain: For each pair of elements a and b of G* there exists
exactly one of the four possibilities: a b, a < b, @ > b, oraand b
of incomparable rank. If a e G* (a # 0) we define 0 < a for each
a e Gt. We prove the following statement:

If a<b, a va’, boob’, then we have a’ < b’. For the sake of
convenience we suppose @ > 0, b > 0 and moreover m - a < ny- b
for all natural m.

For each multiple m’ - a’ of a’ there is a multiple m - a of a with

m-a>m'-a
and for each multiple r - b of b there is a multiple ' - b’ with
r-b >r-b.
For every natural ¢ we have
cr-b<c-r-b;
we choose ¢ in such a manner, that c¢-r = n, Thus
m-a<<c-r b

for all natural m we have: For all m' - a’ we can find a multiple
m - a with
m-a <m:-a,
therefore m'-a’ <c-r'-b" for all m" and so we have a’ <b'.
If a and b are of incomparable rank and a ~a’, b ~ b, then
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a’ and b’ are of incomparable rank too; in fact, should a’ and b’
be of comparable rank, it follows from the preceding result, that
a and b should be of comparable rank. The relation “equality of
rank” enables us to divide the set G* into classes. A class A
consists of those and only those elements which are of the same
rank. The zero class O is the class consisting of the identity of G.
It follows that two classes A and B either coincide or are disjunct.
Just as for the simply ordered groups it is possible to define an
order relation A > B for the two classes 4 and B, if and only
if a>bforae A, be B. Two such classes 4 and B are called in-
comparable if two elements a € A and b € B are of incomparable
rank. Therefore each pair of different classes A and B defines
one and only one of the three relations A > B, B > A4, or A and B
are incomparable. Moreover 4 > B, B > C implies 4 > C. The
classes of a partially ordered group G form a partially ordered
set A, called the class-set of G. A possesses a least element O, the
zero class. The Hasse-diagram of A is called the class-diagram of G.

§ 3. Examples.

1. The class-set A of a simply ordered group G is a chain.

2. Let G be the group of the pairs (m; n), m and n integers

with the operation: (my; ny) + (my; ny) = (Mmy + my; ny + ny)

while the ordering is defined by (m,; n,) < (my; n,) if and only

A B ¢ if my = my ny < ny, (cardinal-

ordering of the group of pairs).

G has four different classes: the zero

class O, the class A of elements

(0; ») (n integer and £ 0), the

class B of elements (n; 0) with

0 n #0, and the class C of the

Fig. 1. elements (m; n) with m >0, n >0,

orm < 0, n < 0. Each pair of the

classes A, B, and C is incomparable since the elements a = (0; 1),

b= (1;0) and ¢ = (1; 1) are incomparable. The class-diagram
of G is given in fig. 1.

8. G is the group of the triples (m, n; p), in which m, n and p

are integers such that

(my, ny; 1) + (Mg, mg; Pg) = (My + Mg, my + Mg; Py + Po)-
The ordering is defined as follows: the pairs « = (m, n) of the

first two components are cardinally ordered (as in ex. 2); on the
other hand the pairs («; p), in which (m, n) is replaced by «, are
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ordinally ordered (e.g. lexicographically ordered). Contrary to
the examples 1. and 2. this group
is not a lattice-ordered group since
the elements (0,1; 0) and (1,0; 0)
have no join. Let A be the class
containing the element (0,0; 1), B
the class containing (0,1; 0), C the
class containing (1,0; 0) and D the
class containing (1,1; 0). There exist
no other classes, hence the class-
L diagram has a form like that in fig. 2.

These and other examples show
that in general the class-set A is not
a lattice. Moreover a question arises:
Do there exist groups with a prescribed class-set I'? If we restrict
ourselves to commutative lattice-ordered groups then it is possible
to prove that the answer is negative. Since the class-set of a par-
tially ordered group is not in general a lattice, we have a strong
reason to ask whether it is possible to solve the problem of the divi-
sion of classes of partially ordered groups in such a way, that we
are able to find another sort of class-set with — at least — the pro-
perties of a lattice. This question can be answered affirmatively.

B c 0

0
Fig. 2.

§ 4. Supposing now that G is a commutative lattice-ordered
group we will proceed in the following paragraph to give some
definitions and properties of these groups.

|a| =auU—a; if a #0, we have
la] > 0; 0] = 0; |ab| =|a| + 0]

Two lattice-ordered groups G and G’ are called isomorphic if
there is a group-isomorphic relation between G and G’ such
that @ < b implies ¢’ < b' and @’ < b’ implies a < b. It is easily
proved that in the case of isomorphism p U ¢ (resp. p N q) corres-
ponds to p’ U ¢ (resp. p' N ¢q’).

A lattice-ordered subgroup H of G is a lattice-ordered group,
which is a subgroup of G while the lattice H is a sublattice of G.
Now we need the following:

THEOREM 4.1: If G is a commutative lattice-ordered group
and n a natural number, then the correspondence a — n - a is
an isomorphism of G with a lattice-ordered subgroup of G 3).

3) G. BirgHOFF, Lattice Theory p. 221; Ex. 8.
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Proor: From a —-n-a, b -n-b, it follows that a + b —
n-(a+b), and n-a =mn-b implies a = b. If a < b, then also
n-a =n-b, and conversely n-a < n-b implies a < b (because
of the commutative property of the groupoperation). It follows
that aUb<«<—n-(aUb),butalsoa U b<—>n-aUn-b;there-
fore n- (@aU b) =n-aUn-b, and in thesamewayn - (a Nb) =
n-ann-b.

By an L-ideal of the lattice-ordered group G is meant a normal
subgroup of G which contains with any a, also all 2 with
|z| < |a| %). G and O are L-ideals of G, and are called improper
L-ideals, whereas all other L-ideals of G are called proper L-ideals.
If N is an L-ideal of G, then N contains with a and b also a + b,
aU b, a Nb, and all # with the property a Nb =<2 < a U b. Now
let a be some element of G. The set I(a) of elements x € G which
satisfy the relation |z| < n - |a| for some natural n is an L-ideal.
Because, if |b| <m-|a|, || <mn-|a, then |b+ ¢ <|b] +
le| < (m + n)-|a|;andif b e(a)and |z| < |b], then |z| < m - |a|;
hence I(a) is an L-ideal. Moreover I(a) is the smallest L-ideal
which contains a. In fact, an L-ideal containing a contains also
n-a (for all natural n) and therefore all b with |b| < |n-a| =
n - |a|. In addition it is obvious, that I(a) =I(— a) = I(|a|).

All L-ideals I(a) of G will be called I-ideals.

For subsequent use we now give a theorem first proved by
Birkhoff #): A commutative lattice-ordered group G has two
proper disjunct L-ideals (e.g. two proper L-ideals with intersection
0) unless G is simply ordered. The proof of this theorem is based
on the consideration that G contains an element a incomparable
with O unless G is simply ordered. To prove the theorem Birkhoff
constructs two disjunct L-ideals S and S’, of which S’ contains
the element at = a U 0 but not a— = a N 0, while S contains
a~ but not at. This enables us to prove the following.

THEOREM 4.2: A commutative lattice-ordered group G is simply
ordered if and only if the I-ideals of G form a chain.

Proor: Suppose that G is simply ordered and that I(a) and I(b)
are two I-ideals, a %0, b #0. I(a) = I(—a), therefore we
suppose @ >0, b >0 and a <b. Then I(a) CI(b), because
z € I(a) implies ]m[ < n.a for some natural n. Therefore
|z| <n-b, whence zel(b). Conversely, if the I-ideals of G
form a chain, then G must be simply ordered. Infact should G not

4) Lattice Theory p. 222.
5) G. BIRkHOFF, Lattice-ordered groups, Ann. of Math. 43 (1942), p. 312.



136 The classes of partially ordered groups. m

be simply ordered, then G would contain two proper L-ideals S
and S’ with intersection O. Following the construction of S’ we
see that I(at)C S’, while I(a*) is the smallest L-ideal contain-
ing at. In the same way I(a~) CS. The intersection of S and
S’ consists only of the identity, therefore I(a~) and I(at) have
only the identity as a common element. Hence I(a~) and I(a*)
are incomparable (e.g. neither I(a~) C I(at), nor I(at) CI(a™)).

THEOREM 4.3: If G is a commutative lattice-ordered group the
I-ideals of G form a distributive lattice Sg.

Proor: We prove that for two I-ideals, I(a) and I(b), there
exist a join and a meet, which are also I-ideals. Fora = 0 of b = 0,
a join and meet evidently exist. We now prove: I(a) U I(b) =
I(|a|u|b]); since I(a) =I(|a]) and |a| < |a|U [b|, we have

I(|a]) CI(a| U |b]) and I(|b]) CI(a] L |B]).

Conversely if I(|a|) CI(c) and I(|b]) CI(c), then |a| < n, - |c|,
|b| < ms - ||, therefore a and b both satisfy |a| < n - |c|, |b] = n - |¢|
with n = max {n,, n,).

Hence |a| U |b] < n|c| and I(|a] U |b] CI(c).

In the same way I(|a| N |b]) CI(|a|) and I(|a| N |b]) CI(|d]).

If I(c) CI(|a|) and I(c) CI|b|) then |c| < n|a| and |c| < n|b|
for suitably closen n. Hence by Theorem 4.1 |¢| < n-|a| N n - |b|=
n- (|la| N |b|), and therefore I(c) CI(|a| N |b|). Therefore: the
I-ideals of G form a lattice S;. It is now easy to prove that this
lattice is distributive. To do this we need the property, that G
itself is a distributive lattice:

I(@) N (I(b) L I(c)) = I(a) O (I(|8] L [e]) = I(a] N (|b] L |¢]))
=I((|la] 0 [b]) L (|a| N]e|)) = I(|a] O |b])L I(|a] N ]e])
= {I(a) N I(B)} L {I(a) NI(c)}.

§ 5. Let G be a commutative simply ordered group. We prove

THEOREM 5.1: The elements a and b are of the same rank
(§ 1) if and only if I(a) = I(b).

Proor: If a = b = 0, then I(a) = I(b); therefore we suppose
a 7% 0; then b £ 0.

Without restricting the generality we suppose a > 0, b > 0.
If zeI(a), then |z] < n-|a| =n-a. Now a ~b (§ 1), so we can
find a natural m with n-a <m-b; hence |z]| Sn-a <m-b=
m - |b|. Therefore I(a) CI(b) and in the same way I(b)C I(a).

Hence it follows from a ~ b that I(a) = I(b). If conversely
I(a) = I(b), and we suppose a > 0, b > 0, then a € I(b). There-
fore a < n - b and, in the same way b < m - a for proper natural
m and n; hence a «~b.
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THEOREM 5.2: For the elements a and b of G, a < b if and only
if I(a) is a proper subset of I(b).

Proor: Suppose a < b (a > 0, b > 0), then for 2 € I(a) we have
|#f <n-|a] =n-a and n-a <b (for all natural n). Therefore
|#| < |b], hence z € I(b). But not every element of I(b) is contained
in I(a); for, if b € I(a), then |b| < n-|a| or b < n - a, contrary to
the supposition that n - a < b for all natural n. Hence I(a) is a
proper subset of I(b).

Conversely, if I(a) is a proper subset of I(b) there is an element
y of I(b) and not in ¥(a), such that no natural multiple n - a of a
exists with y < n - a. Therefore n - ¢ < y for all natural n, and
since y € I(b), we have y < m, - b for some natural m,. It follows
now n-a < m, b for all natural n, therefore n-a < b for all
natural n or a < b.

Therefore in a commutative simply ordered group G we have
a~ b if and only ifII(a) =1I(b) and a < b if and only if I(a) C I(b).
If the element a is contained in the class 4, then A corresponds
to the /-ideal I(a) of some arbitrary a € 4; and in addition, there
are no other elements g in G, except the elements a of A4, such
that I(g) = I(a). Furthermore 4 < B implies I(a)C I(b), if
aeA, be B.

Every I-ideal is generated by an element a, and therefore every
I-ideal I(a) corresponds to a class A, containing the element a.
If I(a) = I(b), then we have proved: a ~b. If I(a) C I(b), then
a < b; hence for the corresponding classes A and Bwehave 4 < B.
Therefore we have the following result:

THEOREM 5.8: If G is a commutative simply ordered group,
there is a one to one correspondence preserving the orderrelations
between the class-set 4 of G and the set of the I-ideals of G.

While the intersection of the classes of G is always empty,
the I-ideals form a chain. For example, if A is the chain
O0<A<B<LC<D and aeA, beB, ceC, deD, we have
I(0)CI(a)CI(b)ClI(c)CI(a).

§ 6. To generalize the preceding results for commutative
lattice-ordered groups, we compare the I-ideals of G. Suppose
that a and b are two elements of G which are not necessarily
comparable with 0. We now define a and b to be of the same
I-rank if and only if I(a) = I(b); and we define a to be of a lower
I-rank than b, if I(a) is a proper subset of I(b). We only use the
notation a ~ b for the equality of rank as defined in § 2. That
definition was only given for elements comparable with 0. Like-
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wise we use the notation a < b only for the cases we specified in§ 2.
However, it will appear that there is a close connection between
the two types of relations of rank. First of all we give an example:
G is the group of pairs (m;n) (see ex. 2,§3).1(0;0) = 0,1(0;1)
= A, consisting of all elements (0; ») with n an integer;
I(1; 0) = B, consisting of all elements (n; 0) with » an integer;
I(1; 1) = C, consisting of all elements of G. The Hasse-diagram
of the I-ideals is shown in fig. 3.
If G consists of all cardin-
ally ordered triples (m, n, p),
with m,n and p integers and
(my, my, p1) + (Mg, my, pp) =
(my + my, ny + Ny, Py + P2)

C
A 8
0] 0
Fig. 8. Fig. 4.

and we indicate 7(0,0,0)=0, 1(0,0,1) = A4, 1(0,1,0) = B,
I11,0,0)=¢C, I(0,1,1)= D, I(1,0,1)=E, I(1,1,0) = F,
and I(1,1,1) = G, then the Hasse-diagram of the I-ideals is
given by fig. 4.

§ 7. Now we try to find the relation between the class-set 4
(of § 2) and the I-ideals of a commutative lattice-ordered group G.

THEOREM 7.1: For a, be G and @ > 0, b > 0, we have a ~ b
if and only if I(a) = I(b).

Proor: Supposea coband @ > 0, b > 0. If @ ¢ I(a), and there-
fore |z| < n+a < m - b for some natural m and n, then I(a) C I(b),
and in the same way I(b) C I(a). Hence I(a) = I(b). Conversely,
we must show, if I(a) = I(b), and a > 0, b > 0, then a ~b.
Indeed, since |a| =a <n-b and b <m-a for some natural
m and m, we have a ~b.

THEOREM 7.2: From a<b we conclude I(a)CI(b), but not
conversely.
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Proor: If a<b, then n-a < my-b for all natural n(a > 0,
b > 0). Thus we have for any zel(a), |2| <n-a < m,-D,
therefore z € I(b). But we have not I(b) C I(a) for if b € I(a), then
we should have b < n-a and my-b < mgn - @ contrary to our
supposition. Therefore I(a) CI(b). That the opposite of the
theorem is not true, appears from the ex. 2, § 3; in fact, we have
I1(0,1)CI(1,1), but not (0,1)< (1,1).

With every element a of a class of G there corresponds an
I-ideal I(a), and I(a’) = I(a) for all a’ € A. Therefore, a. class
A of G corresponds: with an I-ideal I(a), generated by a repre-
senting element @ of A. Furthermore A < B implies I(a) C I(b)
(proper subset), if a € A, b € B. Conversely an I-ideal, generated
by an element a of G, corresponds to a class A of G, viz. the class
A of which a is a member (we may suppose, that @ = 0, since
I(a) = I(|a])). The class A, corresponding to an I-ideal of G,
does not depend on the choice of the generating element a of I
(this follows from Theorem 8.1). Therefore we have:

THEOREM 7.8; If G is a commutative lattice-ordered group,
then the set of the classes (formed by the elements of G*) corres-
ponds one to one with the set of the I-ideals of G. The corres-
pondence preserves the order-relation in one direction, i.e. 4 < B
implies I(a) CI(d), if ae 4, be B.

The last result enables us to decide whether or not there are

A B8
l@ (b
0 0 0!
Fig. 5. Fig. 6.

commutative lattice-ordered groups with a prescribed class-
diagram. We prove that there is no commutative lattice-ordered
group G with a class-diagram as shown in fig. 5. In fact, for such a
group G the lattice of the I-ideals is a lattice consisting of three
elements, e.g. this lattice is one the chains O — I(a) — I(b) or
O —I(b) — I(a) (fig. 6). Other lattices of three elements do not
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exist. If, however, the I-ideals from a chain. G must be a simply
ordered group (theorem 4.2), and the class-set /1 must be a simply
ordered set too. Therefore the diagram of fig. 5 cannot be the
class-diagram of G. Finally we put two questions:

1. Is the commutative lattice-ordered group uniquely defined
but for isomorphism by the lattice of the I-ideals?

2. What conditions must be satisfied by this lattice if a
distributive lattice with smallest element is the lattice of the
I-ideals of a commutative lattice-ordered group?

My thanks are duc to Prof. Birkhoff for his suggestions.

(Oblatum 13-11-50).



